code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : int = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE : Optional[Any] = { """yjernite/retribert-base-uncased""": 512, } SCREAMING_SNAKE_CASE : Union[str, Any] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ =RetriBertTokenizer lowerCamelCase__ =['input_ids', 'attention_mask'] def __init__(self , a_=None , a_=None , a_=True , a_="[UNK]" , a_="[SEP]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_=True , a_=None , **a_ , ): '''simple docstring''' super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , tokenize_chinese_chars=a_ , strip_accents=a_ , **a_ , ) __snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , a_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , a_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , a_ ) != tokenize_chinese_chars ): __snake_case : Optional[int] = getattr(a_ , normalizer_state.pop('''type''' ) ) __snake_case : Tuple = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : Union[str, Any] = tokenize_chinese_chars __snake_case : int = normalizer_class(**a_ ) __snake_case : Union[str, Any] = do_lower_case def SCREAMING_SNAKE_CASE (self , a_ , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : List[str] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *a_ , **a_ ): '''simple docstring''' warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , a_ , ) super().__init__(*a_ , **a_ )
24
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=[0.5, 0.5, 0.5] , a_=[0.5, 0.5, 0.5] , ): '''simple docstring''' __snake_case : str = size if size is not None else {'''height''': 18, '''width''': 18} __snake_case : str = parent __snake_case : Optional[Any] = batch_size __snake_case : int = num_channels __snake_case : List[Any] = image_size __snake_case : Optional[int] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[str] = do_resize __snake_case : str = size __snake_case : Union[str, Any] = do_normalize __snake_case : Optional[Any] = image_mean __snake_case : str = image_std def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''image_mean''' ) ) self.assertTrue(hasattr(a_ , '''image_std''' ) ) self.assertTrue(hasattr(a_ , '''do_normalize''' ) ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
24
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='vit_msn' def __init__(self , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.0 , a_=0.0 , a_=0.02 , a_=1E-06 , a_=2_24 , a_=16 , a_=3 , a_=True , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : List[str] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : int = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Union[str, Any] = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : Tuple = image_size __snake_case : Optional[Any] = patch_size __snake_case : Tuple = num_channels __snake_case : Optional[Any] = qkv_bias
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
"""simple docstring""" import datasets SCREAMING_SNAKE_CASE : Optional[Any] = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ SCREAMING_SNAKE_CASE : List[str] = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ SCREAMING_SNAKE_CASE : str = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def lowercase ( _snake_case : str , _snake_case : str ) ->Any: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' return {"accuracy": simple_accuracy(a_ , a_ )}
24
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
1
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='beit' def __init__(self , a_=81_92 , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.0 , a_=0.0 , a_=0.02 , a_=1E-12 , a_=2_24 , a_=16 , a_=3 , a_=False , a_=False , a_=False , a_=False , a_=0.1 , a_=0.1 , a_=True , a_=[3, 5, 7, 11] , a_=[1, 2, 3, 6] , a_=True , a_=0.4 , a_=2_56 , a_=1 , a_=False , a_=2_55 , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Any = initializer_range __snake_case : Optional[int] = layer_norm_eps __snake_case : List[Any] = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : Tuple = use_mask_token __snake_case : int = use_absolute_position_embeddings __snake_case : Any = use_relative_position_bias __snake_case : Any = use_shared_relative_position_bias __snake_case : Tuple = layer_scale_init_value __snake_case : Dict = drop_path_rate __snake_case : Any = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case : Optional[int] = out_indices __snake_case : Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case : str = use_auxiliary_head __snake_case : List[Any] = auxiliary_loss_weight __snake_case : Tuple = auxiliary_channels __snake_case : int = auxiliary_num_convs __snake_case : Dict = auxiliary_concat_input __snake_case : List[Any] = semantic_loss_ignore_index class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-4
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase ( _snake_case : List[str] , _snake_case : Any=False ) ->Optional[int]: """simple docstring""" try: __snake_case : List[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Tuple = strtobool(_snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value SCREAMING_SNAKE_CASE : str = parse_flag_from_env("""RUN_SLOW""", default=False) def lowercase ( _snake_case : Optional[Any] ) ->List[str]: """simple docstring""" return unittest.skip('''Test was skipped''' )(_snake_case ) def lowercase ( _snake_case : List[str] ) ->List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(_snake_case ) def lowercase ( _snake_case : Optional[int] ) ->List[str]: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(_snake_case ) def lowercase ( _snake_case : Tuple ) ->Any: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(_snake_case ) def lowercase ( _snake_case : List[Any] ) ->int: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->Dict: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(_snake_case ) def lowercase ( _snake_case : Optional[Any] ) ->List[str]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(_snake_case ) def lowercase ( _snake_case : Dict ) ->Optional[Any]: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(_snake_case ) def lowercase ( _snake_case : List[Any] ) ->Dict: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(_snake_case ) def lowercase ( _snake_case : str ) ->Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(_snake_case ) def lowercase ( _snake_case : List[Any] ) ->Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(_snake_case ) def lowercase ( _snake_case : Any ) ->Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(_snake_case ) def lowercase ( _snake_case : List[str] ) ->List[str]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(_snake_case ) def lowercase ( _snake_case : Optional[int] ) ->Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->Any: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(_snake_case ) def lowercase ( _snake_case : int=None , _snake_case : List[Any]=None ) ->str: """simple docstring""" if test_case is None: return partial(_snake_case , version=_snake_case ) return unittest.skipUnless(is_torch_version('''>=''' , _snake_case ) , f"""test requires torch version >= {version}""" )(_snake_case ) def lowercase ( _snake_case : Tuple ) ->List[Any]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->Any: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(_snake_case ) def lowercase ( _snake_case : Tuple ) ->int: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(_snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase ( _snake_case : Optional[Any] ) ->Optional[int]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(_snake_case ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =True @classmethod def SCREAMING_SNAKE_CASE (cls ): '''simple docstring''' __snake_case : Dict = tempfile.mkdtemp() @classmethod def SCREAMING_SNAKE_CASE (cls ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(a_ ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = mocks if isinstance(a_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase ( _snake_case : Tuple ) ->List[str]: """simple docstring""" __snake_case : Dict = AcceleratorState() __snake_case : Union[str, Any] = tensor[None].clone().to(state.device ) __snake_case : Dict = gather(_snake_case ).cpu() __snake_case : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _snake_case ): return False return True class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = returncode __snake_case : str = stdout __snake_case : List[Any] = stderr async def lowercase ( _snake_case : str , _snake_case : List[str] ) ->Optional[Any]: """simple docstring""" while True: __snake_case : str = await stream.readline() if line: callback(_snake_case ) else: break async def lowercase ( _snake_case : Tuple , _snake_case : int=None , _snake_case : Any=None , _snake_case : List[Any]=None , _snake_case : List[str]=False , _snake_case : str=False ) ->_RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(_snake_case ) ) __snake_case : Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Optional[int] = [] __snake_case : Tuple = [] def tee(_snake_case : Tuple , _snake_case : str , _snake_case : int , _snake_case : Any="" ): __snake_case : Tuple = line.decode('''utf-8''' ).rstrip() sink.append(_snake_case ) if not quiet: print(_snake_case , _snake_case , file=_snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _snake_case : tee(_snake_case , _snake_case , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _snake_case : tee(_snake_case , _snake_case , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=_snake_case , ) return _RunOutput(await p.wait() , _snake_case , _snake_case ) def lowercase ( _snake_case : str , _snake_case : Union[str, Any]=None , _snake_case : int=None , _snake_case : List[str]=180 , _snake_case : Optional[int]=False , _snake_case : Optional[Any]=True ) ->_RunOutput: """simple docstring""" __snake_case : List[str] = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(_snake_case , env=_snake_case , stdin=_snake_case , timeout=_snake_case , quiet=_snake_case , echo=_snake_case ) ) __snake_case : Tuple = ''' '''.join(_snake_case ) if result.returncode > 0: __snake_case : Tuple = '''\n'''.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class _UpperCAmelCase ( __snake_case ): '''simple docstring''' pass def lowercase ( _snake_case : List[str] , _snake_case : Union[str, Any]=False ) ->Tuple: """simple docstring""" try: __snake_case : Optional[int] = subprocess.check_output(_snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_snake_case , '''decode''' ): __snake_case : str = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{' '.join(_snake_case )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
"""simple docstring""" def lowercase ( _snake_case : list ) ->list: """simple docstring""" if len(_snake_case ) <= 1: return lst __snake_case : List[str] = 1 while i < len(_snake_case ): if lst[i - 1] <= lst[i]: i += 1 else: __snake_case , __snake_case : Any = lst[i], lst[i - 1] i -= 1 if i == 0: __snake_case : Any = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
24
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
1
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE : Optional[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE : List[Any] = tuple[int, int] class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Tuple = pos_x __snake_case : List[Any] = pos_y __snake_case : Dict = (pos_y, pos_x) __snake_case : List[Any] = goal_x __snake_case : Tuple = goal_y __snake_case : str = g_cost __snake_case : Optional[int] = parent __snake_case : Optional[Any] = self.calculate_heuristic() __snake_case : List[Any] = self.g_cost + self.h_cost def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.pos_x - self.goal_x __snake_case : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(a_ ) + abs(a_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self , a_ ): '''simple docstring''' return self.f_cost < other.f_cost class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' __snake_case : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a_ ) __snake_case : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , a_ ) __snake_case : Optional[Any] = [self.start] __snake_case : list[Node] = [] __snake_case : List[str] = False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __snake_case : List[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(a_ ) self.closed_nodes.append(a_ ) __snake_case : Any = self.get_successors(a_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a_ ) else: # retrieve the best current path __snake_case : Optional[int] = self.open_nodes.pop(self.open_nodes.index(a_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a_ ) else: self.open_nodes.append(a_ ) return [self.start.pos] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : str = [] for action in delta: __snake_case : Optional[Any] = parent.pos_x + action[1] __snake_case : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a_ , a_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a_ , ) ) return successors def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = node __snake_case : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case : int = current_node.parent path.reverse() return path class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = AStar(a_ , a_ ) __snake_case : Dict = AStar(a_ , a_ ) __snake_case : int = False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __snake_case : List[str] = self.fwd_astar.open_nodes.pop(0 ) __snake_case : Tuple = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( a_ , a_ ) self.fwd_astar.closed_nodes.append(a_ ) self.bwd_astar.closed_nodes.append(a_ ) __snake_case : Any = current_bwd_node __snake_case : int = current_fwd_node __snake_case : str = { self.fwd_astar: self.fwd_astar.get_successors(a_ ), self.bwd_astar: self.bwd_astar.get_successors(a_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(a_ ) else: # retrieve the best current path __snake_case : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(a_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(a_ ) else: astar.open_nodes.append(a_ ) return [self.fwd_astar.start.pos] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : int = self.fwd_astar.retrace_path(a_ ) __snake_case : Any = self.bwd_astar.retrace_path(a_ ) bwd_path.pop() bwd_path.reverse() __snake_case : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE : Tuple = (0, 0) SCREAMING_SNAKE_CASE : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : str = AStar(init, goal) SCREAMING_SNAKE_CASE : Tuple = a_star.search() SCREAMING_SNAKE_CASE : int = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') SCREAMING_SNAKE_CASE : Dict = time.time() SCREAMING_SNAKE_CASE : List[str] = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE : Tuple = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowercase ( ) ->tuple[list[int], int]: """simple docstring""" __snake_case : Union[str, Any] = [randint(-1_000 , 1_000 ) for i in range(10 )] __snake_case : int = randint(-5_000 , 5_000 ) return (arr, r) SCREAMING_SNAKE_CASE : Any = make_dataset() def lowercase ( _snake_case : list[int] , _snake_case : int ) ->tuple[int, ...]: """simple docstring""" for triplet in permutations(_snake_case , 3 ): if sum(_snake_case ) == target: return tuple(sorted(_snake_case ) ) return (0, 0, 0) def lowercase ( _snake_case : list[int] , _snake_case : int ) ->tuple[int, int, int]: """simple docstring""" arr.sort() __snake_case : int = len(_snake_case ) for i in range(n - 1 ): __snake_case , __snake_case : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowercase ( ) ->tuple[float, float]: """simple docstring""" __snake_case : Tuple = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __snake_case : Optional[int] = ''' triplet_sum1(*dataset) ''' __snake_case : Optional[Any] = ''' triplet_sum2(*dataset) ''' __snake_case : List[Any] = repeat(setup=_snake_case , stmt=_snake_case , repeat=5 , number=10_000 ) __snake_case : str = repeat(setup=_snake_case , stmt=_snake_case , repeat=5 , number=10_000 ) return (min(_snake_case ), min(_snake_case )) if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Union[str, Any] = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
1
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE : int = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE : List[Any] = [0, 25, 50] SCREAMING_SNAKE_CASE : str = [25, 50, 75] SCREAMING_SNAKE_CASE : str = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE : int = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE : List[str] = np.ones(75) SCREAMING_SNAKE_CASE : List[str] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE : str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE : Tuple = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE : List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE : Optional[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE : Optional[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE : Optional[int] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE : Optional[int] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE : Any = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
24
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=3 , a_=2_24 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=[0.5, 0.5, 0.5] , a_=[0.5, 0.5, 0.5] , ): '''simple docstring''' __snake_case : str = size if size is not None else {'''height''': 18, '''width''': 18} __snake_case : Union[str, Any] = parent __snake_case : Union[str, Any] = batch_size __snake_case : Union[str, Any] = num_channels __snake_case : List[Any] = image_size __snake_case : int = min_resolution __snake_case : int = max_resolution __snake_case : str = do_resize __snake_case : Tuple = size __snake_case : List[str] = do_normalize __snake_case : List[str] = image_mean __snake_case : List[Any] = image_std def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = EfficientFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''image_mean''' ) ) self.assertTrue(hasattr(a_ , '''image_std''' ) ) self.assertTrue(hasattr(a_ , '''do_normalize''' ) ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : List[str] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __snake_case : Optional[int] = image_processor(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processor(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Optional[int] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __snake_case : List[str] = image_processor(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
24
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
1
"""simple docstring""" def lowercase ( _snake_case : int = 600_851_475_143 ) ->int: """simple docstring""" try: __snake_case : int = int(_snake_case ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __snake_case : Tuple = 1 __snake_case : str = 2 while i * i <= n: while n % i == 0: __snake_case : List[Any] = i n //= i i += 1 if n > 1: __snake_case : Optional[int] = n return int(_snake_case ) if __name__ == "__main__": print(F'{solution() = }')
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase ( _snake_case : str = "" ) ->dict[str, float]: """simple docstring""" __snake_case : List[str] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' __snake_case : str = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) __snake_case : List[str] = soup.find_all('''td''' , attrs='''titleColumn''' ) __snake_case : Tuple = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_snake_case , _snake_case ) } def lowercase ( _snake_case : str = "IMDb_Top_250_Movies.csv" ) ->None: """simple docstring""" __snake_case : Dict = get_imdb_top_aaa_movies() with open(_snake_case , '''w''' , newline='''''' ) as out_file: __snake_case : Optional[Any] = csv.writer(_snake_case ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
24
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
1
"""simple docstring""" import math def lowercase ( _snake_case : float , _snake_case : float ) ->float: """simple docstring""" return math.pow(_snake_case , 2 ) - a def lowercase ( _snake_case : float ) ->float: """simple docstring""" return 2 * x def lowercase ( _snake_case : float ) ->float: """simple docstring""" __snake_case : Optional[Any] = 2.0 while start <= a: __snake_case : List[Any] = math.pow(_snake_case , 2 ) return start def lowercase ( _snake_case : float , _snake_case : int = 9_999 , _snake_case : float = 0.00000000000001 ) ->float: """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) __snake_case : Tuple = get_initial_point(_snake_case ) for _ in range(_snake_case ): __snake_case : str = value __snake_case : Dict = value - fx(_snake_case , _snake_case ) / fx_derivative(_snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
24
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCamelCase__ =field( default='summarization', metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'}, ) lowerCamelCase__ =field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) lowerCamelCase__ =field( default=128, metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) lowerCamelCase__ =field( default=142, metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) }, ) lowerCamelCase__ =field( default=142, metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) lowerCamelCase__ =field(default=-1, metadata={'help': '# training examples. -1 means use all.'} ) lowerCamelCase__ =field(default=-1, metadata={'help': '# validation examples. -1 means use all.'} ) lowerCamelCase__ =field(default=-1, metadata={'help': '# test examples. -1 means use all.'} ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Source language id for translation.'} ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Target language id for translation.'} ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': '# num_beams to use for evaluation.'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'}, ) def lowercase ( _snake_case : Optional[Any] , _snake_case : str , _snake_case : Tuple ) ->Union[str, Any]: """simple docstring""" logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(_snake_case , os.path.join(_snake_case , f"""{split}_results.json""" ) ) def lowercase ( ) ->Optional[Any]: """simple docstring""" __snake_case : int = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case : List[str] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_snake_case , _snake_case , _snake_case ): assert hasattr(_snake_case , _snake_case ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_snake_case , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_snake_case , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_snake_case , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_snake_case , _snake_case ): __snake_case : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case : Any = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case : Union[str, Any] = SeqaSeqDataset # Get datasets __snake_case : Optional[int] = ( dataset_class( _snake_case , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case : Any = ( dataset_class( _snake_case , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case : str = ( dataset_class( _snake_case , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case : List[str] = ( build_compute_metrics_fn(data_args.task , _snake_case ) if training_args.predict_with_generate else None ) __snake_case : int = SeqaSeqTrainer( model=_snake_case , args=_snake_case , data_args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , data_collator=SeqaSeqDataCollator( _snake_case , _snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_snake_case , tokenizer=_snake_case , ) __snake_case : str = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case : Tuple = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case : Union[str, Any] = train_result.metrics __snake_case : Optional[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case : Tuple = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case : int = data_args.n_val __snake_case : List[Any] = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case : str = trainer.predict(test_dataset=_snake_case , metric_key_prefix='''test''' ) __snake_case : Tuple = test_output.metrics __snake_case : Tuple = data_args.n_test if trainer.is_world_process_zero(): __snake_case : Dict = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.predict_with_generate: __snake_case : Optional[int] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) __snake_case : Optional[int] = lmap(str.strip , _snake_case ) write_txt_file(_snake_case , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_snake_case , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowercase ( _snake_case : Tuple ) ->List[str]: """simple docstring""" main() if __name__ == "__main__": main()
24
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
1
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =BlenderbotSmallConfig lowerCamelCase__ ={} lowerCamelCase__ ='gelu' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=False , a_=99 , a_=32 , a_=2 , a_=4 , a_=37 , a_=0.1 , a_=0.1 , a_=20 , a_=2 , a_=1 , a_=0 , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : Tuple = batch_size __snake_case : Optional[int] = seq_length __snake_case : Optional[int] = is_training __snake_case : str = use_labels __snake_case : str = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Union[str, Any] = eos_token_id __snake_case : Dict = pad_token_id __snake_case : List[str] = bos_token_id def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __snake_case : List[str] = prepare_blenderbot_small_inputs_dict(a_ , a_ , a_ ) return config, inputs_dict def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = TFBlenderbotSmallModel(config=a_ ).get_decoder() __snake_case : Tuple = inputs_dict['''input_ids'''] __snake_case : Union[str, Any] = input_ids[:1, :] __snake_case : Any = inputs_dict['''attention_mask'''][:1, :] __snake_case : Optional[int] = inputs_dict['''head_mask'''] __snake_case : List[Any] = 1 # first forward pass __snake_case : Any = model(a_ , attention_mask=a_ , head_mask=a_ , use_cache=a_ ) __snake_case , __snake_case : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __snake_case : Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) __snake_case : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __snake_case : Optional[int] = model(a_ , attention_mask=a_ )[0] __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , past_key_values=a_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __snake_case : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __snake_case : List[Any] = output_from_no_past[:, -3:, random_slice_idx] __snake_case : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a_ , a_ , rtol=1E-3 ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str]=None , _snake_case : List[str]=None , _snake_case : str=None , _snake_case : Tuple=None , _snake_case : List[str]=None , ) ->int: """simple docstring""" if attention_mask is None: __snake_case : Any = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __snake_case : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __snake_case : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowerCamelCase__ =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ =( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = TFBlenderbotSmallModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a_ ) @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =[ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] lowerCamelCase__ ='facebook/blenderbot_small-90M' @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.tokenizer(self.src_text , return_tensors='''tf''' ) __snake_case : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=a_ , ) __snake_case : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=a_ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
24
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
1
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def lowercase ( _snake_case : str , _snake_case : str ) ->Any: """simple docstring""" __snake_case : int = RobertaPreLayerNormConfig.from_pretrained( _snake_case , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict __snake_case : Optional[int] = torch.load(hf_hub_download(repo_id=_snake_case , filename='''pytorch_model.bin''' ) ) __snake_case : Optional[int] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): __snake_case : Union[str, Any] = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue __snake_case : Tuple = tensor_value __snake_case : List[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_snake_case , config=_snake_case , state_dict=_snake_case ) model.save_pretrained(_snake_case ) # convert tokenizer __snake_case : int = AutoTokenizer.from_pretrained(_snake_case ) tokenizer.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
24
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
1
"""simple docstring""" import os from collections.abc import Iterator def lowercase ( _snake_case : str = "." ) ->Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_snake_case ): __snake_case : Optional[Any] = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_snake_case )[1] in (".py", ".ipynb"): yield os.path.join(_snake_case , _snake_case ).lstrip('''./''' ) def lowercase ( _snake_case : Tuple ) ->Tuple: """simple docstring""" return f"""{i * ' '}*""" if i else "\n##" def lowercase ( _snake_case : str , _snake_case : str ) ->str: """simple docstring""" __snake_case : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_snake_case ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(_snake_case )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def lowercase ( _snake_case : str = "." ) ->None: """simple docstring""" __snake_case : Union[str, Any] = '''''' for filepath in sorted(good_file_paths(_snake_case ) ): __snake_case , __snake_case : List[str] = os.path.split(_snake_case ) if filepath != old_path: __snake_case : Dict = print_path(_snake_case , _snake_case ) __snake_case : Optional[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 __snake_case : List[Any] = f"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) __snake_case : Tuple = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f"""{md_prefix(_snake_case )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
1
"""simple docstring""" def lowercase ( _snake_case : float , _snake_case : float , _snake_case : float , _snake_case : float , _snake_case : float , ) ->float: """simple docstring""" __snake_case : Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: __snake_case : Optional[Any] = 1 - (matter_density + radiation_density + dark_energy) __snake_case : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __snake_case : List[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE : Any = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
24
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
1
"""simple docstring""" from string import ascii_uppercase SCREAMING_SNAKE_CASE : Union[str, Any] = {char: i for i, char in enumerate(ascii_uppercase)} SCREAMING_SNAKE_CASE : Optional[Any] = dict(enumerate(ascii_uppercase)) def lowercase ( _snake_case : str , _snake_case : str ) ->str: """simple docstring""" __snake_case : Dict = len(_snake_case ) __snake_case : List[Any] = 0 while True: if x == i: __snake_case : Dict = 0 if len(_snake_case ) == len(_snake_case ): break key += key[i] i += 1 return key def lowercase ( _snake_case : str , _snake_case : str ) ->str: """simple docstring""" __snake_case : List[str] = '''''' __snake_case : Tuple = 0 for letter in message: if letter == " ": cipher_text += " " else: __snake_case : Union[str, Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def lowercase ( _snake_case : str , _snake_case : str ) ->str: """simple docstring""" __snake_case : Optional[int] = '''''' __snake_case : str = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __snake_case : Union[str, Any] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def lowercase ( ) ->None: """simple docstring""" __snake_case : int = '''THE GERMAN ATTACK''' __snake_case : Tuple = '''SECRET''' __snake_case : int = generate_key(_snake_case , _snake_case ) __snake_case : Dict = cipher_text(_snake_case , _snake_case ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(_snake_case , _snake_case )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase ( _snake_case : Union[str, Any] ) ->int: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase ( _snake_case : Any , _snake_case : int , _snake_case : int ) ->Any: """simple docstring""" return max(metric_fn(_snake_case , _snake_case ) for gt in ground_truths ) def lowercase ( _snake_case : Any , _snake_case : Tuple , _snake_case : Any ) ->int: """simple docstring""" __snake_case : Union[str, Any] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] __snake_case : Dict = [] if args.gold_data_mode == "qa": __snake_case : Optional[int] = pd.read_csv(_snake_case , sep='''\t''' , header=_snake_case ) for answer_list in data[1]: __snake_case : Union[str, Any] = ast.literal_eval(_snake_case ) answers.append(_snake_case ) else: __snake_case : Optional[Any] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] __snake_case : Optional[int] = [[reference] for reference in references] __snake_case : Tuple = 0 for prediction, ground_truths in zip(_snake_case , _snake_case ): total += 1 em += metric_max_over_ground_truths(_snake_case , _snake_case , _snake_case ) fa += metric_max_over_ground_truths(_snake_case , _snake_case , _snake_case ) __snake_case : Tuple = 100.0 * em / total __snake_case : List[Any] = 100.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def lowercase ( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = args.k __snake_case : Optional[Any] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] __snake_case : int = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] __snake_case : Tuple = 0 for hypo, reference in zip(_snake_case , _snake_case ): __snake_case : Dict = set(hypo.split('''\t''' )[:k] ) __snake_case : Optional[Any] = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __snake_case : Optional[Any] = 100.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def lowercase ( _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Union[str, Any] ) ->List[str]: """simple docstring""" def strip_title(_snake_case : Optional[Any] ): if title.startswith('''"''' ): __snake_case : List[Any] = title[1:] if title.endswith('''"''' ): __snake_case : Union[str, Any] = title[:-1] return title __snake_case : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _snake_case , return_tensors='''pt''' , padding=_snake_case , truncation=_snake_case , )['''input_ids'''].to(args.device ) __snake_case : int = rag_model.rag.question_encoder(_snake_case ) __snake_case : Optional[int] = question_enc_outputs[0] __snake_case : Optional[int] = rag_model.retriever( _snake_case , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) __snake_case : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __snake_case : List[Any] = [] for docs in all_docs: __snake_case : List[str] = [strip_title(_snake_case ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_snake_case ) ) return provenance_strings def lowercase ( _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : str ) ->Tuple: """simple docstring""" with torch.no_grad(): __snake_case : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _snake_case , return_tensors='''pt''' , padding=_snake_case , truncation=_snake_case ) __snake_case : Union[str, Any] = inputs_dict.input_ids.to(args.device ) __snake_case : int = inputs_dict.attention_mask.to(args.device ) __snake_case : Tuple = rag_model.generate( # rag_model overwrites generate _snake_case , attention_mask=_snake_case , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_snake_case , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __snake_case : Any = rag_model.retriever.generator_tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) if args.print_predictions: for q, a in zip(_snake_case , _snake_case ): logger.info('''Q: {} - A: {}'''.format(_snake_case , _snake_case ) ) return answers def lowercase ( ) ->int: """simple docstring""" __snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_snake_case , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_snake_case , choices=['''exact''', '''compressed''', '''legacy'''] , type=_snake_case , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_snake_case , type=_snake_case , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_snake_case , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_snake_case , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_snake_case , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_snake_case , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_snake_case , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_snake_case , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_snake_case , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_snake_case , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_snake_case , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) __snake_case : Any = parser.parse_args() __snake_case : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def lowercase ( _snake_case : List[Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : List[str] = {} if args.model_type is None: __snake_case : Any = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): __snake_case : int = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration __snake_case : Optional[Any] = args.n_docs if args.index_name is not None: __snake_case : Tuple = args.index_name if args.index_path is not None: __snake_case : str = args.index_path else: __snake_case : Optional[Any] = BartForConditionalGeneration __snake_case : Any = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _snake_case ) __snake_case : Optional[int] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k __snake_case : Optional[Any] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_snake_case , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_snake_case ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): __snake_case : int = RagRetriever.from_pretrained(_snake_case , **_snake_case ) __snake_case : str = model_class.from_pretrained(_snake_case , retriever=_snake_case , **_snake_case ) model.retriever.init_retrieval() else: __snake_case : List[str] = model_class.from_pretrained(_snake_case , **_snake_case ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: __snake_case : Dict = [] for line in tqdm(_snake_case ): questions.append(line.strip() ) if len(_snake_case ) == args.eval_batch_size: __snake_case : Tuple = evaluate_batch_fn(_snake_case , _snake_case , _snake_case ) preds_file.write('''\n'''.join(_snake_case ) + '''\n''' ) preds_file.flush() __snake_case : Dict = [] if len(_snake_case ) > 0: __snake_case : Optional[Any] = evaluate_batch_fn(_snake_case , _snake_case , _snake_case ) preds_file.write('''\n'''.join(_snake_case ) ) preds_file.flush() score_fn(_snake_case , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = get_args() main(args)
24
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def lowercase ( _snake_case : SplitDict ) ->Optional[int]: """simple docstring""" __snake_case : str = split_dict._to_yaml_list() assert len(_snake_case ) == len(_snake_case ) __snake_case : Optional[Any] = SplitDict._from_yaml_list(_snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __snake_case : Any = None # the split name of split_dict takes over the name of the split info object __snake_case : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=_snake_case ), SplitInfo(dataset_name='''my_dataset''' )] ) def lowercase ( _snake_case : Optional[Any] ) ->int: """simple docstring""" __snake_case : Tuple = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
24
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : list[int] ) ->list[int]: # This function is recursive """simple docstring""" __snake_case : int = len(_snake_case ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case : Optional[Any] = array[0] __snake_case : Optional[Any] = False __snake_case : List[Any] = 1 __snake_case : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case : Optional[Any] = True __snake_case : List[str] = [element for element in array[i:] if element >= array[i]] __snake_case : Dict = longest_subsequence(_snake_case ) if len(_snake_case ) > len(_snake_case ): __snake_case : List[Any] = temp_array else: i += 1 __snake_case : Union[str, Any] = [element for element in array[1:] if element >= pivot] __snake_case : str = [pivot, *longest_subsequence(_snake_case )] if len(_snake_case ) > len(_snake_case ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu SCREAMING_SNAKE_CASE : Union[str, Any] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def lowercase ( _snake_case : List[Any] , _snake_case : List[str]=None , _snake_case : List[Any]=None , _snake_case : Optional[Any]=None ) ->str: """simple docstring""" __snake_case : List[Any] = True while ask_again: __snake_case : str = input(_snake_case ) try: if default is not None and len(_snake_case ) == 0: return default return convert_value(_snake_case ) if convert_value is not None else result except Exception: if error_message is not None: print(_snake_case ) def lowercase ( _snake_case : int , _snake_case : List[Any]=[] , _snake_case : str=None , _snake_case : Optional[Any]=0 ) ->str: """simple docstring""" __snake_case : Union[str, Any] = BulletMenu(_snake_case , _snake_case ) __snake_case : List[str] = menu.run(default_choice=_snake_case ) return convert_value(_snake_case ) if convert_value is not None else result def lowercase ( _snake_case : Dict ) ->List[str]: """simple docstring""" __snake_case : Union[str, Any] = int(_snake_case ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _snake_case : Any ) ->Optional[int]: """simple docstring""" __snake_case : int = int(_snake_case ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _snake_case : List[Any] ) ->Tuple: """simple docstring""" __snake_case : Optional[int] = int(_snake_case ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _snake_case : Tuple ) ->List[Any]: """simple docstring""" __snake_case : Any = int(_snake_case ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _snake_case : str ) ->Optional[int]: """simple docstring""" __snake_case : Any = int(_snake_case ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class _UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = super()._format_usage(a_ , a_ , a_ , a_ ) __snake_case : Optional[Any] = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
24
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
1
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration SCREAMING_SNAKE_CASE : str = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def lowercase ( _snake_case : List[Any] ) ->List[str]: """simple docstring""" __snake_case : Union[str, Any] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE : str = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def lowercase ( _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Any = list(s_dict.keys() ) for key in keys: __snake_case : str = key for k, v in WHISPER_MAPPING.items(): if k in key: __snake_case : Any = new_key.replace(_snake_case , _snake_case ) print(f"""{key} -> {new_key}""" ) __snake_case : str = s_dict.pop(_snake_case ) return s_dict def lowercase ( _snake_case : int ) ->str: """simple docstring""" __snake_case , __snake_case : int = emb.weight.shape __snake_case : List[str] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) __snake_case : Any = emb.weight.data return lin_layer def lowercase ( _snake_case : str , _snake_case : str ) ->bytes: """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : List[str] = os.path.basename(_snake_case ) __snake_case : str = url.split('''/''' )[-2] __snake_case : Optional[int] = os.path.join(_snake_case , _snake_case ) if os.path.exists(_snake_case ) and not os.path.isfile(_snake_case ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(_snake_case ): __snake_case : List[Any] = open(_snake_case , '''rb''' ).read() if hashlib.shaaaa(_snake_case ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(_snake_case ) as source, open(_snake_case , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_snake_case , unit_divisor=1_024 ) as loop: while True: __snake_case : Union[str, Any] = source.read(8_192 ) if not buffer: break output.write(_snake_case ) loop.update(len(_snake_case ) ) __snake_case : List[Any] = open(_snake_case , '''rb''' ).read() if hashlib.shaaaa(_snake_case ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowercase ( _snake_case : Any , _snake_case : int ) ->str: """simple docstring""" if ".pt" not in checkpoint_path: __snake_case : Any = _download(_MODELS[checkpoint_path] ) else: __snake_case : Optional[Any] = torch.load(_snake_case , map_location='''cpu''' ) __snake_case : int = original_checkpoint['''dims'''] __snake_case : List[Any] = original_checkpoint['''model_state_dict'''] __snake_case : List[str] = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_snake_case ) rename_keys(_snake_case ) __snake_case : Optional[int] = True __snake_case : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] __snake_case : List[Any] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_snake_case , decoder_ffn_dim=_snake_case , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) __snake_case : int = WhisperForConditionalGeneration(_snake_case ) __snake_case , __snake_case : List[Any] = model.model.load_state_dict(_snake_case , strict=_snake_case ) if len(_snake_case ) > 0 and not set(_snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: __snake_case : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __snake_case : List[str] = proj_out_weights model.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] SCREAMING_SNAKE_CASE : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( _snake_case : list[float] ) ->list[float]: """simple docstring""" __snake_case : str = [] __snake_case : Dict = len(_snake_case ) for i in range(_snake_case ): __snake_case : float = -1 for j in range(i + 1 , _snake_case ): if arr[i] < arr[j]: __snake_case : List[Any] = arr[j] break result.append(_snake_case ) return result def lowercase ( _snake_case : list[float] ) ->list[float]: """simple docstring""" __snake_case : Tuple = [] for i, outer in enumerate(_snake_case ): __snake_case : float = -1 for inner in arr[i + 1 :]: if outer < inner: __snake_case : Optional[int] = inner break result.append(_snake_case ) return result def lowercase ( _snake_case : list[float] ) ->list[float]: """simple docstring""" __snake_case : Any = len(_snake_case ) __snake_case : list[float] = [] __snake_case : list[float] = [-1] * arr_size for index in reversed(range(_snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __snake_case : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) SCREAMING_SNAKE_CASE : Tuple = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split SCREAMING_SNAKE_CASE : Optional[int] = datasets.load_iris() SCREAMING_SNAKE_CASE : int = np.array(data["""data"""]) SCREAMING_SNAKE_CASE : Tuple = np.array(data["""target"""]) SCREAMING_SNAKE_CASE : Optional[Any] = data["""target_names"""] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = train_test_split(X, y) def lowercase ( _snake_case : str , _snake_case : Optional[int] ) ->str: """simple docstring""" return np.linalg.norm(np.array(_snake_case ) - np.array(_snake_case ) ) def lowercase ( _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Union[str, Any]=5 ) ->Any: """simple docstring""" __snake_case : int = zip(_snake_case , _snake_case ) # List of distances of all points from the point to be classified __snake_case : List[str] = [] for data_point in data: __snake_case : List[str] = euclidean_distance(data_point[0] , _snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __snake_case : str = [i[1] for i in sorted(_snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __snake_case : Dict = Counter(_snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
24
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowercase ( ) ->Dict: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case : int = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowercase ( ) ->Optional[int]: """simple docstring""" assert _test_patching.open is open __snake_case : str = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowercase ( ) ->List[str]: """simple docstring""" __snake_case : Tuple = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , _snake_case ): pass def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _snake_case ) is None with patch_submodule(_test_patching , '''len''' , _snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : Optional[Any] = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case : Optional[int] = patch_submodule(_test_patching , '''open''' , _snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowercase ( ) ->Any: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case : Dict = '''__test_patch_submodule_successive_join__''' __snake_case : Optional[Any] = '''__test_patch_submodule_successive_dirname__''' __snake_case : Dict = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): with patch_submodule(_test_patching , '''os.rename''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.dirname''' , _snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.dirname''' , _snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowercase ( ) ->Optional[Any]: """simple docstring""" __snake_case : str = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _snake_case ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _snake_case ): pass
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1
"""simple docstring""" def lowercase ( _snake_case : int = 4_000_000 ) ->int: """simple docstring""" __snake_case : List[str] = [0, 1] __snake_case : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __snake_case : Union[str, Any] = 0 for j in range(len(_snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
1
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE : Any = { """Salesforce/codegen-350M-mono""": 2048, } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =CodeGenTokenizer def __init__(self , a_=None , a_=None , a_=None , a_="<|endoftext|>" , a_="<|endoftext|>" , a_="<|endoftext|>" , a_=False , **a_ , ): '''simple docstring''' super().__init__( a_ , a_ , tokenizer_file=a_ , unk_token=a_ , bos_token=a_ , eos_token=a_ , add_prefix_space=a_ , **a_ , ) if kwargs.pop('''add_bos_token''' , a_ ): __snake_case : Any = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) __snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a_ ) != add_prefix_space: __snake_case : List[Any] = getattr(a_ , pre_tok_state.pop('''type''' ) ) __snake_case : int = add_prefix_space __snake_case : int = pre_tok_class(**a_ ) __snake_case : Union[str, Any] = add_prefix_space def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' __snake_case : Union[str, Any] = kwargs.get('''is_split_into_words''' , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' __snake_case : Optional[int] = kwargs.get('''is_split_into_words''' , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Union[str, Any] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False , a_ = None , a_ = None , **a_ , ): '''simple docstring''' __snake_case : int = super().decode( token_ids=a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ , **a_ , ) if truncate_before_pattern is not None and len(a_ ) > 0: __snake_case : List[Any] = self.truncate(a_ , a_ ) return decoded_text def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' def find_re(a_ , a_ , a_ ): __snake_case : List[str] = pattern.search(a_ , a_ ) return m.start() if m else -1 __snake_case : Optional[int] = [re.compile(a_ , re.MULTILINE ) for pattern in truncate_before_pattern] __snake_case : Any = list(re.finditer('''^print''' , a_ , re.MULTILINE ) ) if len(a_ ) > 1: __snake_case : List[str] = completion[: prints[1].start()] __snake_case : Dict = list(re.finditer('''^def''' , a_ , re.MULTILINE ) ) if len(a_ ) > 1: __snake_case : Optional[Any] = completion[: defs[1].start()] __snake_case : Dict = 0 __snake_case : List[Any] = [ pos for pos in [find_re(a_ , a_ , a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
24
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
1
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE : Optional[Any] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : str = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowercase ( _snake_case : List[Any] , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : List[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): __snake_case : List[str] = True # Deal with multi-line cases elif ( re.search( rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _snake_case , ) is not None ): __snake_case : Optional[Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __snake_case : List[str] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __snake_case : Optional[int] = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] __snake_case : Tuple = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed __snake_case : Union[str, Any] = True if not attribute_used: __snake_case : List[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __snake_case : str = True elif attribute in ["tie_word_embeddings"] and default_value is False: __snake_case : str = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __snake_case : Optional[int] = True elif attribute.endswith('''_token_id''' ): __snake_case : Dict = True # configuration class specific cases if not case_allowed: __snake_case : Optional[Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __snake_case : Tuple = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase ( _snake_case : str ) ->int: """simple docstring""" __snake_case : Union[str, Any] = dict(inspect.signature(config_class.__init__ ).parameters ) __snake_case : List[Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] __snake_case : Optional[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __snake_case : Any = {} if len(config_class.attribute_map ) > 0: __snake_case : Dict = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __snake_case : Optional[int] = inspect.getsourcefile(_snake_case ) __snake_case : Union[str, Any] = os.path.dirname(_snake_case ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __snake_case : Dict = [os.path.join(_snake_case , _snake_case ) for fn in os.listdir(_snake_case ) if fn.startswith('''modeling_''' )] # Get the source code strings __snake_case : str = [] for path in modeling_paths: if os.path.isfile(_snake_case ): with open(_snake_case ) as fp: modeling_sources.append(fp.read() ) __snake_case : Any = [] for config_param, default_value in zip(_snake_case , _snake_case ): # `attributes` here is all the variant names for `config_param` __snake_case : List[str] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_snake_case , _snake_case , _snake_case , _snake_case ): unused_attributes.append(attributes[0] ) return sorted(_snake_case ) def lowercase ( ) ->Any: """simple docstring""" __snake_case : Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __snake_case : Union[str, Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _snake_case : inspect.isclass(_snake_case ) and issubclass(_snake_case , _snake_case ) and inspect.getmodule(_snake_case ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __snake_case : str = check_config_attributes_being_used(_snake_case ) if len(_snake_case ) > 0: __snake_case : Optional[int] = unused_attributes if len(_snake_case ) > 0: __snake_case : List[Any] = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_snake_case ) if __name__ == "__main__": check_config_attributes()
24
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
1
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ = 0 ): '''simple docstring''' __snake_case : Tuple = key def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) __snake_case : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(a_ ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) __snake_case : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(a_ ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE (self , a_ , a_ = 0 ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) __snake_case : List[str] = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __snake_case : Optional[Any] = '''''' for ch in content: ans += chr(ord(a_ ) ^ key ) return ans def SCREAMING_SNAKE_CASE (self , a_ , a_ = 0 ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) __snake_case : int = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __snake_case : int = '''''' for ch in content: ans += chr(ord(a_ ) ^ key ) return ans def SCREAMING_SNAKE_CASE (self , a_ , a_ = 0 ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) try: with open(a_ ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(a_ , a_ ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) try: with open(a_ ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(a_ , a_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" from typing import Any class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : str = data __snake_case : int = None class _UpperCAmelCase : '''simple docstring''' def __init__(self ): '''simple docstring''' __snake_case : Optional[int] = None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.head while temp is not None: print(temp.data , end=''' ''' ) __snake_case : List[Any] = temp.next print() def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = Node(a_ ) __snake_case : Dict = self.head __snake_case : List[Any] = new_node def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' if node_data_a == node_data_a: return else: __snake_case : int = self.head while node_a is not None and node_a.data != node_data_a: __snake_case : Tuple = node_a.next __snake_case : Tuple = self.head while node_a is not None and node_a.data != node_data_a: __snake_case : Optional[int] = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case : int = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
24
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_=0.0 , a_ = None , a_ = "geglu" , a_ = None , a_ = False , a_ = False , a_ = False , a_ = False , a_ = True , a_ = "layer_norm" , a_ = False , ): '''simple docstring''' super().__init__() __snake_case : List[Any] = only_cross_attention __snake_case : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __snake_case : Dict = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __snake_case : List[Any] = AdaLayerNorm(a_ , a_ ) elif self.use_ada_layer_norm_zero: __snake_case : List[str] = AdaLayerNormZero(a_ , a_ ) else: __snake_case : List[str] = nn.LayerNorm(a_ , elementwise_affine=a_ ) __snake_case : List[Any] = Attention( query_dim=a_ , heads=a_ , dim_head=a_ , dropout=a_ , bias=a_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __snake_case : Union[str, Any] = ( AdaLayerNorm(a_ , a_ ) if self.use_ada_layer_norm else nn.LayerNorm(a_ , elementwise_affine=a_ ) ) __snake_case : Union[str, Any] = Attention( query_dim=a_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a_ , dim_head=a_ , dropout=a_ , bias=a_ , upcast_attention=a_ , ) # is self-attn if encoder_hidden_states is none else: __snake_case : Dict = None __snake_case : Optional[int] = None # 3. Feed-forward __snake_case : Optional[Any] = nn.LayerNorm(a_ , elementwise_affine=a_ ) __snake_case : Union[str, Any] = FeedForward(a_ , dropout=a_ , activation_fn=a_ , final_dropout=a_ ) # let chunk size default to None __snake_case : Union[str, Any] = None __snake_case : Any = 0 def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : int = chunk_size __snake_case : Any = dim def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , ): '''simple docstring''' if self.use_ada_layer_norm: __snake_case : str = self.norma(a_ , a_ ) elif self.use_ada_layer_norm_zero: __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Any = self.norma( a_ , a_ , a_ , hidden_dtype=hidden_states.dtype ) else: __snake_case : Dict = self.norma(a_ ) __snake_case : Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} __snake_case : Union[str, Any] = self.attna( a_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a_ , **a_ , ) if self.use_ada_layer_norm_zero: __snake_case : Tuple = gate_msa.unsqueeze(1 ) * attn_output __snake_case : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __snake_case : List[str] = ( self.norma(a_ , a_ ) if self.use_ada_layer_norm else self.norma(a_ ) ) __snake_case : Tuple = self.attna( a_ , encoder_hidden_states=a_ , attention_mask=a_ , **a_ , ) __snake_case : str = attn_output + hidden_states # 3. Feed-forward __snake_case : Union[str, Any] = self.norma(a_ ) if self.use_ada_layer_norm_zero: __snake_case : List[str] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __snake_case : str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __snake_case : Dict = torch.cat( [self.ff(a_ ) for hid_slice in norm_hidden_states.chunk(a_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __snake_case : str = self.ff(a_ ) if self.use_ada_layer_norm_zero: __snake_case : Dict = gate_mlp.unsqueeze(1 ) * ff_output __snake_case : List[str] = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ = None , a_ = 4 , a_ = 0.0 , a_ = "geglu" , a_ = False , ): '''simple docstring''' super().__init__() __snake_case : Dict = int(dim * mult ) __snake_case : Union[str, Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": __snake_case : Optional[int] = GELU(a_ , a_ ) if activation_fn == "gelu-approximate": __snake_case : int = GELU(a_ , a_ , approximate='''tanh''' ) elif activation_fn == "geglu": __snake_case : List[Any] = GEGLU(a_ , a_ ) elif activation_fn == "geglu-approximate": __snake_case : Dict = ApproximateGELU(a_ , a_ ) __snake_case : Any = nn.ModuleList([] ) # project in self.net.append(a_ ) # project dropout self.net.append(nn.Dropout(a_ ) ) # project out self.net.append(nn.Linear(a_ , a_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(a_ ) ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for module in self.net: __snake_case : str = module(a_ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = "none" ): '''simple docstring''' super().__init__() __snake_case : Union[str, Any] = nn.Linear(a_ , a_ ) __snake_case : Tuple = approximate def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(a_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.proj(a_ ) __snake_case : str = self.gelu(a_ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__() __snake_case : List[str] = nn.Linear(a_ , dim_out * 2 ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(a_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.proj(a_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(a_ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__() __snake_case : Union[str, Any] = nn.Linear(a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.proj(a_ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__() __snake_case : Optional[Any] = nn.Embedding(a_ , a_ ) __snake_case : Optional[int] = nn.SiLU() __snake_case : Dict = nn.Linear(a_ , embedding_dim * 2 ) __snake_case : int = nn.LayerNorm(a_ , elementwise_affine=a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.linear(self.silu(self.emb(a_ ) ) ) __snake_case , __snake_case : Union[str, Any] = torch.chunk(a_ , 2 ) __snake_case : Dict = self.norm(a_ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__() __snake_case : Optional[int] = CombinedTimestepLabelEmbeddings(a_ , a_ ) __snake_case : Union[str, Any] = nn.SiLU() __snake_case : Union[str, Any] = nn.Linear(a_ , 6 * embedding_dim , bias=a_ ) __snake_case : List[Any] = nn.LayerNorm(a_ , elementwise_affine=a_ , eps=1E-6 ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_=None ): '''simple docstring''' __snake_case : List[str] = self.linear(self.silu(self.emb(a_ , a_ , hidden_dtype=a_ ) ) ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = emb.chunk(6 , dim=1 ) __snake_case : str = self.norm(a_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = 1E-5 ): '''simple docstring''' super().__init__() __snake_case : List[str] = num_groups __snake_case : int = eps if act_fn is None: __snake_case : List[str] = None else: __snake_case : int = get_activation(a_ ) __snake_case : Any = nn.Linear(a_ , out_dim * 2 ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' if self.act: __snake_case : Dict = self.act(a_ ) __snake_case : List[str] = self.linear(a_ ) __snake_case : int = emb[:, :, None, None] __snake_case , __snake_case : Union[str, Any] = emb.chunk(2 , dim=1 ) __snake_case : Any = F.group_norm(a_ , self.num_groups , eps=self.eps ) __snake_case : Any = x * (1 + scale) + shift return x
24
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
1
"""simple docstring""" def lowercase ( _snake_case : int ) ->bool: """simple docstring""" if not isinstance(_snake_case , _snake_case ): __snake_case : Dict = f"""Input value of [number={number}] must be an integer""" raise TypeError(_snake_case ) if number < 0: return False __snake_case : Optional[int] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase ( ) ->str: """simple docstring""" __snake_case : Tuple = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=_snake_case , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=_snake_case , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=_snake_case ) return parser.parse_args() def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : Dict = parse_args() # Import training_script as a module. __snake_case : Tuple = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __snake_case : int = script_fpath.stem __snake_case : str = importlib.import_module(_snake_case ) # Patch sys.argv __snake_case : int = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
1
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def lowercase ( _snake_case : np.ndarray ) ->np.ndarray: """simple docstring""" __snake_case , __snake_case , __snake_case : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def lowercase ( _snake_case : np.ndarray ) ->np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def lowercase ( _snake_case : np.ndarray , _snake_case : np.ndarray ) ->np.ndarray: """simple docstring""" __snake_case : Optional[Any] = np.zeros_like(_snake_case ) __snake_case : Tuple = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __snake_case : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __snake_case : str = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __snake_case : Optional[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE : str = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE : int = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE : List[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE : Tuple = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
24
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
1
"""simple docstring""" # Lint as: python3 import itertools import os import re SCREAMING_SNAKE_CASE : Dict = re.compile(r"""([A-Z]+)([A-Z][a-z])""") SCREAMING_SNAKE_CASE : List[Any] = re.compile(r"""([a-z\d])([A-Z])""") SCREAMING_SNAKE_CASE : List[str] = re.compile(r"""(?<!_)_(?!_)""") SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""(_{2,})""") SCREAMING_SNAKE_CASE : List[Any] = r"""^\w+(\.\w+)*$""" SCREAMING_SNAKE_CASE : Dict = r"""<>:/\|?*""" def lowercase ( _snake_case : Optional[Any] ) ->Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = _uppercase_uppercase_re.sub(r'''\1_\2''' , _snake_case ) __snake_case : Any = _lowercase_uppercase_re.sub(r'''\1_\2''' , _snake_case ) return name.lower() def lowercase ( _snake_case : Optional[Any] ) ->List[str]: """simple docstring""" __snake_case : List[Any] = _single_underscore_re.split(_snake_case ) __snake_case : List[str] = [_multiple_underscores_re.split(_snake_case ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_snake_case ) if n != '''''' ) def lowercase ( _snake_case : Any ) ->Optional[int]: """simple docstring""" if os.path.basename(_snake_case ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(_snake_case ) def lowercase ( _snake_case : Union[str, Any] , _snake_case : List[Any] ) ->Union[str, Any]: """simple docstring""" if os.path.basename(_snake_case ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , _snake_case ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(_snake_case )}-{split}""" def lowercase ( _snake_case : Tuple , _snake_case : str , _snake_case : List[str] , _snake_case : Optional[int]=None ) ->List[Any]: """simple docstring""" __snake_case : Optional[Any] = filename_prefix_for_split(_snake_case , _snake_case ) if filetype_suffix: prefix += f""".{filetype_suffix}""" __snake_case : Dict = os.path.join(_snake_case , _snake_case ) return f"""{filepath}*""" def lowercase ( _snake_case : Dict , _snake_case : int , _snake_case : int , _snake_case : Dict=None , _snake_case : Optional[int]=None ) ->Any: """simple docstring""" __snake_case : Optional[Any] = filename_prefix_for_split(_snake_case , _snake_case ) __snake_case : Tuple = os.path.join(_snake_case , _snake_case ) if shard_lengths: __snake_case : int = len(_snake_case ) __snake_case : Optional[int] = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(_snake_case )] if filetype_suffix: __snake_case : str = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: __snake_case : Dict = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
24
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig SCREAMING_SNAKE_CASE : Optional[Any] = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='albert' def __init__(self , a_=3_00_00 , a_=1_28 , a_=40_96 , a_=12 , a_=1 , a_=64 , a_=1_63_84 , a_=1 , a_="gelu_new" , a_=0 , a_=0 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=0.1 , a_="absolute" , a_=0 , a_=2 , a_=3 , **a_ , ): '''simple docstring''' super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case : List[Any] = vocab_size __snake_case : Optional[int] = embedding_size __snake_case : List[str] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_hidden_groups __snake_case : Optional[Any] = num_attention_heads __snake_case : str = inner_group_num __snake_case : List[Any] = hidden_act __snake_case : List[str] = intermediate_size __snake_case : List[Any] = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : List[Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = classifier_dropout_prob __snake_case : Any = position_embedding_type class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.task == "multiple-choice": __snake_case : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __snake_case : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = 1 __snake_case : Tuple = 3 __snake_case : str = (32, 32) __snake_case : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a_ ) return image @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : str = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=a_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) return CLIPTextModel(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : str = self.dummy_cond_unet_upscale __snake_case : Dict = DDPMScheduler() __snake_case : Union[str, Any] = DDIMScheduler(prediction_type='''v_prediction''' ) __snake_case : int = self.dummy_vae __snake_case : List[str] = self.dummy_text_encoder __snake_case : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : List[str] = Image.fromarray(np.uinta(a_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __snake_case : Optional[int] = StableDiffusionUpscalePipeline( unet=a_ , low_res_scheduler=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , max_noise_level=3_50 , ) __snake_case : Dict = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case : Dict = '''A painting of a squirrel eating a burger''' __snake_case : str = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : List[Any] = sd_pipe( [prompt] , image=a_ , generator=a_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __snake_case : Tuple = output.images __snake_case : int = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : Optional[Any] = sd_pipe( [prompt] , image=a_ , generator=a_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=a_ , )[0] __snake_case : Any = image[0, -3:, -3:, -1] __snake_case : Optional[int] = image_from_tuple[0, -3:, -3:, -1] __snake_case : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __snake_case : int = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : List[str] = self.dummy_cond_unet_upscale __snake_case : Union[str, Any] = DDPMScheduler() __snake_case : Optional[int] = DDIMScheduler(prediction_type='''v_prediction''' ) __snake_case : List[Any] = self.dummy_vae __snake_case : List[Any] = self.dummy_text_encoder __snake_case : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : List[str] = Image.fromarray(np.uinta(a_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __snake_case : Optional[Any] = StableDiffusionUpscalePipeline( unet=a_ , low_res_scheduler=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , max_noise_level=3_50 , ) __snake_case : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case : Union[str, Any] = '''A painting of a squirrel eating a burger''' __snake_case : int = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __snake_case : Optional[int] = output.images assert image.shape[0] == 2 __snake_case : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : Dict = sd_pipe( [prompt] , image=a_ , generator=a_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __snake_case : List[str] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.dummy_cond_unet_upscale __snake_case : str = DDPMScheduler() __snake_case : Union[str, Any] = DDIMScheduler(prediction_type='''v_prediction''' ) __snake_case : int = self.dummy_vae __snake_case : Dict = self.dummy_text_encoder __snake_case : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case : int = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : List[str] = Image.fromarray(np.uinta(a_ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __snake_case : int = unet.half() __snake_case : Optional[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk __snake_case : Optional[int] = StableDiffusionUpscalePipeline( unet=a_ , low_res_scheduler=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , max_noise_level=3_50 , ) __snake_case : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case : List[Any] = '''A painting of a squirrel eating a burger''' __snake_case : Any = torch.manual_seed(0 ) __snake_case : Optional[Any] = sd_pipe( [prompt] , image=a_ , generator=a_ , num_inference_steps=2 , output_type='''np''' , ).images __snake_case : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __snake_case : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __snake_case : int = '''stabilityai/stable-diffusion-x4-upscaler''' __snake_case : Tuple = StableDiffusionUpscalePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case : int = '''a cat sitting on a park bench''' __snake_case : Optional[int] = torch.manual_seed(0 ) __snake_case : Optional[int] = pipe( prompt=a_ , image=a_ , generator=a_ , output_type='''np''' , ) __snake_case : str = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __snake_case : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __snake_case : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' __snake_case : Any = StableDiffusionUpscalePipeline.from_pretrained( a_ , torch_dtype=torch.floataa , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case : Optional[Any] = '''a cat sitting on a park bench''' __snake_case : Any = torch.manual_seed(0 ) __snake_case : List[Any] = pipe( prompt=a_ , image=a_ , generator=a_ , output_type='''np''' , ) __snake_case : Dict = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __snake_case : Optional[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' __snake_case : str = StableDiffusionUpscalePipeline.from_pretrained( a_ , torch_dtype=torch.floataa , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __snake_case : int = '''a cat sitting on a park bench''' __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : int = pipe( prompt=a_ , image=a_ , generator=a_ , num_inference_steps=5 , output_type='''np''' , ) __snake_case : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
24
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
1
"""simple docstring""" from __future__ import annotations from typing import Any class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ = 0 ): '''simple docstring''' __snake_case , __snake_case : str = row, column __snake_case : str = [[default_value for c in range(a_ )] for r in range(a_ )] def __str__(self ): '''simple docstring''' __snake_case : Union[str, Any] = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier __snake_case : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Union[str, Any] = max(a_ , len(str(a_ ) ) ) __snake_case : str = f"""%{max_element_length}s""" # Make string and return def single_line(a_ ) -> str: nonlocal string_format_identifier __snake_case : Any = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a_ ) for row_vector in self.array ) return s def __repr__(self ): '''simple docstring''' return str(self ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not (isinstance(a_ , (list, tuple) ) and len(a_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self , a_ ): '''simple docstring''' assert self.validate_indicies(a_ ) return self.array[loc[0]][loc[1]] def __setitem__(self , a_ , a_ ): '''simple docstring''' assert self.validate_indicies(a_ ) __snake_case : Dict = value def __add__(self , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Any = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__(self ): '''simple docstring''' __snake_case : Any = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[str] = -self[r, c] return result def __sub__(self , a_ ): '''simple docstring''' return self + (-another) def __mul__(self , a_ ): '''simple docstring''' if isinstance(a_ , (int, float) ): # Scalar multiplication __snake_case : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] * another return result elif isinstance(a_ , a_ ): # Matrix multiplication assert self.column == another.row __snake_case : str = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : str = f"""Unsupported type given for another ({type(a_ )})""" raise TypeError(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : Any = self[r, c] return result def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : Tuple = v.transpose() __snake_case : Union[str, Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase ( ) ->None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Union[str, Any] = 1 print(f"""a^(-1) is {ainv}""" ) # u, v __snake_case : Union[str, Any] = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 2, -3 __snake_case : Optional[Any] = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Dict = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_snake_case , _snake_case )}""" ) def lowercase ( ) ->None: """simple docstring""" import doctest doctest.testmod() testa()
24
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off SCREAMING_SNAKE_CASE : int = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] SCREAMING_SNAKE_CASE : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='whisper' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , a_=5_18_65 , a_=80 , a_=6 , a_=4 , a_=6 , a_=4 , a_=15_36 , a_=15_36 , a_=0.0 , a_=0.0 , a_=5_02_57 , a_=True , a_=True , a_="gelu" , a_=2_56 , a_=0.0 , a_=0.0 , a_=0.0 , a_=0.02 , a_=False , a_=15_00 , a_=4_48 , a_=5_02_56 , a_=5_02_56 , a_=5_02_56 , a_=None , a_=[2_20, 5_02_56] , a_=False , a_=2_56 , a_=False , a_=0.05 , a_=10 , a_=2 , a_=0.0 , a_=10 , a_=0 , a_=7 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : Optional[int] = num_mel_bins __snake_case : int = d_model __snake_case : Any = encoder_layers __snake_case : int = encoder_attention_heads __snake_case : List[Any] = decoder_layers __snake_case : Any = decoder_attention_heads __snake_case : Optional[int] = decoder_ffn_dim __snake_case : Optional[Any] = encoder_ffn_dim __snake_case : Tuple = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[int] = activation_dropout __snake_case : List[str] = activation_function __snake_case : Any = init_std __snake_case : Tuple = encoder_layerdrop __snake_case : Dict = decoder_layerdrop __snake_case : Optional[Any] = use_cache __snake_case : Optional[Any] = encoder_layers __snake_case : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case : Optional[Any] = max_source_positions __snake_case : int = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __snake_case : List[Any] = classifier_proj_size __snake_case : str = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : List[Any] = apply_spec_augment __snake_case : List[Any] = mask_time_prob __snake_case : int = mask_time_length __snake_case : Any = mask_time_min_masks __snake_case : Union[str, Any] = mask_feature_prob __snake_case : Optional[Any] = mask_feature_length __snake_case : List[str] = mask_feature_min_masks __snake_case : Dict = median_filter_width super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , suppress_tokens=a_ , begin_suppress_tokens=a_ , **a_ , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case : int = {0: '''batch'''} else: __snake_case : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a_ , direction='''inputs''' ) return common_inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , a_ = 2_20_50 , a_ = 5.0 , a_ = 2_20 , ): '''simple docstring''' __snake_case : Tuple = OrderedDict() __snake_case : List[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a_ , framework=a_ , sampling_rate=a_ , time_duration=a_ , frequency=a_ , ) __snake_case : int = encoder_inputs['''input_features'''].shape[2] __snake_case : Dict = encoder_sequence_length // 2 if self.use_past else seq_length __snake_case : Dict = super().generate_dummy_inputs( preprocessor.tokenizer , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = encoder_inputs.pop('''input_features''' ) __snake_case : str = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __snake_case : Union[str, Any] = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-3
24
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : list[int] , _snake_case : int ) ->bool: """simple docstring""" if len(_snake_case ) == 0: return False __snake_case : int = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE : int = [int(item.strip()) for item in user_input.split(""",""")] SCREAMING_SNAKE_CASE : List[Any] = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE : Dict = """""" if binary_search(sequence, target) else """not """ print(F'{target} was {not_str}found in {sequence}')
24
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Any = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='facebook/nllb-200-distilled-600M' lowerCamelCase__ =( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) lowerCamelCase__ ='translator' lowerCamelCase__ =AutoTokenizer lowerCamelCase__ =AutoModelForSeqaSeqLM lowerCamelCase__ =LANGUAGE_CODES lowerCamelCase__ =['text', 'text', 'text'] lowerCamelCase__ =['text'] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) __snake_case : Dict = self.lang_to_code[src_lang] __snake_case : str = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( a_ , return_tensors='''pt''' , src_lang=a_ , tgt_lang=a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.model.generate(**a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=a_ )
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='vit_mae' def __init__(self , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.0 , a_=0.0 , a_=0.02 , a_=1E-12 , a_=2_24 , a_=16 , a_=3 , a_=True , a_=16 , a_=5_12 , a_=8 , a_=20_48 , a_=0.75 , a_=False , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : str = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Any = initializer_range __snake_case : List[str] = layer_norm_eps __snake_case : List[Any] = image_size __snake_case : Union[str, Any] = patch_size __snake_case : List[Any] = num_channels __snake_case : List[str] = qkv_bias __snake_case : str = decoder_num_attention_heads __snake_case : Tuple = decoder_hidden_size __snake_case : str = decoder_num_hidden_layers __snake_case : int = decoder_intermediate_size __snake_case : Dict = mask_ratio __snake_case : List[Any] = norm_pix_loss
24
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
1
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py SCREAMING_SNAKE_CASE : int = """src/transformers""" SCREAMING_SNAKE_CASE : Optional[int] = """docs/source/en/tasks""" def lowercase ( _snake_case : int , _snake_case : str , _snake_case : Tuple ) ->List[Any]: """simple docstring""" with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __snake_case : str = f.readlines() # Find the start prompt. __snake_case : Optional[int] = 0 while not lines[start_index].startswith(_snake_case ): start_index += 1 start_index += 1 __snake_case : List[Any] = start_index while not lines[end_index].startswith(_snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) SCREAMING_SNAKE_CASE : int = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). SCREAMING_SNAKE_CASE : Optional[Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def lowercase ( _snake_case : Any ) ->int: """simple docstring""" __snake_case : str = TASK_GUIDE_TO_MODELS[task_guide] __snake_case : Optional[int] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_snake_case , set() ) __snake_case : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowercase ( _snake_case : Dict , _snake_case : int=False ) ->int: """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = _find_text_in_file( filename=os.path.join(_snake_case , _snake_case ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) __snake_case : int = get_model_list_for_task(_snake_case ) if current_list != new_list: if overwrite: with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ''' to fix this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def lowercase ( _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Dict ) ->Tuple: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def lowercase ( _snake_case : np.ndarray , _snake_case : Optional[str] , _snake_case : Optional[str] = None ) ->List[Any]: """simple docstring""" __snake_case : List[Any] = tesseract_config if tesseract_config is not None else '''''' # apply OCR __snake_case : List[Any] = to_pil_image(_snake_case ) __snake_case , __snake_case : str = pil_image.size __snake_case : int = pytesseract.image_to_data(_snake_case , lang=_snake_case , output_type='''dict''' , config=_snake_case ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __snake_case : Union[str, Any] = [idx for idx, word in enumerate(_snake_case ) if not word.strip()] __snake_case : List[str] = [word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices] __snake_case : Any = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __snake_case : Optional[int] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __snake_case : Dict = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __snake_case : Optional[Any] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __snake_case : List[Any] = [] for x, y, w, h in zip(_snake_case , _snake_case , _snake_case , _snake_case ): __snake_case : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(_snake_case ) # finally, normalize the bounding boxes __snake_case : Optional[int] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_snake_case , _snake_case , _snake_case ) ) assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__(self , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = None , a_ = "" , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Optional[int] = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __snake_case : Dict = get_size_dict(a_ ) __snake_case : Any = do_resize __snake_case : List[Any] = size __snake_case : int = resample __snake_case : Optional[int] = apply_ocr __snake_case : Dict = ocr_lang __snake_case : str = tesseract_config def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = PILImageResampling.BILINEAR , a_ = None , **a_ , ): '''simple docstring''' __snake_case : Any = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __snake_case : int = (size['''height'''], size['''width''']) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ): '''simple docstring''' __snake_case : int = do_resize if do_resize is not None else self.do_resize __snake_case : Any = size if size is not None else self.size __snake_case : Any = get_size_dict(a_ ) __snake_case : Dict = resample if resample is not None else self.resample __snake_case : Optional[int] = apply_ocr if apply_ocr is not None else self.apply_ocr __snake_case : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang __snake_case : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config __snake_case : Tuple = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __snake_case : Any = [to_numpy_array(a_ ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __snake_case : Union[str, Any] = [] __snake_case : Optional[Any] = [] for image in images: __snake_case , __snake_case : Optional[Any] = apply_tesseract(a_ , a_ , a_ ) words_batch.append(a_ ) boxes_batch.append(a_ ) if do_resize: __snake_case : List[Any] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __snake_case : List[Any] = [flip_channel_order(a_ ) for image in images] __snake_case : Union[str, Any] = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=a_ ) if apply_ocr: __snake_case : Optional[Any] = words_batch __snake_case : int = boxes_batch return data
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : list[int] , _snake_case : int ) ->list[list[int]]: """simple docstring""" __snake_case : list[list[int]] = [] __snake_case : list[int] = [] __snake_case : Any = 0 __snake_case : List[str] = sum(_snake_case ) create_state_space_tree(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return result def lowercase ( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , _snake_case : int , ) ->None: """simple docstring""" if sum(_snake_case ) > max_sum or (remaining_nums_sum + sum(_snake_case )) < max_sum: return if sum(_snake_case ) == max_sum: result.append(_snake_case ) return for index in range(_snake_case , len(_snake_case ) ): create_state_space_tree( _snake_case , _snake_case , index + 1 , [*path, nums[index]] , _snake_case , remaining_nums_sum - nums[index] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [3, 34, 4, 12, 5, 2] SCREAMING_SNAKE_CASE : Dict = 9 SCREAMING_SNAKE_CASE : Optional[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
"""simple docstring""" def lowercase ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" __snake_case : Optional[int] = set() # Replace all the whitespace in our sentence __snake_case : str = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_snake_case ) == 26 def lowercase ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" __snake_case : Tuple = [False] * 26 for char in input_str: if char.islower(): __snake_case : Any = True elif char.isupper(): __snake_case : Dict = True return all(_snake_case ) def lowercase ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowercase ( ) ->None: """simple docstring""" from timeit import timeit __snake_case : List[str] = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=_snake_case ) ) print(timeit('''is_pangram_faster()''' , setup=_snake_case ) ) print(timeit('''is_pangram_fastest()''' , setup=_snake_case ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='poolformer' def __init__(self , a_=3 , a_=16 , a_=16 , a_=3 , a_=4.0 , a_=[2, 2, 6, 2] , a_=[64, 1_28, 3_20, 5_12] , a_=[7, 3, 3, 3] , a_=[4, 2, 2, 2] , a_=[2, 1, 1, 1] , a_=4 , a_=0.0 , a_="gelu" , a_=True , a_=1E-5 , a_=0.02 , **a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = num_channels __snake_case : str = patch_size __snake_case : int = stride __snake_case : Optional[int] = padding __snake_case : Any = pool_size __snake_case : int = hidden_sizes __snake_case : Optional[Any] = mlp_ratio __snake_case : Any = depths __snake_case : Optional[int] = patch_sizes __snake_case : Optional[Any] = strides __snake_case : Optional[int] = num_encoder_blocks __snake_case : List[str] = drop_path_rate __snake_case : Dict = hidden_act __snake_case : Optional[Any] = use_layer_scale __snake_case : int = layer_scale_init_value __snake_case : int = initializer_range super().__init__(**a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 2E-3
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1
"""simple docstring""" def lowercase ( _snake_case : str , _snake_case : str ) ->list: """simple docstring""" __snake_case : Any = len(_snake_case ) __snake_case : Tuple = [] for i in range(len(_snake_case ) - pat_len + 1 ): __snake_case : Optional[Any] = True for j in range(_snake_case ): if s[i + j] != pattern[j]: __snake_case : Tuple = False break if match_found: position.append(_snake_case ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE : Tuple = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE : int = { """openbmb/cpm-ant-10b""": 1024, } def lowercase ( _snake_case : str ) ->List[str]: """simple docstring""" __snake_case : List[str] = collections.OrderedDict() with open(_snake_case , '''r''' , encoding='''utf-8''' ) as reader: __snake_case : Optional[Any] = reader.readlines() for index, token in enumerate(_snake_case ): __snake_case : Union[str, Any] = token.rstrip('''\n''' ) __snake_case : Tuple = index return vocab class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_="<unk>" , a_=2_00 ): '''simple docstring''' __snake_case : Dict = vocab __snake_case : Dict = unk_token __snake_case : Optional[Any] = max_input_chars_per_word def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] __snake_case : Union[str, Any] = 0 __snake_case : Union[str, Any] = [] while start < len(a_ ): __snake_case : int = len(a_ ) __snake_case : List[Any] = None while start < end: __snake_case : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: __snake_case : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) __snake_case : Tuple = end return sub_tokens class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =False def __init__(self , a_ , a_="<d>" , a_="</d>" , a_="<s>" , a_="</s>" , a_="<pad>" , a_="<unk>" , a_="</n>" , a_="</_>" , a_="left" , **a_ , ): '''simple docstring''' requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=a_ , eod_token=a_ , bos_token=a_ , eos_token=a_ , pad_token=a_ , unk_token=a_ , line_token=a_ , space_token=a_ , padding_side=a_ , **a_ , ) __snake_case : Dict = bod_token __snake_case : Dict = eod_token __snake_case : Optional[Any] = load_vocab(a_ ) __snake_case : Dict = self.encoder[space_token] __snake_case : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __snake_case : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) __snake_case : Optional[int] = {v: k for k, v in self.encoder.items()} __snake_case : Union[str, Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.encoder[self.bod_token] @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.encoder[self.eod_token] @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.encoder["\n"] @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : str = [] for x in jieba.cut(a_ , cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : Union[str, Any] = [i for i in token_ids if i >= 0] __snake_case : Optional[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return token in self.encoder def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return "".join(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.decoder.get(a_ , self.unk_token ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if os.path.isdir(a_ ): __snake_case : Any = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __snake_case : Dict = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __snake_case : Any = 0 if " " in self.encoder: __snake_case : Any = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __snake_case : List[str] = self.encoder['''\n'''] del self.encoder["\n"] __snake_case : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) with open(a_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) __snake_case : Tuple = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
24
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
1
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports SCREAMING_SNAKE_CASE : Optional[Any] = """ import os """ SCREAMING_SNAKE_CASE : Optional[Any] = """ def foo(): import os return False """ SCREAMING_SNAKE_CASE : int = """ def foo(): def bar(): if True: import os return False return bar() """ SCREAMING_SNAKE_CASE : str = """ import os try: import bar except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE : Tuple = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE : Optional[int] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ SCREAMING_SNAKE_CASE : Tuple = """ import os try: import bar except ImportError as e: raise ValueError() """ SCREAMING_SNAKE_CASE : int = """ import os try: import bar except: raise ValueError() """ SCREAMING_SNAKE_CASE : List[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE : List[Any] = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ SCREAMING_SNAKE_CASE : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def lowercase ( _snake_case : Any , _snake_case : Any ) ->str: """simple docstring""" __snake_case : List[Any] = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) __snake_case : int = get_imports(_snake_case ) assert parsed_imports == ["os"]
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_28, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_42, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } __snake_case : Dict = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_28, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_42, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(a_ ) , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a_ ) , x.transpose() ) ) __snake_case : Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = np.random.randn(3 , 4 ) __snake_case : str = torch.tensor(a_ ) self.assertTrue(np.allclose(transpose(a_ ) , transpose(a_ ).numpy() ) ) __snake_case : Dict = np.random.randn(3 , 4 , 5 ) __snake_case : List[Any] = torch.tensor(a_ ) self.assertTrue(np.allclose(transpose(a_ , axes=(1, 2, 0) ) , transpose(a_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = np.random.randn(3 , 4 ) __snake_case : Optional[int] = tf.constant(a_ ) self.assertTrue(np.allclose(transpose(a_ ) , transpose(a_ ).numpy() ) ) __snake_case : int = np.random.randn(3 , 4 , 5 ) __snake_case : List[Any] = tf.constant(a_ ) self.assertTrue(np.allclose(transpose(a_ , axes=(1, 2, 0) ) , transpose(a_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = np.random.randn(3 , 4 ) __snake_case : Tuple = jnp.array(a_ ) self.assertTrue(np.allclose(transpose(a_ ) , np.asarray(transpose(a_ ) ) ) ) __snake_case : Any = np.random.randn(3 , 4 , 5 ) __snake_case : Optional[Any] = jnp.array(a_ ) self.assertTrue(np.allclose(transpose(a_ , axes=(1, 2, 0) ) , np.asarray(transpose(a_ , axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a_ , (4, 3) ) , np.reshape(a_ , (4, 3) ) ) ) __snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a_ , (12, 5) ) , np.reshape(a_ , (12, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = np.random.randn(3 , 4 ) __snake_case : Union[str, Any] = torch.tensor(a_ ) self.assertTrue(np.allclose(reshape(a_ , (4, 3) ) , reshape(a_ , (4, 3) ).numpy() ) ) __snake_case : str = np.random.randn(3 , 4 , 5 ) __snake_case : Optional[Any] = torch.tensor(a_ ) self.assertTrue(np.allclose(reshape(a_ , (12, 5) ) , reshape(a_ , (12, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = np.random.randn(3 , 4 ) __snake_case : str = tf.constant(a_ ) self.assertTrue(np.allclose(reshape(a_ , (4, 3) ) , reshape(a_ , (4, 3) ).numpy() ) ) __snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) __snake_case : List[Any] = tf.constant(a_ ) self.assertTrue(np.allclose(reshape(a_ , (12, 5) ) , reshape(a_ , (12, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = np.random.randn(3 , 4 ) __snake_case : str = jnp.array(a_ ) self.assertTrue(np.allclose(reshape(a_ , (4, 3) ) , np.asarray(reshape(a_ , (4, 3) ) ) ) ) __snake_case : str = np.random.randn(3 , 4 , 5 ) __snake_case : str = jnp.array(a_ ) self.assertTrue(np.allclose(reshape(a_ , (12, 5) ) , np.asarray(reshape(a_ , (12, 5) ) ) ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a_ ) , np.squeeze(a_ ) ) ) __snake_case : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a_ , axis=2 ) , np.squeeze(a_ , axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = np.random.randn(1 , 3 , 4 ) __snake_case : List[str] = torch.tensor(a_ ) self.assertTrue(np.allclose(squeeze(a_ ) , squeeze(a_ ).numpy() ) ) __snake_case : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : str = torch.tensor(a_ ) self.assertTrue(np.allclose(squeeze(a_ , axis=2 ) , squeeze(a_ , axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = np.random.randn(1 , 3 , 4 ) __snake_case : Dict = tf.constant(a_ ) self.assertTrue(np.allclose(squeeze(a_ ) , squeeze(a_ ).numpy() ) ) __snake_case : Dict = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : int = tf.constant(a_ ) self.assertTrue(np.allclose(squeeze(a_ , axis=2 ) , squeeze(a_ , axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = np.random.randn(1 , 3 , 4 ) __snake_case : Any = jnp.array(a_ ) self.assertTrue(np.allclose(squeeze(a_ ) , np.asarray(squeeze(a_ ) ) ) ) __snake_case : Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Tuple = jnp.array(a_ ) self.assertTrue(np.allclose(squeeze(a_ , axis=2 ) , np.asarray(squeeze(a_ , axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a_ , axis=1 ) , np.expand_dims(a_ , axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = np.random.randn(3 , 4 ) __snake_case : Optional[int] = torch.tensor(a_ ) self.assertTrue(np.allclose(expand_dims(a_ , axis=1 ) , expand_dims(a_ , axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = np.random.randn(3 , 4 ) __snake_case : Optional[Any] = tf.constant(a_ ) self.assertTrue(np.allclose(expand_dims(a_ , axis=1 ) , expand_dims(a_ , axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = np.random.randn(3 , 4 ) __snake_case : List[str] = jnp.array(a_ ) self.assertTrue(np.allclose(expand_dims(a_ , axis=1 ) , np.asarray(expand_dims(a_ , axis=1 ) ) ) )
24
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =IFPipeline lowerCamelCase__ =TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowerCamelCase__ =TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ =PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : Any = torch.manual_seed(a_ ) else: __snake_case : Optional[int] = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) __snake_case : str = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=a_ , tokenizer=a_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) __snake_case , __snake_case : Any = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __snake_case : List[str] = None __snake_case : Tuple = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(a_ , a_ , a_ , a_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __snake_case : Optional[Any] = IFImgaImgPipeline(**pipe_a.components ) __snake_case : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(a_ , a_ , a_ , a_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __snake_case : Any = IFInpaintingPipeline(**pipe_a.components ) __snake_case : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(a_ , a_ , a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ): '''simple docstring''' _start_torch_memory_measurement() __snake_case : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : Optional[Any] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , num_inference_steps=2 , generator=a_ , output_type='''np''' , ) __snake_case : List[str] = output.images[0] assert image.shape == (64, 64, 3) __snake_case : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 __snake_case : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() __snake_case : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Union[str, Any] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , generator=a_ , num_inference_steps=2 , output_type='''np''' , ) __snake_case : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) __snake_case : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __snake_case : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ): '''simple docstring''' _start_torch_memory_measurement() __snake_case : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : List[str] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , num_inference_steps=2 , generator=a_ , output_type='''np''' , ) __snake_case : List[str] = output.images[0] assert image.shape == (64, 64, 3) __snake_case : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __snake_case : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() __snake_case : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : Any = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Dict = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , original_image=a_ , generator=a_ , num_inference_steps=2 , output_type='''np''' , ) __snake_case : Optional[int] = output.images[0] assert image.shape == (2_56, 2_56, 3) __snake_case : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __snake_case : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ): '''simple docstring''' _start_torch_memory_measurement() __snake_case : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(a_ ) __snake_case : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : Union[str, Any] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , mask_image=a_ , num_inference_steps=2 , generator=a_ , output_type='''np''' , ) __snake_case : List[str] = output.images[0] assert image.shape == (64, 64, 3) __snake_case : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __snake_case : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() __snake_case : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Optional[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(a_ ) __snake_case : Tuple = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , mask_image=a_ , original_image=a_ , generator=a_ , num_inference_steps=2 , output_type='''np''' , ) __snake_case : Any = output.images[0] assert image.shape == (2_56, 2_56, 3) __snake_case : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __snake_case : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(a_ , a_ ) def lowercase ( ) ->Optional[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
24
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
1
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=False , a_=True , a_="None" , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : Dict = parent __snake_case : Dict = batch_size __snake_case : Optional[int] = seq_length __snake_case : Union[str, Any] = is_training __snake_case : int = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Tuple = use_labels __snake_case : Any = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : Optional[int] = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Dict = num_labels __snake_case : List[str] = num_choices __snake_case : int = relative_attention __snake_case : List[Any] = position_biased_input __snake_case : Dict = pos_att_type __snake_case : Optional[Any] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : str = None if self.use_input_mask: __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Any = None __snake_case : int = None __snake_case : Tuple = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.get_config() __snake_case : str = 3_00 return config def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DebertaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ )[0] __snake_case : str = model(a_ , token_type_ids=a_ )[0] __snake_case : Dict = model(a_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = DebertaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : List[Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = self.num_labels __snake_case : Union[str, Any] = DebertaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = self.num_labels __snake_case : str = DebertaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DebertaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Tuple = config_and_inputs __snake_case : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = DebertaModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DebertaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __snake_case : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __snake_case : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : Optional[int] = model(a_ , attention_mask=a_ )[0] # compare the actual values for a slice. __snake_case : int = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
24
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
1
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *a_ , **a_ ): '''simple docstring''' super().__init__(*a_ , **a_ ) requires_backends(self , '''vision''' ) self.check_model_type(a_ ) def __call__(self , a_ , **a_ ): '''simple docstring''' return super().__call__(a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = load_image(a_ ) __snake_case : Optional[int] = image.size __snake_case : int = self.image_processor(images=a_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = self.model(**a_ ) return model_outputs def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[int] = model_outputs.predicted_depth __snake_case : Tuple = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a_ ) __snake_case : Optional[Any] = prediction.squeeze().cpu().numpy() __snake_case : str = (output * 2_55 / np.max(a_ )).astype('''uint8''' ) __snake_case : List[Any] = Image.fromarray(a_ ) __snake_case : List[str] = {} __snake_case : Union[str, Any] = predicted_depth __snake_case : Tuple = depth return output_dict
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
1
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase ( _snake_case : str ) ->Optional[int]: """simple docstring""" return EnvironmentCommand() def lowercase ( _snake_case : List[str] ) ->Optional[Any]: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE (a_ ): '''simple docstring''' __snake_case : Dict = parser.add_parser('''env''' ) download_parser.set_defaults(func=a_ ) download_parser.add_argument( '''--accelerate-config_file''' , default=a_ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=a_ ) def __init__(self , a_ , *a_ ): '''simple docstring''' __snake_case : Optional[Any] = accelerate_config_file def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''not installed''' if is_safetensors_available(): import safetensors __snake_case : str = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __snake_case : Any = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" __snake_case : List[str] = '''not installed''' __snake_case : str = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __snake_case : str = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a_ ): __snake_case : Union[str, Any] = load_config_from_file(self._accelerate_config_file ).to_dict() __snake_case : str = ( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(a_ , a_ ) else f"""\t{accelerate_config}""" ) __snake_case : Any = '''not installed''' __snake_case : Union[str, Any] = '''NA''' if is_torch_available(): import torch __snake_case : int = torch.__version__ __snake_case : List[Any] = torch.cuda.is_available() __snake_case : int = '''not installed''' __snake_case : int = '''NA''' if is_tf_available(): import tensorflow as tf __snake_case : List[str] = tf.__version__ try: # deprecated in v2.1 __snake_case : str = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __snake_case : Any = bool(tf.config.list_physical_devices('''GPU''' ) ) __snake_case : Optional[int] = '''not installed''' __snake_case : List[str] = '''not installed''' __snake_case : Dict = '''not installed''' __snake_case : str = '''NA''' if is_flax_available(): import flax import jax import jaxlib __snake_case : Union[str, Any] = flax.__version__ __snake_case : List[str] = jax.__version__ __snake_case : Union[str, Any] = jaxlib.__version__ __snake_case : List[str] = jax.lib.xla_bridge.get_backend().platform __snake_case : Union[str, Any] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f"""{safetensors_version}""", '''Accelerate version''': f"""{accelerate_version}""", '''Accelerate config''': f"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': f"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': f"""{flax_version} ({jax_backend})""", '''Jax version''': f"""{jax_version}""", '''JaxLib version''': f"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(a_ ) ) return info @staticmethod def SCREAMING_SNAKE_CASE (a_ ): '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
24
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : str = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["""MobileViTFeatureExtractor"""] SCREAMING_SNAKE_CASE : Union[str, Any] = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
1
"""simple docstring""" def lowercase ( _snake_case : Optional[int] , _snake_case : Optional[Any] ) ->Any: """simple docstring""" __snake_case : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowercase ( _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str ) ->Union[str, Any]: """simple docstring""" __snake_case : Dict = 0 while b > 0: if b & 1: __snake_case : List[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
24
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
1
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self._create_example_records() __snake_case : Optional[int] = Dataset.from_list(a_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(a_ ): self.assertDictEqual(a_ , example_records[i] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self._create_example_records() __snake_case : Optional[Any] = Dataset.from_list(a_ ) __snake_case : Tuple = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def SCREAMING_SNAKE_CASE (self ): # checks what happens with missing columns '''simple docstring''' __snake_case : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] __snake_case : List[str] = Dataset.from_list(a_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def SCREAMING_SNAKE_CASE (self ): # checks if the type can be inferred from the second record '''simple docstring''' __snake_case : List[Any] = [{'''col_1''': []}, {'''col_1''': [1, 2]}] __snake_case : Any = Dataset.from_list(a_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Dataset.from_list([] ) self.assertEqual(len(a_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
24
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None SCREAMING_SNAKE_CASE : List[str] = namedtuple("""CoinsDistribResult""", """moves excess""") def lowercase ( _snake_case : TreeNode | None ) ->int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(_snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_snake_case ) != count_coins(_snake_case ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_snake_case : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __snake_case , __snake_case : str = get_distrib(node.left ) __snake_case , __snake_case : Optional[Any] = get_distrib(node.right ) __snake_case : Union[str, Any] = 1 - left_distrib_excess __snake_case : Optional[int] = 1 - right_distrib_excess __snake_case : str = ( left_distrib_moves + right_distrib_moves + abs(_snake_case ) + abs(_snake_case ) ) __snake_case : List[str] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_snake_case , _snake_case ) return get_distrib(_snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def lowercase ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Any ) ->List[str]: """simple docstring""" __snake_case : List[Any] = WavaVecaForSequenceClassification.from_pretrained(_snake_case , config=_snake_case ) __snake_case : Union[str, Any] = downstream_dict['''projector.weight'''] __snake_case : Dict = downstream_dict['''projector.bias'''] __snake_case : Union[str, Any] = downstream_dict['''model.post_net.linear.weight'''] __snake_case : Optional[int] = downstream_dict['''model.post_net.linear.bias'''] return model def lowercase ( _snake_case : Optional[Any] , _snake_case : str , _snake_case : str ) ->int: """simple docstring""" __snake_case : str = WavaVecaForAudioFrameClassification.from_pretrained(_snake_case , config=_snake_case ) __snake_case : Dict = downstream_dict['''model.linear.weight'''] __snake_case : Any = downstream_dict['''model.linear.bias'''] return model def lowercase ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Optional[int] ) ->List[Any]: """simple docstring""" __snake_case : int = WavaVecaForXVector.from_pretrained(_snake_case , config=_snake_case ) __snake_case : Optional[Any] = downstream_dict['''connector.weight'''] __snake_case : Dict = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __snake_case : List[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __snake_case : Union[str, Any] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __snake_case : Union[str, Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __snake_case : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __snake_case : List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __snake_case : str = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __snake_case : List[str] = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowercase ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : int ) ->List[str]: """simple docstring""" __snake_case : Tuple = torch.load(_snake_case , map_location='''cpu''' ) __snake_case : Tuple = checkpoint['''Downstream'''] __snake_case : Tuple = WavaVecaConfig.from_pretrained(_snake_case ) __snake_case : str = WavaVecaFeatureExtractor.from_pretrained( _snake_case , return_attention_mask=_snake_case , do_normalize=_snake_case ) __snake_case : Tuple = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __snake_case : str = convert_classification(_snake_case , _snake_case , _snake_case ) elif arch.endswith('''ForAudioFrameClassification''' ): __snake_case : Tuple = convert_diarization(_snake_case , _snake_case , _snake_case ) elif arch.endswith('''ForXVector''' ): __snake_case : Dict = convert_xvector(_snake_case , _snake_case , _snake_case ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: __snake_case : Dict = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
24
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : Dict , _snake_case : Any , _snake_case : Tuple=None ) ->Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" __snake_case : List[str] = nn.Parameter(_snake_case ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" __snake_case : List[str] = nn.Parameter(_snake_case ) def lowercase ( _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Any ) ->int: """simple docstring""" __snake_case : List[Any] = np.asarray(weights[0] ) __snake_case : Dict = np.asarray(weights[1] ) __snake_case : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_snake_case ).transpose(1 , 2 ).contiguous().view(-1 , _snake_case ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_snake_case ).transpose(1 , 2 ).contiguous().view(-1 , _snake_case ) , ) set_param( torch_layer.output.dense , torch.tensor(_snake_case ).view(-1 , _snake_case ).contiguous().transpose(0 , 1 ) , ) def lowercase ( _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Dict ) ->Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = np.asarray(weights[0] ) __snake_case : Any = np.asarray(weights[1] ) __snake_case : str = np.asarray(weights[2] ) __snake_case : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_snake_case ).transpose(1 , 2 ).contiguous().view(-1 , _snake_case ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_snake_case ).transpose(1 , 2 ).contiguous().view(-1 , _snake_case ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_snake_case ).transpose(1 , 2 ).contiguous().view(-1 , _snake_case ) , ) set_param( torch_layer.output.dense , torch.tensor(_snake_case ).view(-1 , _snake_case ).contiguous().transpose(0 , 1 ) , ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Union[str, Any] ) ->Dict: """simple docstring""" __snake_case : Dict = weights[0][0][0] __snake_case : Any = np.asarray(layer_norm_a[0] ) __snake_case : Any = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_snake_case ) , torch.tensor(_snake_case ) , ) # lsh weights + output __snake_case : List[str] = weights[0][1] if len(_snake_case ) < 4: set_layer_weights_in_torch_lsh(_snake_case , torch_block.attention , _snake_case ) else: set_layer_weights_in_torch_local(_snake_case , torch_block.attention , _snake_case ) # intermediate weighs __snake_case : Tuple = weights[2][0][1][2] # Chunked Feed Forward if len(_snake_case ) == 4: __snake_case : str = intermediate_weights[2] # layernorm 2 __snake_case : Union[str, Any] = np.asarray(intermediate_weights[0][0] ) __snake_case : Optional[int] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_snake_case ) , torch.tensor(_snake_case ) , ) # intermediate dense __snake_case : int = np.asarray(intermediate_weights[1][0] ) __snake_case : Tuple = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(_snake_case ) , ) # intermediate out __snake_case : Tuple = np.asarray(intermediate_weights[4][0] ) __snake_case : Optional[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(_snake_case ) , ) def lowercase ( _snake_case : str , _snake_case : Tuple , _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Optional[int] = torch_model.reformer # word embeds __snake_case : Dict = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_snake_case ) , ) if isinstance(weights[3] , _snake_case ): __snake_case : Dict = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __snake_case : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" __snake_case : Optional[int] = nn.Parameter(torch.tensor(_snake_case ) ) __snake_case : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _snake_case ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __snake_case : List[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_snake_case , _snake_case , _snake_case ) # output layer norm __snake_case : List[str] = np.asarray(weights[7][0] ) __snake_case : Dict = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_snake_case ) , torch.tensor(_snake_case ) , ) # output embeddings __snake_case : Any = np.asarray(weights[9][0] ) __snake_case : int = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(_snake_case ) , ) def lowercase ( _snake_case : Tuple , _snake_case : int , _snake_case : List[Any] ) ->Optional[int]: """simple docstring""" __snake_case : Optional[Any] = ReformerConfig.from_json_file(_snake_case ) print(f"""Building PyTorch model from configuration: {config}""" ) __snake_case : Any = ReformerModelWithLMHead(_snake_case ) with open(_snake_case , '''rb''' ) as f: __snake_case : Tuple = pickle.load(_snake_case )['''weights'''] set_model_weights_in_torch(_snake_case , _snake_case , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE : Optional[Any] = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase ( _snake_case : List[str] , _snake_case : Any , _snake_case : int=None ) ->Tuple: """simple docstring""" if rng is None: __snake_case : str = random.Random() __snake_case : Optional[int] = 1 for dim in shape: total_dims *= dim __snake_case : Optional[int] = [] for _ in range(_snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) __snake_case : List[str] = np.array(_snake_case , dtype=jnp.intaa ).reshape(_snake_case ) return output def lowercase ( _snake_case : Optional[int] , _snake_case : List[Any]=None ) ->Any: """simple docstring""" __snake_case : Optional[int] = ids_tensor(_snake_case , vocab_size=2 , rng=_snake_case ) # make sure that at least one token is attended to for each batch __snake_case : Optional[Any] = 1 return attn_mask @require_flax class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =None lowerCamelCase__ =() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __snake_case : str = 2 __snake_case : Tuple = inputs['''input_ids'''].shape[-1] // 2 __snake_case : int = inputs['''input_ids'''][:max_batch_size, :sequence_length] __snake_case : int = jnp.ones_like(a_ ) __snake_case : Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __snake_case : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __snake_case : str = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Any = self._get_input_ids_and_config() __snake_case : Optional[Any] = False __snake_case : Tuple = max_length __snake_case : int = 0 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning __snake_case : Any = getattr(a_ , a_ ) __snake_case : Optional[Any] = pt_model_class(a_ ).eval() __snake_case : Union[str, Any] = load_flax_weights_in_pytorch_model(a_ , flax_model.params ) __snake_case : Optional[Any] = flax_model.generate(a_ ).sequences __snake_case : Dict = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __snake_case : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self._get_input_ids_and_config() __snake_case : Any = False __snake_case : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __snake_case : Dict = model_class(a_ ) __snake_case : Union[str, Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Tuple = jit(model.generate ) __snake_case : Tuple = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Tuple = self._get_input_ids_and_config() __snake_case : Dict = True __snake_case : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __snake_case : List[str] = model_class(a_ ) __snake_case : Tuple = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Union[str, Any] = jit(model.generate ) __snake_case : List[str] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : str = self._get_input_ids_and_config() __snake_case : List[str] = False __snake_case : List[Any] = max_length __snake_case : List[str] = 2 for model_class in self.all_generative_model_classes: __snake_case : Optional[int] = model_class(a_ ) __snake_case : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : List[Any] = jit(model.generate ) __snake_case : List[str] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self._get_input_ids_and_config() __snake_case : Optional[Any] = False __snake_case : Dict = max_length __snake_case : List[str] = 2 __snake_case : List[str] = 2 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = self._get_input_ids_and_config() __snake_case : List[str] = True __snake_case : Tuple = max_length __snake_case : Optional[int] = 0.8 __snake_case : Dict = 10 __snake_case : Tuple = 0.3 __snake_case : List[Any] = 1 __snake_case : Tuple = 8 __snake_case : Optional[int] = 9 for model_class in self.all_generative_model_classes: __snake_case : Any = model_class(a_ ) __snake_case : Any = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Any = jit(model.generate ) __snake_case : int = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : int = self._get_input_ids_and_config() __snake_case : Optional[int] = max_length __snake_case : int = 1 __snake_case : Dict = 8 __snake_case : Dict = 9 for model_class in self.all_generative_model_classes: __snake_case : Tuple = model_class(a_ ) __snake_case : Union[str, Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[Any] = jit(model.generate ) __snake_case : Optional[Any] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : List[str] = self._get_input_ids_and_config() __snake_case : Optional[int] = max_length __snake_case : Tuple = 2 __snake_case : Any = 1 __snake_case : Any = 8 __snake_case : Any = 9 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : Any = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[Any] = jit(model.generate ) __snake_case : Optional[int] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Any = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Optional[int] = attention_mask.at[(0, 0)].set(0 ) __snake_case : str = False __snake_case : int = max_length for model_class in self.all_generative_model_classes: __snake_case : Union[str, Any] = model_class(a_ ) __snake_case : int = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : int = jit(model.generate ) __snake_case : Tuple = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Any = attention_mask.at[(0, 0)].set(0 ) __snake_case : Optional[Any] = True __snake_case : List[str] = max_length for model_class in self.all_generative_model_classes: __snake_case : str = model_class(a_ ) __snake_case : Dict = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[int] = jit(model.generate ) __snake_case : List[Any] = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Any = attention_mask.at[(0, 0)].set(0 ) __snake_case : Union[str, Any] = 2 __snake_case : int = max_length for model_class in self.all_generative_model_classes: __snake_case : List[str] = model_class(a_ ) __snake_case : Dict = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Any = jit(model.generate ) __snake_case : Optional[int] = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) __snake_case : int = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __snake_case : Union[str, Any] = '''Hello world''' __snake_case : Optional[Any] = tokenizer(a_ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a_ , '''do_samples''' ): model.generate(a_ , do_samples=a_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a_ , '''foo''' ): __snake_case : Optional[int] = {'''foo''': '''bar'''} model.generate(a_ , **a_ )
24
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
1
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE : Union[str, Any] = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE : Tuple = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE : List[Any] = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE : str = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE : Union[str, Any] = """tabby, tabby cat""" SCREAMING_SNAKE_CASE : List[str] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ = 3 , a_ = 1 , a_ = 1 , a_ = "relu" , **a_ , ): '''simple docstring''' super().__init__(**a_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __snake_case : Any = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __snake_case : str = tf.keras.layers.ConvaD( filters=a_ , kernel_size=a_ , strides=a_ , padding='''VALID''' , groups=a_ , use_bias=a_ , name='''convolution''' , ) __snake_case : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) __snake_case : int = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = self.convolution(self.padding(a_ ) ) __snake_case : int = self.normalization(a_ ) __snake_case : Optional[int] = self.activation(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Tuple = config.num_channels __snake_case : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = shape_list(a_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __snake_case : Dict = tf.transpose(a_ , perm=(0, 2, 3, 1) ) __snake_case : List[Any] = self.embedder(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ = 2 , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Dict = tf.keras.layers.ConvaD( filters=a_ , kernel_size=1 , strides=a_ , use_bias=a_ , name='''convolution''' ) __snake_case : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' return self.normalization(self.convolution(a_ ) , training=a_ ) class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ , name='''pooler''' ) __snake_case : Union[str, Any] = [ tf.keras.layers.ConvaD(filters=a_ , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=a_ , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.pooler(a_ ) for layer_module in self.attention: __snake_case : List[str] = layer_module(a_ ) __snake_case : List[str] = hidden_state * pooled return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = 1 , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Union[str, Any] = in_channels != out_channels or stride != 1 __snake_case : List[str] = max(1 , out_channels // config.groups_width ) __snake_case : Union[str, Any] = ( TFRegNetShortCut(a_ , stride=a_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __snake_case : List[Any] = [ TFRegNetConvLayer(a_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( a_ , stride=a_ , groups=a_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(a_ , kernel_size=1 , activation=a_ , name='''layer.2''' ), ] __snake_case : Optional[int] = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = hidden_state for layer_module in self.layers: __snake_case : Dict = layer_module(a_ ) __snake_case : Any = self.shortcut(a_ ) hidden_state += residual __snake_case : Dict = self.activation(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = 1 , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Optional[int] = in_channels != out_channels or stride != 1 __snake_case : List[Any] = max(1 , out_channels // config.groups_width ) __snake_case : List[str] = ( TFRegNetShortCut(a_ , stride=a_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __snake_case : List[Any] = [ TFRegNetConvLayer(a_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( a_ , stride=a_ , groups=a_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(a_ , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(a_ , kernel_size=1 , activation=a_ , name='''layer.3''' ), ] __snake_case : List[str] = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = hidden_state for layer_module in self.layers: __snake_case : Optional[int] = layer_module(a_ ) __snake_case : List[str] = self.shortcut(a_ ) hidden_state += residual __snake_case : Tuple = self.activation(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = 2 , a_ = 2 , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Union[str, Any] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __snake_case : Dict = [ # downsampling is done in the first layer with stride of 2 layer(a_ , a_ , a_ , stride=a_ , name='''layers.0''' ), *[layer(a_ , a_ , a_ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for layer_module in self.layers: __snake_case : Tuple = layer_module(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Dict = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __snake_case : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(a_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(a_ , a_ , a_ , depth=a_ , name=f"""stages.{i+1}""" ) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False , a_ = True ): '''simple docstring''' __snake_case : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case : Optional[Any] = hidden_states + (hidden_state,) __snake_case : Tuple = stage_module(a_ ) if output_hidden_states: __snake_case : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=a_ , hidden_states=a_ ) @keras_serializable class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase__ =RegNetConfig def __init__(self , a_ , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Optional[Any] = config __snake_case : Any = TFRegNetEmbeddings(a_ , name='''embedder''' ) __snake_case : Dict = TFRegNetEncoder(a_ , name='''encoder''' ) __snake_case : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ , name='''pooler''' ) @unpack_inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = False , ): '''simple docstring''' __snake_case : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Any = self.embedder(a_ , training=a_ ) __snake_case : str = self.encoder( a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ ) __snake_case : Tuple = encoder_outputs[0] __snake_case : Union[str, Any] = self.pooler(a_ ) # Change to NCHW output format have uniformity in the modules __snake_case : str = tf.transpose(a_ , perm=(0, 3, 1, 2) ) __snake_case : List[Any] = tf.transpose(a_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __snake_case : List[Any] = tuple([tf.transpose(a_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a_ , pooler_output=a_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =RegNetConfig lowerCamelCase__ ='regnet' lowerCamelCase__ ='pixel_values' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} SCREAMING_SNAKE_CASE : Optional[int] = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE : Union[str, Any] = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.', __snake_case, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , *a_ , **a_ ): '''simple docstring''' super().__init__(a_ , *a_ , **a_ ) __snake_case : List[str] = TFRegNetMainLayer(a_ , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_=False , ): '''simple docstring''' __snake_case : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Any = self.regnet( pixel_values=a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', __snake_case, ) class _UpperCAmelCase ( __snake_case, __snake_case ): '''simple docstring''' def __init__(self , a_ , *a_ , **a_ ): '''simple docstring''' super().__init__(a_ , *a_ , **a_ ) __snake_case : Tuple = config.num_labels __snake_case : List[Any] = TFRegNetMainLayer(a_ , name='''regnet''' ) # classification head __snake_case : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE (self , a_ = None , a_ = None , a_ = None , a_ = None , a_=False , ): '''simple docstring''' __snake_case : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Dict = self.regnet( a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ ) __snake_case : Optional[int] = outputs.pooler_output if return_dict else outputs[1] __snake_case : Dict = self.classifier[0](a_ ) __snake_case : str = self.classifier[1](a_ ) __snake_case : List[str] = None if labels is None else self.hf_compute_loss(labels=a_ , logits=a_ ) if not return_dict: __snake_case : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a_ , logits=a_ , hidden_states=outputs.hidden_states )
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel SCREAMING_SNAKE_CASE : str = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } SCREAMING_SNAKE_CASE : Optional[Any] = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def lowercase ( _snake_case : Any , _snake_case : str=False ) ->Optional[Any]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = create_model( '''HTSAT-tiny''' , '''roberta''' , _snake_case , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_snake_case , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def lowercase ( _snake_case : Dict ) ->Optional[Any]: """simple docstring""" __snake_case : Any = {} __snake_case : Tuple = r'''.*sequential.(\d+).*''' __snake_case : Dict = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : str = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list __snake_case : int = re.match(_snake_case , _snake_case ).group(1 ) __snake_case : Optional[int] = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(_snake_case )//3}.linear.""" ) elif re.match(_snake_case , _snake_case ): __snake_case : Union[str, Any] = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : Any = 1 if projecton_layer == 0 else 2 __snake_case : Dict = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : str = value __snake_case : Optional[Any] = mixed_qkv.size(0 ) // 3 __snake_case : Tuple = mixed_qkv[:qkv_dim] __snake_case : int = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Optional[int] = query_layer __snake_case : Optional[Any] = key_layer __snake_case : Optional[int] = value_layer else: __snake_case : Optional[Any] = value return model_state_dict def lowercase ( _snake_case : int , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : List[Any]=False ) ->List[Any]: """simple docstring""" __snake_case , __snake_case : Optional[int] = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() __snake_case : str = clap_model.state_dict() __snake_case : int = rename_state_dict(_snake_case ) __snake_case : Dict = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : str = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename SCREAMING_SNAKE_CASE : str = """http://www.mocksite.com/file1.txt""" SCREAMING_SNAKE_CASE : Tuple = """\"text\": [\"foo\", \"foo\"]""" SCREAMING_SNAKE_CASE : int = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =200 lowerCamelCase__ ={'Content-Length': '100'} lowerCamelCase__ ={} def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' return [bytes(a_ , '''utf-8''' )] def lowercase ( *_snake_case : Union[str, Any] , **_snake_case : Optional[int] ) ->Union[str, Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def lowercase ( _snake_case : str , _snake_case : List[str] , _snake_case : int ) ->Optional[int]: """simple docstring""" import requests monkeypatch.setattr(_snake_case , '''request''' , _snake_case ) __snake_case : Any = URL if issubclass(_snake_case , _snake_case ): __snake_case : Any = url elif issubclass(_snake_case , _snake_case ): __snake_case : List[Any] = [url] elif issubclass(_snake_case , _snake_case ): __snake_case : Optional[int] = {'''train''': url} __snake_case : Union[str, Any] = '''dummy''' __snake_case : str = '''downloads''' __snake_case : Union[str, Any] = tmp_path __snake_case : Tuple = DownloadConfig( cache_dir=os.path.join(_snake_case , _snake_case ) , use_etag=_snake_case , ) __snake_case : Optional[int] = DownloadManager(dataset_name=_snake_case , download_config=_snake_case ) __snake_case : Union[str, Any] = dl_manager.download(_snake_case ) __snake_case : Union[str, Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(_snake_case , _snake_case ): __snake_case : Dict = [downloaded_paths] __snake_case : Optional[int] = [urls] elif isinstance(_snake_case , _snake_case ): assert "train" in downloaded_paths.keys() __snake_case : str = downloaded_paths.values() __snake_case : List[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_snake_case , _snake_case ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : Any = Path(_snake_case ) __snake_case : Dict = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : List[Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : int = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() __snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def lowercase ( _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = str(_snake_case ) if issubclass(_snake_case , _snake_case ): __snake_case : List[str] = filename elif issubclass(_snake_case , _snake_case ): __snake_case : Tuple = [filename] elif issubclass(_snake_case , _snake_case ): __snake_case : Tuple = {'''train''': filename} __snake_case : Tuple = '''dummy''' __snake_case : Optional[Any] = xz_file.parent __snake_case : str = '''extracted''' __snake_case : int = DownloadConfig( cache_dir=_snake_case , use_etag=_snake_case , ) __snake_case : Dict = DownloadManager(dataset_name=_snake_case , download_config=_snake_case ) __snake_case : int = dl_manager.extract(_snake_case ) __snake_case : Tuple = paths for extracted_paths in [extracted_paths]: if isinstance(_snake_case , _snake_case ): __snake_case : Optional[Any] = [extracted_paths] __snake_case : Optional[Any] = [paths] elif isinstance(_snake_case , _snake_case ): assert "train" in extracted_paths.keys() __snake_case : Dict = extracted_paths.values() __snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(_snake_case , _snake_case ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : List[Any] = Path(_snake_case ) __snake_case : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(_snake_case , etag=_snake_case ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : List[Any] = text_file.read_text() assert extracted_file_content == expected_file_content def lowercase ( _snake_case : int , _snake_case : List[str] ) ->Optional[Any]: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(_snake_case , start=1 ): __snake_case : List[str] = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def lowercase ( _snake_case : int , _snake_case : List[Any] ) ->Dict: """simple docstring""" __snake_case : List[str] = request.getfixturevalue(_snake_case ) __snake_case : Union[str, Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): _test_jsonl(_snake_case , _snake_case ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def lowercase ( _snake_case : Any , _snake_case : List[Any] ) ->str: """simple docstring""" __snake_case : Dict = request.getfixturevalue(_snake_case ) __snake_case : str = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): _test_jsonl(_snake_case , _snake_case ) assert num_tar == 1 assert num_jsonl == 2 def lowercase ( _snake_case : List[Any] ) ->Dict: """simple docstring""" __snake_case : Optional[int] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_snake_case ) , start=1 ): assert os.path.basename(_snake_case ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='pegasus' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , a_=5_02_65 , a_=10_24 , a_=12 , a_=40_96 , a_=16 , a_=12 , a_=40_96 , a_=16 , a_=0.0 , a_=0.0 , a_=True , a_=True , a_="gelu" , a_=10_24 , a_=0.1 , a_=0.0 , a_=0.0 , a_=0.02 , a_=0 , a_=False , a_=0 , a_=1 , a_=1 , **a_ , ): '''simple docstring''' __snake_case : List[Any] = vocab_size __snake_case : Dict = max_position_embeddings __snake_case : Union[str, Any] = d_model __snake_case : List[Any] = encoder_ffn_dim __snake_case : Union[str, Any] = encoder_layers __snake_case : int = encoder_attention_heads __snake_case : Optional[Any] = decoder_ffn_dim __snake_case : List[str] = decoder_layers __snake_case : List[str] = decoder_attention_heads __snake_case : int = dropout __snake_case : List[Any] = attention_dropout __snake_case : Any = activation_dropout __snake_case : Dict = activation_function __snake_case : Optional[int] = init_std __snake_case : int = encoder_layerdrop __snake_case : List[Any] = decoder_layerdrop __snake_case : List[str] = use_cache __snake_case : int = encoder_layers __snake_case : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.d_model
24
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
1
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.dummy_uncond_unet __snake_case : int = DDIMScheduler() __snake_case : str = self.dummy_vq_model __snake_case : Union[str, Any] = LDMPipeline(unet=a_ , vqvae=a_ , scheduler=a_ ) ldm.to(a_ ) ldm.set_progress_bar_config(disable=a_ ) __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Optional[Any] = ldm(generator=a_ , num_inference_steps=2 , output_type='''numpy''' ).images __snake_case : Any = torch.manual_seed(0 ) __snake_case : List[Any] = ldm(generator=a_ , num_inference_steps=2 , output_type='''numpy''' , return_dict=a_ )[0] __snake_case : Dict = image[0, -3:, -3:, -1] __snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : List[Any] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) __snake_case : str = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(a_ ) ldm.set_progress_bar_config(disable=a_ ) __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : Dict = ldm(generator=a_ , num_inference_steps=5 , output_type='''numpy''' ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __snake_case : Dict = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) __snake_case : str = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.dummy_uncond_unet __snake_case : Optional[int] = PNDMScheduler() __snake_case : List[Any] = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Dict = pndm(generator=a_ , num_inference_steps=20 , output_type='''numpy''' ).images __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : List[str] = pndm(generator=a_ , num_inference_steps=20 , output_type='''numpy''' , return_dict=a_ )[0] __snake_case : Any = image[0, -3:, -3:, -1] __snake_case : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : str = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''google/ddpm-cifar10-32''' __snake_case : str = UNetaDModel.from_pretrained(a_ ) __snake_case : List[Any] = PNDMScheduler() __snake_case : Optional[Any] = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : str = pndm(generator=a_ , output_type='''numpy''' ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : List[Any] = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def lowercase ( _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[Any] ) ->Any: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Optional[int] = getattr(_snake_case , _snake_case ) if weight_type is not None: __snake_case : List[str] = getattr(_snake_case , _snake_case ).shape else: __snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : Optional[int] = value elif weight_type == "weight_g": __snake_case : Union[str, Any] = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : Optional[Any] = value else: __snake_case : Dict = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : Optional[Any] ) ->int: """simple docstring""" __snake_case : str = [] __snake_case : int = fairseq_model.state_dict() __snake_case : str = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __snake_case : List[Any] = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): __snake_case : List[Any] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __snake_case : List[str] = True if "*" in mapped_key: __snake_case : Optional[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Dict = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : List[Any] = '''weight_g''' elif "weight_v" in name: __snake_case : Optional[Any] = '''weight_v''' elif "bias" in name: __snake_case : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[str] = '''weight''' else: __snake_case : Dict = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Tuple , _snake_case : List[str] , _snake_case : str ) ->str: """simple docstring""" __snake_case : Optional[Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : Any = name.split('''.''' ) __snake_case : Tuple = int(items[0] ) __snake_case : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any]=None , _snake_case : int=None , _snake_case : Union[str, Any]=True ) ->str: """simple docstring""" if config_path is not None: __snake_case : int = UniSpeechSatConfig.from_pretrained(_snake_case ) else: __snake_case : str = UniSpeechSatConfig() __snake_case : Optional[Any] = '''''' if is_finetuned: __snake_case : Optional[Any] = UniSpeechSatForCTC(_snake_case ) else: __snake_case : Tuple = UniSpeechSatForPreTraining(_snake_case ) __snake_case , __snake_case , __snake_case : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __snake_case : Any = model[0].eval() recursively_load_weights(_snake_case , _snake_case ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
24
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='ClapFeatureExtractor' lowerCamelCase__ =('RobertaTokenizer', 'RobertaTokenizerFast') def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Optional[Any] = kwargs.pop('''sampling_rate''' , a_ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if audios is not None: __snake_case : Dict = self.feature_extractor( a_ , sampling_rate=a_ , return_tensors=a_ , **a_ ) if text is not None and audios is not None: __snake_case : Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.tokenizer.model_input_names __snake_case : str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
24
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
1
"""simple docstring""" from collections import deque class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Dict = process_name # process name __snake_case : Dict = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __snake_case : Optional[Any] = arrival_time __snake_case : Union[str, Any] = burst_time # remaining burst time __snake_case : str = 0 # total time of the process wait in ready queue __snake_case : Union[str, Any] = 0 # time from arrival time to completion time class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : List[str] = number_of_queues # time slice of queues that round robin algorithm applied __snake_case : Optional[int] = time_slices # unfinished process is in this ready_queue __snake_case : Dict = queue # current time __snake_case : Union[str, Any] = current_time # finished process is in this sequence queue __snake_case : deque[Process] = deque() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = [] for i in range(len(a_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i in range(len(a_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[str] = [] for i in range(len(a_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return [q.burst_time for q in queue] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : deque[Process] = deque() # sequence deque of finished process while len(a_ ) != 0: __snake_case : List[str] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(a_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __snake_case : Dict = 0 # set the process's turnaround time because it is finished __snake_case : Any = self.current_time - cp.arrival_time # set the completion time __snake_case : str = self.current_time # add the process to queue that has finished queue finished.append(a_ ) self.finish_queue.extend(a_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(a_ ) ): __snake_case : Tuple = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(a_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __snake_case : int = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(a_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __snake_case : Dict = 0 # set the finish time __snake_case : str = self.current_time # update the process' turnaround time because it is finished __snake_case : int = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(a_ ) self.finish_queue.extend(a_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): __snake_case , __snake_case : int = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest SCREAMING_SNAKE_CASE : Any = Process("""P1""", 0, 53) SCREAMING_SNAKE_CASE : List[Any] = Process("""P2""", 0, 17) SCREAMING_SNAKE_CASE : Optional[int] = Process("""P3""", 0, 68) SCREAMING_SNAKE_CASE : Optional[int] = Process("""P4""", 0, 24) SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Dict = [17, 25] SCREAMING_SNAKE_CASE : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) SCREAMING_SNAKE_CASE : Any = Process("""P1""", 0, 53) SCREAMING_SNAKE_CASE : int = Process("""P2""", 0, 17) SCREAMING_SNAKE_CASE : str = Process("""P3""", 0, 68) SCREAMING_SNAKE_CASE : Tuple = Process("""P4""", 0, 24) SCREAMING_SNAKE_CASE : Union[str, Any] = 3 SCREAMING_SNAKE_CASE : str = [17, 25] SCREAMING_SNAKE_CASE : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) SCREAMING_SNAKE_CASE : Dict = MLFQ(number_of_queues, time_slices, queue, 0) SCREAMING_SNAKE_CASE : Optional[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
1
"""simple docstring""" from itertools import permutations def lowercase ( _snake_case : tuple ) ->bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : str = [7, 11, 13, 17] for i, test in enumerate(_snake_case ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase ( _snake_case : int = 10 ) ->int: """simple docstring""" return sum( int(''''''.join(map(_snake_case , _snake_case ) ) ) for num in permutations(range(_snake_case ) ) if is_substring_divisible(_snake_case ) ) if __name__ == "__main__": print(F'{solution() = }')
24
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lilt' def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=0 , a_="absolute" , a_=None , a_=4 , a_=10_24 , **a_ , ): '''simple docstring''' super().__init__(pad_token_id=a_ , **a_ ) __snake_case : str = vocab_size __snake_case : str = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : str = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : int = initializer_range __snake_case : int = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Dict = classifier_dropout __snake_case : Any = channel_shrink_ratio __snake_case : Dict = max_ad_position_embeddings
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
1
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase ( ) ->int: """simple docstring""" __snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=_snake_case , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=_snake_case , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=_snake_case , help='''where to store parsed gold_data_path file''' , ) __snake_case : Any = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: __snake_case : Union[str, Any] = json.load(_snake_case ) for dpr_record in tqdm(_snake_case ): __snake_case : List[Any] = dpr_record['''question'''] __snake_case : Dict = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(_snake_case ) + '''\n''' ) if __name__ == "__main__": main()
24
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
1
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE : Any = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE : Tuple = BASE_URL + """/user""" # https://github.com/settings/tokens SCREAMING_SNAKE_CASE : Optional[Any] = os.environ.get("""USER_TOKEN""", """""") def lowercase ( _snake_case : str ) ->dict[Any, Any]: """simple docstring""" __snake_case : Dict = { '''Authorization''': f"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_snake_case , headers=_snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
24
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='canine' def __init__(self , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=1_63_84 , a_=16 , a_=0.02 , a_=1E-12 , a_=0 , a_=0XE_0_0_0 , a_=0XE_0_0_1 , a_=4 , a_=4 , a_=8 , a_=1_63_84 , a_=1_28 , **a_ , ): '''simple docstring''' super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case : int = max_position_embeddings __snake_case : Union[str, Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Dict = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : str = initializer_range __snake_case : Tuple = type_vocab_size __snake_case : Dict = layer_norm_eps # Character config: __snake_case : Dict = downsampling_rate __snake_case : List[Any] = upsampling_kernel_size __snake_case : Optional[Any] = num_hash_functions __snake_case : Any = num_hash_buckets __snake_case : Optional[int] = local_transformer_stride
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
1
"""simple docstring""" def lowercase ( _snake_case : int ) ->int: """simple docstring""" if not isinstance(_snake_case , _snake_case ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case : Tuple = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''ZinengTang/tvlt-base''' __snake_case : List[Any] = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **a_ ) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.get_image_processor() __snake_case : List[str] = self.get_feature_extractor() __snake_case : str = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) processor.save_pretrained(self.tmpdirname ) __snake_case : Tuple = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , a_ ) self.assertIsInstance(processor.image_processor , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.get_image_processor() __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Optional[int] = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) __snake_case : Dict = np.ones([1_20_00] ) __snake_case : Dict = feature_extractor(a_ , return_tensors='''np''' ) __snake_case : Optional[int] = processor(audio=a_ , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.get_image_processor() __snake_case : Optional[int] = self.get_feature_extractor() __snake_case : Tuple = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) __snake_case : str = np.ones([3, 2_24, 2_24] ) __snake_case : List[str] = image_processor(a_ , return_tensors='''np''' ) __snake_case : Optional[int] = processor(images=a_ , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : int = self.get_feature_extractor() __snake_case : List[Any] = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) __snake_case : Union[str, Any] = np.ones([1_20_00] ) __snake_case : Optional[int] = np.ones([3, 2_24, 2_24] ) __snake_case : Union[str, Any] = processor(audio=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.get_image_processor() __snake_case : List[str] = self.get_feature_extractor() __snake_case : int = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
24
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase ( _snake_case : int = 1_500_000 ) ->int: """simple docstring""" __snake_case : defaultdict = defaultdict(_snake_case ) __snake_case : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _snake_case , 2 ): if gcd(_snake_case , _snake_case ) > 1: continue __snake_case : Tuple = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_snake_case , limit + 1 , _snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
24
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): '''simple docstring''' def __init__(self , a_=None , **a_ ): '''simple docstring''' super().__init__(features=a_ ) __snake_case : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch if isinstance(a_ , a_ ) and column: if all( isinstance(a_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a_ ) return column def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch if isinstance(a_ , (str, bytes, type(a_ )) ): return value elif isinstance(a_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case : str = {} if isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case : Dict = {'''dtype''': torch.intaa} elif isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case : Tuple = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a_ , PIL.Image.Image ): __snake_case : Any = np.asarray(a_ ) return torch.tensor(a_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(a_ , '''__array__''' ) and not isinstance(a_ , torch.Tensor ): __snake_case : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) elif isinstance(a_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) return self._tensorize(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return map_nested(self._recursive_tensorize , a_ , map_list=a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.numpy_arrow_extractor().extract_row(a_ ) __snake_case : Dict = self.python_features_decoder.decode_row(a_ ) return self.recursive_tensorize(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.numpy_arrow_extractor().extract_column(a_ ) __snake_case : Dict = self.python_features_decoder.decode_column(a_ , pa_table.column_names[0] ) __snake_case : List[Any] = self.recursive_tensorize(a_ ) __snake_case : Dict = self._consolidate(a_ ) return column def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[str] = self.numpy_arrow_extractor().extract_batch(a_ ) __snake_case : Tuple = self.python_features_decoder.decode_batch(a_ ) __snake_case : str = self.recursive_tensorize(a_ ) for column_name in batch: __snake_case : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
"""simple docstring""" import argparse from collections import defaultdict def lowercase ( _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Any ) ->Any: """simple docstring""" __snake_case : Optional[Any] = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_snake_case , '''r''' ) as f: __snake_case : Optional[int] = f.readlines() __snake_case : List[str] = f"""class {class_name}(""" __snake_case : List[str] = f"""{4 * ' '}def {test_name}(""" __snake_case : Any = f"""{8 * ' '}{correct_line.split()[0]}""" __snake_case : int = f"""{16 * ' '}{correct_line.split()[0]}""" __snake_case : Any = False __snake_case : Optional[Any] = False __snake_case : Any = False __snake_case : Dict = False __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : Any = [] for line in lines: if line.startswith(_snake_case ): __snake_case : Dict = True elif in_class and line.startswith(_snake_case ): __snake_case : Union[str, Any] = True elif in_class and in_func and (line.startswith(_snake_case ) or line.startswith(_snake_case )): __snake_case : Any = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __snake_case : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: __snake_case : List[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) __snake_case : str = False else: new_lines.append(_snake_case ) with open(_snake_case , '''w''' ) as f: for line in new_lines: f.write(_snake_case ) def lowercase ( _snake_case : Dict , _snake_case : Any=None ) ->List[Any]: """simple docstring""" if fail is not None: with open(_snake_case , '''r''' ) as f: __snake_case : Union[str, Any] = {l.strip() for l in f.readlines()} else: __snake_case : List[Any] = None with open(_snake_case , '''r''' ) as f: __snake_case : int = f.readlines() __snake_case : int = defaultdict(_snake_case ) for line in correct_lines: __snake_case , __snake_case , __snake_case , __snake_case : Any = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
24
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
1
"""simple docstring""" from math import pi def lowercase ( _snake_case : int , _snake_case : int ) ->float: """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=16 , a_=13 , a_=7 , a_=14 , a_=10 , a_=19 , a_=5 , a_=4 , a_=True , a_=16 , a_=2 , a_=4 , a_=4 , a_="gelu" , a_=0.1 , a_=0.1 , a_=[1, 2, 3, 4, 5] , a_=25 , a_=5 , ): '''simple docstring''' __snake_case : List[str] = d_model __snake_case : str = parent __snake_case : Union[str, Any] = batch_size __snake_case : List[Any] = prediction_length __snake_case : Tuple = context_length __snake_case : Optional[int] = cardinality __snake_case : Tuple = num_time_features __snake_case : Union[str, Any] = lags_sequence __snake_case : Tuple = embedding_dimension __snake_case : int = is_training __snake_case : List[str] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = context_length __snake_case : str = prediction_length + label_length __snake_case : Union[str, Any] = label_length __snake_case : Dict = moving_average __snake_case : Tuple = autocorrelation_factor def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = config.context_length + max(config.lags_sequence ) __snake_case : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __snake_case : Any = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __snake_case : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) __snake_case : Optional[int] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __snake_case : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __snake_case : Any = floats_tensor([self.batch_size, config.prediction_length] ) __snake_case : Dict = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.get_config() __snake_case : List[Any] = self.prepare_autoformer_inputs_dict(a_ ) return config, inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : str = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : int = AutoformerModel(config=a_ ).to(a_ ).eval() __snake_case : Union[str, Any] = model(**a_ ) __snake_case : str = outputs.encoder_last_hidden_state __snake_case : int = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = model.get_encoder() encoder.save_pretrained(a_ ) __snake_case : Any = AutoformerEncoder.from_pretrained(a_ ).to(a_ ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = model.create_network_inputs(**a_ ) __snake_case , __snake_case : Union[str, Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __snake_case : int = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __snake_case : Optional[int] = encoder(inputs_embeds=a_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __snake_case : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __snake_case : int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __snake_case : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __snake_case : List[str] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Dict = model.get_decoder() decoder.save_pretrained(a_ ) __snake_case : List[str] = AutoformerDecoder.from_pretrained(a_ ).to(a_ ) __snake_case : Optional[int] = decoder( trend=a_ , inputs_embeds=a_ , encoder_hidden_states=a_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCamelCase__ =(AutoformerForPrediction,) if is_torch_available() else () lowerCamelCase__ ={'feature-extraction': AutoformerModel} if is_torch_available() else {} lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = AutoformerModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __snake_case : Dict = model_class(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ ) __snake_case , __snake_case : List[str] = model_class.from_pretrained(a_ , output_loading_info=a_ ) self.assertEqual(info['''missing_keys'''] , [] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = inspect.signature(getattr(a_ , '''forward''' ) ) # The main input is the name of the argument after `self` __snake_case : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(a_ ) __snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : str = [*signature.parameters.keys()] __snake_case : str = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(a_ )] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = True __snake_case : Optional[int] = getattr(self.model_tester , '''seq_length''' , a_ ) __snake_case : Optional[int] = getattr(self.model_tester , '''decoder_seq_length''' , a_ ) __snake_case : List[Any] = getattr(self.model_tester , '''encoder_seq_length''' , a_ ) __snake_case : Any = getattr(self.model_tester , '''d_model''' , a_ ) __snake_case : int = getattr(self.model_tester , '''num_attention_heads''' , a_ ) __snake_case : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: __snake_case : List[str] = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Any = True __snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Union[str, Any] = outputs.encoder_attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __snake_case : List[str] = len(a_ ) __snake_case : Optional[int] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(a_ , a_ ) # decoder attentions __snake_case : Optional[Any] = outputs.decoder_attentions self.assertIsInstance(a_ , (list, tuple) ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __snake_case : Optional[int] = outputs.cross_attentions self.assertIsInstance(a_ , (list, tuple) ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __snake_case : Any = True __snake_case : Optional[Any] = True __snake_case : Dict = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : List[Any] = model(**self._prepare_for_class(a_ , a_ ) ) self.assertEqual(out_len + 2 , len(a_ ) ) __snake_case : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def lowercase ( _snake_case : Optional[Any]="train-batch.pt" ) ->Dict: """simple docstring""" __snake_case : Tuple = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=_snake_case , repo_type='''dataset''' ) __snake_case : int = torch.load(_snake_case , map_location=_snake_case ) return batch @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) __snake_case : Union[str, Any] = prepare_batch() with torch.no_grad(): __snake_case : int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] __snake_case : Any = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[Any] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=a_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a_ , atol=a_ ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) __snake_case : Tuple = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __snake_case : Any = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state __snake_case : List[Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , a_ ) __snake_case : Union[str, Any] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=a_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a_ , atol=a_ ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) __snake_case : Optional[int] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __snake_case : List[str] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) __snake_case : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , a_ ) __snake_case : Optional[int] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=a_ ) __snake_case : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , a_ , rtol=1E-1 ) )
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowercase ( _snake_case : str , _snake_case : complex , _snake_case : str = "x" , _snake_case : float = 10**-10 , _snake_case : int = 1 , ) ->complex: """simple docstring""" __snake_case : Optional[Any] = symbols(_snake_case ) __snake_case : Tuple = lambdify(_snake_case , _snake_case ) __snake_case : Optional[Any] = lambdify(_snake_case , diff(_snake_case , _snake_case ) ) __snake_case : List[str] = starting_point while True: if diff_function(_snake_case ) != 0: __snake_case : Union[str, Any] = prev_guess - multiplicity * func(_snake_case ) / diff_function( _snake_case ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __snake_case : str = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( """The root of log(y) - 1 = 0 is """, F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F'{newton_raphson("exp(x) - 1", 10, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
24
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =PandasConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Dict = data_files if isinstance(a_ , a_ ): __snake_case : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : Dict = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : Dict = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : Any = [dl_manager.iter_files(a_ ) for file in files] splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : Optional[int] = table_cast(a_ , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : Optional[int] = pa.Table.from_pandas(pd.read_pickle(a_ ) ) yield i, self._cast_table(a_ )
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1