code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ (_a ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_ : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 50 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): UpperCAmelCase_ : List[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase_ : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase_ : Any = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_ : Dict = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_ : Any = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample UpperCAmelCase_ : Any = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
from __future__ import annotations import math from collections.abc import Callable def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 100, ): UpperCAmelCase_ : Dict = x_start UpperCAmelCase_ : Union[str, Any] = fnc(a__ ) UpperCAmelCase_ : Optional[int] = 0.0 for _ in range(a__ ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase_ : Union[str, Any] = (x_end - x_start) / steps + xa UpperCAmelCase_ : Dict = fnc(a__ ) length += math.hypot(xa - xa, fxa - fxa ) # Increment step UpperCAmelCase_ : Optional[int] = xa UpperCAmelCase_ : Any = fxa return length if __name__ == "__main__": def __a ( __lowerCamelCase ): return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _a = 10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
0
"""simple docstring""" from collections.abc import Callable import numpy as np def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase_ : int = np.zeros((n + 1,) ) UpperCAmelCase_ : Optional[int] = ya UpperCAmelCase_ : Dict = xa for k in range(__lowerCamelCase ): UpperCAmelCase_ : int = y[k] + step_size * ode_func(__lowerCamelCase, y[k] ) UpperCAmelCase_ : Dict = y[k] + ( (step_size / 2) * (ode_func(__lowerCamelCase, y[k] ) + ode_func(x + step_size, __lowerCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
0
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A_ (a_ ): '''simple docstring''' def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_ ): """simple docstring""" super().__init__(*lowercase_ , **lowercase_ ) UpperCAmelCase_ : str = eval_examples UpperCAmelCase_ : Optional[int] = post_process_function def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = "eval" ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase_ : int = self.get_eval_dataloader(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ : Dict = self.compute_metrics UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase_ : Optional[int] = time.time() try: UpperCAmelCase_ : Optional[Any] = eval_loop( lowercase_ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase_ : Union[str, Any] = compute_metrics UpperCAmelCase_ : str = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase_ : List[Any] = self.post_process_function(lowercase_ , lowercase_ , output.predictions ) UpperCAmelCase_ : List[Any] = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase_ : int = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: UpperCAmelCase_ : Optional[int] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase_ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ : Dict = self.compute_metrics UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase_ : Dict = time.time() try: UpperCAmelCase_ : Optional[int] = eval_loop( lowercase_ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase_ : Union[str, Any] = compute_metrics UpperCAmelCase_ : List[str] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase_ : str = self.post_process_function(lowercase_ , lowercase_ , output.predictions , "predict" ) UpperCAmelCase_ : Dict = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase_ : List[Any] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ : Tuple = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ : Any = 0.01 with locka.acquire(): with pytest.raises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = time.time() locka.acquire(_SCREAMING_SNAKE_CASE ) assert time.time() - _start > timeout def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = "a" * 1000 + ".lock" UpperCAmelCase_ : Optional[int] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(_SCREAMING_SNAKE_CASE ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ : Any = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_SCREAMING_SNAKE_CASE ): locka.acquire(0 )
350
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class A_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCAmelCase_ : str = {} def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=1 ): """simple docstring""" if self.graph.get(lowercase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCAmelCase_ : Optional[int] = [[w, v]] if not self.graph.get(lowercase_ ): UpperCAmelCase_ : List[str] = [] def UpperCamelCase__ ( self ): """simple docstring""" return list(self.graph ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) def UpperCamelCase__ ( self , lowercase_=-2 , lowercase_=-1 ): """simple docstring""" if s == d: return [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] if s == -2: UpperCAmelCase_ : List[str] = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: UpperCAmelCase_ : List[str] = stack[len(lowercase_ ) - 1] else: UpperCAmelCase_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def UpperCamelCase__ ( self , lowercase_=-1 ): """simple docstring""" if c == -1: UpperCAmelCase_ : Optional[int] = floor(random() * 1_0000 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCAmelCase_ : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1 ) def UpperCamelCase__ ( self , lowercase_=-2 ): """simple docstring""" UpperCAmelCase_ : int = deque() UpperCAmelCase_ : Optional[int] = [] if s == -2: UpperCAmelCase_ : Tuple = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: UpperCAmelCase_ : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return len(self.graph[u] ) def UpperCamelCase__ ( self , lowercase_=-2 ): """simple docstring""" UpperCAmelCase_ : int = [] UpperCAmelCase_ : Union[str, Any] = [] if s == -2: UpperCAmelCase_ : Any = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase_ : List[Any] = s UpperCAmelCase_ : str = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase_ ) != 0: UpperCAmelCase_ : Optional[Any] = stack[len(lowercase_ ) - 1] else: UpperCAmelCase_ : List[str] = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return sorted_nodes def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = -2 UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Tuple = s UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase_ : Union[str, Any] = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ : Tuple = True if len(lowercase_ ) != 0: UpperCAmelCase_ : Union[str, Any] = stack[len(lowercase_ ) - 1] else: UpperCAmelCase_ : Union[str, Any] = False indirect_parents.append(lowercase_ ) UpperCAmelCase_ : Optional[int] = s UpperCAmelCase_ : int = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : List[str] = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase_ : int = -2 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Optional[int] = s UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ : List[Any] = True if len(lowercase_ ) != 0: UpperCAmelCase_ : int = stack[len(lowercase_ ) - 1] else: UpperCAmelCase_ : List[str] = False indirect_parents.append(lowercase_ ) UpperCAmelCase_ : List[Any] = s UpperCAmelCase_ : Any = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def UpperCamelCase__ ( self , lowercase_=-2 , lowercase_=-1 ): """simple docstring""" UpperCAmelCase_ : Tuple = time() self.dfs(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = time() return end - begin def UpperCamelCase__ ( self , lowercase_=-2 ): """simple docstring""" UpperCAmelCase_ : int = time() self.bfs(lowercase_ ) UpperCAmelCase_ : str = time() return end - begin class A_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCAmelCase_ : str = {} def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=1 ): """simple docstring""" # check if the u exists if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCAmelCase_ : int = [[w, v]] # add the other way if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCAmelCase_ : List[Any] = [[w, u]] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) # the other way round if self.graph.get(lowercase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase_ ) def UpperCamelCase__ ( self , lowercase_=-2 , lowercase_=-1 ): """simple docstring""" if s == d: return [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Tuple = [] if s == -2: UpperCAmelCase_ : Optional[int] = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase_ : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: UpperCAmelCase_ : Dict = stack[len(lowercase_ ) - 1] else: UpperCAmelCase_ : Tuple = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def UpperCamelCase__ ( self , lowercase_=-1 ): """simple docstring""" if c == -1: UpperCAmelCase_ : int = floor(random() * 1_0000 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCAmelCase_ : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1 ) def UpperCamelCase__ ( self , lowercase_=-2 ): """simple docstring""" UpperCAmelCase_ : List[str] = deque() UpperCAmelCase_ : Optional[int] = [] if s == -2: UpperCAmelCase_ : Optional[int] = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: UpperCAmelCase_ : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return len(self.graph[u] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Optional[Any] = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase_ : Any = -2 UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = s UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase_ : Optional[int] = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ : Dict = True if len(lowercase_ ) != 0: UpperCAmelCase_ : List[str] = stack[len(lowercase_ ) - 1] else: UpperCAmelCase_ : str = False indirect_parents.append(lowercase_ ) UpperCAmelCase_ : Tuple = s UpperCAmelCase_ : int = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : str = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase_ : Tuple = -2 UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Any = s UpperCAmelCase_ : Dict = False UpperCAmelCase_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase_ : List[str] = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ : List[Any] = True if len(lowercase_ ) != 0: UpperCAmelCase_ : Dict = stack[len(lowercase_ ) - 1] else: UpperCAmelCase_ : str = False indirect_parents.append(lowercase_ ) UpperCAmelCase_ : List[Any] = s UpperCAmelCase_ : Optional[int] = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def UpperCamelCase__ ( self ): """simple docstring""" return list(self.graph ) def UpperCamelCase__ ( self , lowercase_=-2 , lowercase_=-1 ): """simple docstring""" UpperCAmelCase_ : List[Any] = time() self.dfs(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = time() return end - begin def UpperCamelCase__ ( self , lowercase_=-2 ): """simple docstring""" UpperCAmelCase_ : List[Any] = time() self.bfs(lowercase_ ) UpperCAmelCase_ : Optional[int] = time() return end - begin
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class A_ (_lowerCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = 42 class A_ (_lowerCamelCase ,_lowerCamelCase ): '''simple docstring''' @register_to_config def __init__( self , lowercase_ = 6_5536 , lowercase_ = None , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 0 , lowercase_ = "fourier" , lowercase_ = True , lowercase_ = False , lowercase_ = 0.0 , lowercase_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowercase_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowercase_ = "UNetMidBlock1D" , lowercase_ = None , lowercase_ = (32, 32, 64) , lowercase_ = None , lowercase_ = 8 , lowercase_ = 1 , lowercase_ = False , ): """simple docstring""" super().__init__() UpperCAmelCase_ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase_ : Any = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowercase_ , log=lowercase_ , flip_sin_to_cos=lowercase_ ) UpperCAmelCase_ : str = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase_ : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowercase_ , downscale_freq_shift=lowercase_ ) UpperCAmelCase_ : Optional[Any] = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase_ : Any = block_out_channels[0] * 4 UpperCAmelCase_ : Optional[int] = TimestepEmbedding( in_channels=lowercase_ , time_embed_dim=lowercase_ , act_fn=lowercase_ , out_dim=block_out_channels[0] , ) UpperCAmelCase_ : Dict = nn.ModuleList([] ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = nn.ModuleList([] ) UpperCAmelCase_ : Tuple = None # down UpperCAmelCase_ : Optional[Any] = in_channels for i, down_block_type in enumerate(lowercase_ ): UpperCAmelCase_ : List[Any] = output_channel UpperCAmelCase_ : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase_ : Union[str, Any] = i == len(lowercase_ ) - 1 UpperCAmelCase_ : Tuple = get_down_block( lowercase_ , num_layers=lowercase_ , in_channels=lowercase_ , out_channels=lowercase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowercase_ ) # mid UpperCAmelCase_ : Dict = get_mid_block( lowercase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowercase_ , add_downsample=lowercase_ , ) # up UpperCAmelCase_ : Dict = list(reversed(lowercase_ ) ) UpperCAmelCase_ : List[Any] = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase_ : Optional[int] = out_channels else: UpperCAmelCase_ : Optional[Any] = block_out_channels[0] for i, up_block_type in enumerate(lowercase_ ): UpperCAmelCase_ : int = output_channel UpperCAmelCase_ : Any = ( reversed_block_out_channels[i + 1] if i < len(lowercase_ ) - 1 else final_upsample_channels ) UpperCAmelCase_ : Tuple = i == len(lowercase_ ) - 1 UpperCAmelCase_ : Dict = get_up_block( lowercase_ , num_layers=lowercase_ , in_channels=lowercase_ , out_channels=lowercase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowercase_ ) UpperCAmelCase_ : Dict = output_channel # out UpperCAmelCase_ : Dict = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) UpperCAmelCase_ : Dict = get_out_block( out_block_type=lowercase_ , num_groups_out=lowercase_ , embed_dim=block_out_channels[0] , out_channels=lowercase_ , act_fn=lowercase_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = timestep if not torch.is_tensor(lowercase_ ): UpperCAmelCase_ : List[Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowercase_ ) and len(timesteps.shape ) == 0: UpperCAmelCase_ : List[str] = timesteps[None].to(sample.device ) UpperCAmelCase_ : Optional[int] = self.time_proj(lowercase_ ) if self.config.use_timestep_embedding: UpperCAmelCase_ : int = self.time_mlp(lowercase_ ) else: UpperCAmelCase_ : Any = timestep_embed[..., None] UpperCAmelCase_ : Optional[Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) UpperCAmelCase_ : Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down UpperCAmelCase_ : str = () for downsample_block in self.down_blocks: UpperCAmelCase_ , UpperCAmelCase_ : Any = downsample_block(hidden_states=lowercase_ , temb=lowercase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase_ : Tuple = self.mid_block(lowercase_ , lowercase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): UpperCAmelCase_ : str = down_block_res_samples[-1:] UpperCAmelCase_ : Optional[Any] = down_block_res_samples[:-1] UpperCAmelCase_ : str = upsample_block(lowercase_ , res_hidden_states_tuple=lowercase_ , temb=lowercase_ ) # 5. post-process if self.out_block: UpperCAmelCase_ : List[str] = self.out_block(lowercase_ , lowercase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowercase_ )
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class A_ (lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = """owlvit_text_model""" def __init__( self , lowercase_=4_9408 , lowercase_=512 , lowercase_=2048 , lowercase_=12 , lowercase_=8 , lowercase_=16 , lowercase_="quick_gelu" , lowercase_=1E-5 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=0 , lowercase_=4_9406 , lowercase_=4_9407 , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = initializer_factor @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ : Tuple = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ (lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = """owlvit_vision_model""" def __init__( self , lowercase_=768 , lowercase_=3072 , lowercase_=12 , lowercase_=12 , lowercase_=3 , lowercase_=768 , lowercase_=32 , lowercase_="quick_gelu" , lowercase_=1E-5 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = initializer_factor @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ : List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ (lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = """owlvit""" SCREAMING_SNAKE_CASE__ : int = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=512 , lowercase_=2.65_92 , lowercase_=True , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) if text_config is None: UpperCAmelCase_ : Dict = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ : Union[str, Any] = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ : int = OwlViTTextConfig(**lowercase_ ) UpperCAmelCase_ : Optional[int] = OwlViTVisionConfig(**lowercase_ ) UpperCAmelCase_ : str = projection_dim UpperCAmelCase_ : str = logit_scale_init_value UpperCAmelCase_ : int = return_dict UpperCAmelCase_ : Optional[Any] = 1.0 @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase_ : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) @classmethod def UpperCamelCase__ ( cls , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = text_config UpperCAmelCase_ : Optional[int] = vision_config return cls.from_dict(lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : List[str] = self.text_config.to_dict() UpperCAmelCase_ : List[Any] = self.vision_config.to_dict() UpperCAmelCase_ : List[Any] = self.__class__.model_type return output class A_ (lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-4 def UpperCamelCase__ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : int = super().generate_dummy_inputs( processor.tokenizer , batch_size=lowercase_ , seq_length=lowercase_ , framework=lowercase_ ) UpperCAmelCase_ : Dict = super().generate_dummy_inputs( processor.image_processor , batch_size=lowercase_ , framework=lowercase_ ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase__ ( self ): """simple docstring""" return 14
353
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __a ( ): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase_ : Optional[Any] = "__test_patch_submodule_mock__" with patch_submodule(_test_patching, "os.path.join", __lowerCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __a ( ): assert _test_patching.open is open UpperCAmelCase_ : Dict = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, "open", __lowerCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __a ( ): UpperCAmelCase_ : List[str] = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching, "pandas.read_csv", __lowerCamelCase ): pass def __a ( ): UpperCAmelCase_ : List[str] = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, "len", __lowerCamelCase ) is None with patch_submodule(_test_patching, "len", __lowerCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def __a ( ): UpperCAmelCase_ : List[str] = "__test_patch_submodule_start_and_stop_mock__" UpperCAmelCase_ : int = patch_submodule(_test_patching, "open", __lowerCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __a ( ): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase_ : Optional[Any] = "__test_patch_submodule_successive_join__" UpperCAmelCase_ : Dict = "__test_patch_submodule_successive_dirname__" UpperCAmelCase_ : List[str] = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, "os.path.join", __lowerCamelCase ): with patch_submodule(_test_patching, "os.rename", __lowerCamelCase ): with patch_submodule(_test_patching, "os.path.dirname", __lowerCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, "os.rename", __lowerCamelCase ): with patch_submodule(_test_patching, "os.path.join", __lowerCamelCase ): with patch_submodule(_test_patching, "os.path.dirname", __lowerCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __a ( ): UpperCAmelCase_ : str = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching, "__module_that_doesn_exist__.__attribute_that_doesn_exist__", __lowerCamelCase ): pass with patch_submodule(_test_patching, "os.__attribute_that_doesn_exist__", __lowerCamelCase ): pass
354
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _a = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize _a = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' _a = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' _a = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=0.9 , lowercase_=3 , lowercase_=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase_ : str = [ meteor_score.single_meteor_score( word_tokenize(lowercase_ ) , word_tokenize(lowercase_ ) , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] else: UpperCAmelCase_ : int = [ meteor_score.single_meteor_score(lowercase_ , lowercase_ , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] return {"meteor": np.mean(lowercase_ )}
355
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A_ (A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 'poolformer' def __init__( self , lowercase_=3 , lowercase_=16 , lowercase_=16 , lowercase_=3 , lowercase_=4.0 , lowercase_=[2, 2, 6, 2] , lowercase_=[64, 128, 320, 512] , lowercase_=[7, 3, 3, 3] , lowercase_=[4, 2, 2, 2] , lowercase_=[2, 1, 1, 1] , lowercase_=4 , lowercase_=0.0 , lowercase_="gelu" , lowercase_=True , lowercase_=1E-5 , lowercase_=0.02 , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Union[str, Any] = stride UpperCAmelCase_ : str = padding UpperCAmelCase_ : str = pool_size UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : Any = mlp_ratio UpperCAmelCase_ : Any = depths UpperCAmelCase_ : str = patch_sizes UpperCAmelCase_ : Optional[Any] = strides UpperCAmelCase_ : List[str] = num_encoder_blocks UpperCAmelCase_ : Any = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = use_layer_scale UpperCAmelCase_ : Dict = layer_scale_init_value UpperCAmelCase_ : Tuple = initializer_range super().__init__(**lowerCamelCase__ ) class A_ (A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 2E-3
356
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
0
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ : int = tokenizer("Hello there" , return_tensors="np" ).input_ids UpperCAmelCase_ : List[str] = tokenizer("Hi I am" , return_tensors="np" ).input_ids UpperCAmelCase_ : Any = shift_tokens_right(lowercase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase_ : Dict = model(lowercase_ , decoder_input_ids=lowercase_ ).logits UpperCAmelCase_ : Tuple = optax.softmax_cross_entropy(lowercase_ , onehot(lowercase_ , logits.shape[-1] ) ).mean() UpperCAmelCase_ : str = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ : str = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
357
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
0
"""simple docstring""" import os import pytest from attr import dataclass _a = 'us-east-1' # defaults region @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 42 SCREAMING_SNAKE_CASE__ : str = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" SCREAMING_SNAKE_CASE__ : Optional[int] = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5500, } SCREAMING_SNAKE_CASE__ : List[Any] = {**hyperparameters, """max_steps""": 1000} @property def UpperCamelCase__ ( self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCamelCase__ ( self ): """simple docstring""" return F"""{self.framework}-transfromers-test""" @property def UpperCamelCase__ ( self ): """simple docstring""" return F"""./tests/sagemaker/scripts/{self.framework}""" @property def UpperCamelCase__ ( self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = SageMakerTestEnvironment(framework=request.cls.framework )
358
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
0
from __future__ import annotations from collections import Counter from random import random class A_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = {} def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = probability def UpperCamelCase__ ( self ): """simple docstring""" return list(self.connections ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[int] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Any = Counter(graph.get_nodes() ) UpperCAmelCase_ : Optional[int] = start for _ in range(__lowerCamelCase ): UpperCAmelCase_ : List[str] = graph.transition(__lowerCamelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """Wav2Vec2FeatureExtractor""" SCREAMING_SNAKE_CASE__ : Optional[int] = """AutoTokenizer""" def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = self.feature_extractor UpperCAmelCase_ : Optional[int] = False @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" try: return super().from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , lowerCamelCase_ , ) UpperCAmelCase_ : str = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase_ : List[str] = WavaVecaCTCTokenizer.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) return cls(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) def __call__( self , *lowercase_ , **lowercase_ ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_ , **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ : Optional[int] = kwargs.pop("audio" , lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("sampling_rate" , lowerCamelCase_ ) UpperCAmelCase_ : Dict = kwargs.pop("text" , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: UpperCAmelCase_ : int = args[0] UpperCAmelCase_ : Any = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ : Optional[int] = self.feature_extractor(lowerCamelCase_ , *lowerCamelCase_ , sampling_rate=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None: UpperCAmelCase_ : Optional[int] = self.tokenizer(lowerCamelCase_ , **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ : Any = encodings["input_ids"] return inputs def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("input_features" , lowerCamelCase_ ) UpperCAmelCase_ : Tuple = kwargs.pop("labels" , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: UpperCAmelCase_ : List[Any] = args[0] UpperCAmelCase_ : str = args[1:] if input_features is not None: UpperCAmelCase_ : Dict = self.feature_extractor.pad(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) if labels is not None: UpperCAmelCase_ : List[str] = self.tokenizer.pad(lowerCamelCase_ , **lowerCamelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ : Optional[Any] = labels["input_ids"] return input_features def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @contextmanager def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Union[str, Any] = self.tokenizer yield UpperCAmelCase_ : int = self.feature_extractor UpperCAmelCase_ : Tuple = False
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def __a ( ): UpperCAmelCase_ : Tuple = 9 UpperCAmelCase_ : Union[str, Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase_ : Tuple = kruskal(__lowerCAmelCase, __lowerCAmelCase ) UpperCAmelCase_ : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCAmelCase ) == sorted(__lowerCAmelCase )
361
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A_ (a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """new-model""" if is_tf_available(): class A_ (a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = NewModelConfig @require_tf class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = "bert-base-cased" UpperCAmelCase_ : Any = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : Any = TFAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = "bert-base-cased" UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ : Dict = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : Any = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : int = TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow @require_tensorflow_probability def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase__ ) , 1_4410 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase__ ) , 1_4410 ) def UpperCamelCase__ ( self ): """simple docstring""" # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel UpperCAmelCase_ : List[str] = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : str = copy.deepcopy(model.config ) UpperCAmelCase_ : Optional[Any] = ["FunnelBaseModel"] UpperCAmelCase_ : List[Any] = TFAutoModel.from_config(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = TFAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" try: AutoConfig.register("new-model" , lowerCAmelCase__ ) UpperCAmelCase_ : str = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCAmelCase__ ): auto_class.register(lowerCAmelCase__ , lowerCAmelCase__ ) auto_class.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): auto_class.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ : List[str] = BertModelTester(self ).get_config() UpperCAmelCase_ : Any = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase_ : str = auto_class.from_config(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ : Any = auto_class.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ : Optional[Any] = TFAutoModel.from_pretrained("bert-base" ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ : Any = TFAutoModel.from_pretrained(lowerCAmelCase__ , revision="aaaaaa" ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): UpperCAmelCase_ : Union[str, Any] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase__ , "Use `from_pt=True` to load this model" ): UpperCAmelCase_ : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def UpperCamelCase__ ( self ): """simple docstring""" # Make sure we have cached the model. UpperCAmelCase_ : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: UpperCAmelCase_ : Tuple = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase_ : Tuple = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: UpperCAmelCase_ : Tuple = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A_ (lowerCAmelCase__ ,lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , lowercase_ = 128 , lowercase_ = 256 , lowercase_ = 20_00.0 , lowercase_ = 768 , lowercase_ = 12 , lowercase_ = 12 , lowercase_ = 64 , lowercase_ = 2048 , lowercase_ = 0.1 , ): """simple docstring""" super().__init__() UpperCAmelCase_ : Optional[Any] = nn.Sequential( nn.Linear(a__ , d_model * 4 , bias=a__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a__ ) , nn.SiLU() , ) UpperCAmelCase_ : Tuple = nn.Embedding(a__ , a__ ) UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = nn.Linear(a__ , a__ , bias=a__ ) UpperCAmelCase_ : Optional[Any] = nn.Dropout(p=a__ ) UpperCAmelCase_ : Optional[Any] = nn.ModuleList() for lyr_num in range(a__ ): # FiLM conditional T5 decoder UpperCAmelCase_ : Dict = DecoderLayer(d_model=a__ , d_kv=a__ , num_heads=a__ , d_ff=a__ , dropout_rate=a__ ) self.decoders.append(a__ ) UpperCAmelCase_ : Optional[int] = TaLayerNorm(a__ ) UpperCAmelCase_ : List[Any] = nn.Dropout(p=a__ ) UpperCAmelCase_ : Optional[Any] = nn.Linear(a__ , a__ , bias=a__ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase_ : int = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase_ : Any = self.conditioning_emb(a__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase_ : int = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase_ : int = torch.broadcast_to( torch.arange(a__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase_ : int = self.position_encoding(a__ ) UpperCAmelCase_ : List[Any] = self.continuous_inputs_projection(a__ ) inputs += position_encodings UpperCAmelCase_ : Union[str, Any] = self.dropout(a__ ) # decoder: No padding present. UpperCAmelCase_ : List[str] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase_ : Optional[int] = [(x, self.encoder_decoder_mask(a__ , a__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase_ : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase_ : int = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase_ : Any = lyr( a__ , conditioning_emb=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , )[0] UpperCAmelCase_ : int = self.decoder_norm(a__ ) UpperCAmelCase_ : Any = self.post_dropout(a__ ) UpperCAmelCase_ : Dict = self.spec_out(a__ ) return spec_out class A_ (nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=1E-6 ): """simple docstring""" super().__init__() UpperCAmelCase_ : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a__ , d_kv=a__ , num_heads=a__ , dropout_rate=a__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a__ , d_kv=a__ , num_heads=a__ , dropout_rate=a__ , layer_norm_epsilon=a__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a__ , d_ff=a__ , dropout_rate=a__ , layer_norm_epsilon=a__ ) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : int = self.layer[0]( a__ , conditioning_emb=a__ , attention_mask=a__ , ) if encoder_hidden_states is not None: UpperCAmelCase_ : Union[str, Any] = torch.where(encoder_attention_mask > 0 , 0 , -1E1_0 ).to( encoder_hidden_states.dtype ) UpperCAmelCase_ : Optional[Any] = self.layer[1]( a__ , key_value_states=a__ , attention_mask=a__ , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase_ : Optional[int] = self.layer[-1](a__ , a__ ) return (hidden_states,) class A_ (nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" super().__init__() UpperCAmelCase_ : int = TaLayerNorm(a__ ) UpperCAmelCase_ : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=a__ ) UpperCAmelCase_ : Optional[int] = Attention(query_dim=a__ , heads=a__ , dim_head=a__ , out_bias=a__ , scale_qk=a__ ) UpperCAmelCase_ : List[str] = nn.Dropout(a__ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , ): """simple docstring""" # pre_self_attention_layer_norm UpperCAmelCase_ : Optional[Any] = self.layer_norm(a__ ) if conditioning_emb is not None: UpperCAmelCase_ : str = self.FiLMLayer(a__ , a__ ) # Self-attention block UpperCAmelCase_ : List[str] = self.attention(a__ ) UpperCAmelCase_ : Tuple = hidden_states + self.dropout(a__ ) return hidden_states class A_ (nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" super().__init__() UpperCAmelCase_ : Any = Attention(query_dim=a__ , heads=a__ , dim_head=a__ , out_bias=a__ , scale_qk=a__ ) UpperCAmelCase_ : List[Any] = TaLayerNorm(a__ , eps=a__ ) UpperCAmelCase_ : Any = nn.Dropout(a__ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Tuple = self.layer_norm(a__ ) UpperCAmelCase_ : Optional[Any] = self.attention( a__ , encoder_hidden_states=a__ , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase_ : Optional[Any] = hidden_states + self.dropout(a__ ) return layer_output class A_ (nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" super().__init__() UpperCAmelCase_ : Dict = TaDenseGatedActDense(d_model=a__ , d_ff=a__ , dropout_rate=a__ ) UpperCAmelCase_ : Optional[int] = TaFiLMLayer(in_features=d_model * 4 , out_features=a__ ) UpperCAmelCase_ : List[Any] = TaLayerNorm(a__ , eps=a__ ) UpperCAmelCase_ : Optional[Any] = nn.Dropout(a__ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.layer_norm(a__ ) if conditioning_emb is not None: UpperCAmelCase_ : str = self.film(a__ , a__ ) UpperCAmelCase_ : Dict = self.DenseReluDense(a__ ) UpperCAmelCase_ : Optional[Any] = hidden_states + self.dropout(a__ ) return hidden_states class A_ (nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" super().__init__() UpperCAmelCase_ : Any = nn.Linear(a__ , a__ , bias=a__ ) UpperCAmelCase_ : Any = nn.Linear(a__ , a__ , bias=a__ ) UpperCAmelCase_ : Optional[int] = nn.Linear(a__ , a__ , bias=a__ ) UpperCAmelCase_ : Dict = nn.Dropout(a__ ) UpperCAmelCase_ : Dict = NewGELUActivation() def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = self.act(self.wi_a(a__ ) ) UpperCAmelCase_ : Optional[Any] = self.wi_a(a__ ) UpperCAmelCase_ : List[str] = hidden_gelu * hidden_linear UpperCAmelCase_ : Union[str, Any] = self.dropout(a__ ) UpperCAmelCase_ : Optional[Any] = self.wo(a__ ) return hidden_states class A_ (nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1E-6 ): """simple docstring""" super().__init__() UpperCAmelCase_ : List[str] = nn.Parameter(torch.ones(a__ ) ) UpperCAmelCase_ : Union[str, Any] = eps def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCAmelCase_ : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a__ ) UpperCAmelCase_ : Optional[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase_ : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class A_ (nn.Module ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(a__ , 3.0 )) )) class A_ (nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__() UpperCAmelCase_ : Any = nn.Linear(a__ , out_features * 2 , bias=a__ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = self.scale_bias(a__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = torch.chunk(a__ , 2 , -1 ) UpperCAmelCase_ : Any = x * (1 + scale) + shift return x
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
"""simple docstring""" def __a ( __lowerCamelCase ): if not isinstance(snake_case__, snake_case__ ) or number < 0: raise ValueError("Input must be a non-negative integer" ) UpperCAmelCase_ : List[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : Tuple = """""" else: UpperCAmelCase_ : Optional[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : str = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase__, lowerCAmelCase__ ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ : Dict = val def __a ( ): UpperCAmelCase_ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_ : List[str] = Image.open(requests.get(lowerCAmelCase__, stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ): UpperCAmelCase_ : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": UpperCAmelCase_ : int = 8 # set labels if required if not base_model: UpperCAmelCase_ : Optional[int] = 1000 UpperCAmelCase_ : str = """huggingface/label-files""" UpperCAmelCase_ : int = """imagenet-1k-id2label.json""" UpperCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowerCAmelCase__, lowerCAmelCase__, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : Union[str, Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCAmelCase_ : Dict = 384 UpperCAmelCase_ : Dict = 1536 UpperCAmelCase_ : List[Any] = 12 UpperCAmelCase_ : Dict = 6 # load original model from torch hub UpperCAmelCase_ : Optional[int] = torch.hub.load("facebookresearch/dino:main", lowerCAmelCase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Dict = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase__ ) UpperCAmelCase_ : Dict = create_rename_keys(lowerCAmelCase__, base_model=lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) # load HuggingFace model if base_model: UpperCAmelCase_ : Optional[int] = ViTModel(lowerCAmelCase__, add_pooling_layer=lowerCAmelCase__ ).eval() else: UpperCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image, prepared by ViTImageProcessor UpperCAmelCase_ : str = ViTImageProcessor() UpperCAmelCase_ : Optional[Any] = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : Any = encoding["""pixel_values"""] UpperCAmelCase_ : List[Any] = model(lowerCAmelCase__ ) if base_model: UpperCAmelCase_ : int = original_model(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: UpperCAmelCase_ : str = original_model(lowerCAmelCase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _a = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
365
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" import sys import turtle def __a ( __lowerCamelCase, __lowerCamelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) _a = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') _a = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
366
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class A_ (_a ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = """ctrl""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Any = n_positions UpperCAmelCase_ : Dict = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[Any] = dff UpperCAmelCase_ : Union[str, Any] = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Tuple = use_cache super().__init__(**lowercase_ )
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger() @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = 42 SCREAMING_SNAKE_CASE__ : Dict = field(default_factory=__a ) SCREAMING_SNAKE_CASE__ : str = field(default_factory=__a ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self , lowercase_ ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase__ ( self ): """simple docstring""" return list(filter(lambda lowercase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 42 SCREAMING_SNAKE_CASE__ : int = 42 SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : Dict = field(default_factory=__a ) SCREAMING_SNAKE_CASE__ : Dict = field(default_factory=__a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = True def __call__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = Tracker(self.dest )(UpperCamelCase__ ).parametrized UpperCAmelCase_ : Optional[Any] = Tracker(self.src )(UpperCamelCase__ ).parametrized UpperCAmelCase_ : Optional[Any] = list(filter(lambda lowercase_ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) UpperCAmelCase_ : Optional[Any] = list(filter(lambda lowercase_ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while""" F""" destination module has {len(UpperCamelCase__ )}.""" ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) class A_ (nn.Module ): '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" super().__init__() UpperCAmelCase_ : Tuple = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F"""Unexpected layer name {k}""" UpperCAmelCase_ : str = len(UpperCamelCase__ ) + 1 feature_blocks.append((F"""res{block_index}""", v) ) UpperCAmelCase_ : Optional[int] = nn.ModuleDict(UpperCamelCase__ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return get_trunk_forward_outputs( UpperCamelCase__ , out_feat_keys=UpperCamelCase__ , feature_blocks=self._feature_blocks , ) class A_ (__a ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , lowercase_ ): """simple docstring""" if x not in self: UpperCAmelCase_ : Dict = self.convert_name_to_timm(UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = partial(lambda: (timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval(), None) ) else: UpperCAmelCase_ : Union[str, Any] = super().__getitem__(UpperCamelCase__ ) return val class A_ (__a ): '''simple docstring''' def __getitem__( self , lowercase_ ): """simple docstring""" if "seer" in x and "in1k" not in x: UpperCAmelCase_ : List[Any] = RegNetModel else: UpperCAmelCase_ : Optional[Any] = RegNetForImageClassification return val def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for from_key, to_key in keys: UpperCAmelCase_ : int = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = True, ): print(f"""Converting {name}...""" ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : int = from_model_func() UpperCAmelCase_ : Optional[int] = our_model_func(__UpperCamelCase ).eval() UpperCAmelCase_ : List[str] = ModuleTransfer(src=__UpperCamelCase, dest=__UpperCamelCase, raise_if_mismatch=__UpperCamelCase ) UpperCAmelCase_ : int = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCamelCase ) if from_state_dict is not None: UpperCAmelCase_ : Union[str, Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : Any = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] UpperCAmelCase_ : Tuple = manually_copy_vissl_head(__UpperCamelCase, our_model.state_dict(), __UpperCamelCase ) our_model.load_state_dict(__UpperCamelCase ) UpperCAmelCase_ : List[str] = our_model(__UpperCamelCase, output_hidden_states=__UpperCamelCase ) UpperCAmelCase_ : str = ( our_outputs.logits if isinstance(__UpperCamelCase, __UpperCamelCase ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : List[str] = from_model(__UpperCamelCase ) UpperCAmelCase_ : Tuple = from_output[-1] if type(__UpperCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Optional[int] = our_outputs.hidden_states[-1] assert torch.allclose(__UpperCamelCase, __UpperCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add model", use_temp_dir=__UpperCamelCase, ) UpperCAmelCase_ : str = 224 if "seer" not in name else 384 # we can use the convnext one UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=__UpperCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add image processor", use_temp_dir=__UpperCamelCase, ) print(f"""Pushed {name}""" ) def __a ( __lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = True ): UpperCAmelCase_ : Union[str, Any] = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[str] = 1000 UpperCAmelCase_ : List[str] = (1, num_labels) UpperCAmelCase_ : Dict = "huggingface/label-files" UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : Optional[int] = json.load(open(cached_download(hf_hub_url(__UpperCamelCase, __UpperCamelCase, repo_type="dataset" ) ), "r" ) ) UpperCAmelCase_ : Dict = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = idalabel UpperCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Dict = partial(__UpperCamelCase, num_labels=__UpperCamelCase, idalabel=__UpperCamelCase, labelaid=__UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 1_1110, 2_8280], groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 1_1110, 2_8280], groups_width=1010 ), } UpperCAmelCase_ : str = NameToOurModelFuncMap() UpperCAmelCase_ : Tuple = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowerCamelCase, __lowerCamelCase ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(__UpperCamelCase, model_dir=str(__UpperCamelCase ), map_location="cpu" ) UpperCAmelCase_ : int = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Union[str, Any] = files["classy_state_dict"]["base_model"]["model"] UpperCAmelCase_ : Optional[int] = model_state_dict["trunk"] model.load_state_dict(__UpperCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : Union[str, Any] = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) UpperCAmelCase_ : List[Any] = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) UpperCAmelCase_ : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) UpperCAmelCase_ : Any = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned UpperCAmelCase_ : Optional[Any] = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) UpperCAmelCase_ : Dict = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) UpperCAmelCase_ : int = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) UpperCAmelCase_ : List[Any] = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( __UpperCamelCase, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], __UpperCamelCase, __UpperCamelCase, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __UpperCamelCase, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, ) return config, expected_shape if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _a = parser.parse_args() _a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" import os from pathlib import Path def __a ( ) -> str: from torch.utils.cpp_extension import load UpperCAmelCase_ : Union[str, Any] = Path(snake_case_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" UpperCAmelCase_ : List[str] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu", "ms_deform_attn_cpu.cpp" ), os.path.join("cuda", "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention", snake_case_, with_cuda=snake_case_, extra_include_paths=[str(snake_case_ )], extra_cflags=["-DWITH_CUDA=1"], extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ], ) import MultiScaleDeformableAttention as MSDA return MSDA
369
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva _a = '' _a = '' _a = '' _a = 1 # (0 is vertical, 1 is horizontal) def __a ( ): UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_dataset(a__, a__ ) print("Processing..." ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = update_image_and_anno(a__, a__, a__ ) for index, image in enumerate(a__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase_ : Tuple = random_chars(32 ) UpperCAmelCase_ : Any = paths[index].split(os.sep )[-1].rsplit(".", 1 )[0] UpperCAmelCase_ : Any = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""", a__, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(a__ )} with {file_name}""" ) UpperCAmelCase_ : Union[str, Any] = [] for anno in new_annos[index]: UpperCAmelCase_ : Optional[Any] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(a__ ) with open(f"""/{file_root}.txt""", "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Union[str, Any] = [] for label_file in glob.glob(os.path.join(a__, "*.txt" ) ): UpperCAmelCase_ : List[str] = label_file.split(os.sep )[-1].rsplit(".", 1 )[0] with open(a__ ) as in_file: UpperCAmelCase_ : Union[str, Any] = in_file.readlines() UpperCAmelCase_ : Optional[int] = os.path.join(a__, f"""{label_name}.jpg""" ) UpperCAmelCase_ : Any = [] for obj_list in obj_lists: UpperCAmelCase_ : Optional[Any] = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(a__ ) labels.append(a__ ) return img_paths, labels def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 ): UpperCAmelCase_ : int = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Tuple = [] for idx in range(len(a__ ) ): UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[Any] = img_list[idx] path_list.append(a__ ) UpperCAmelCase_ : Optional[Any] = anno_list[idx] UpperCAmelCase_ : Union[str, Any] = cva.imread(a__ ) if flip_type == 1: UpperCAmelCase_ : List[str] = cva.flip(a__, a__ ) for bbox in img_annos: UpperCAmelCase_ : Any = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase_ : List[str] = cva.flip(a__, a__ ) for bbox in img_annos: UpperCAmelCase_ : int = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(a__ ) new_imgs_list.append(a__ ) return new_imgs_list, new_annos_lists, path_list def __a ( __lowerCamelCase = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase_ : int = ascii_lowercase + digits return "".join(random.choice(a__ ) for _ in range(a__ ) ) if __name__ == "__main__": main() print('DONE ✅')
370
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class A_ (snake_case_ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization SCREAMING_SNAKE_CASE__ : str = field(default="""summarization""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({"""summary""": Value("""string""" )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def UpperCamelCase__ ( self ): """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _a = parser.parse_args() if args.model_type == "roberta": _a = RobertaForMaskedLM.from_pretrained(args.model_name) _a = "roberta" elif args.model_type == "gpt2": _a = GPTaLMHeadModel.from_pretrained(args.model_name) _a = "transformer" _a = model.state_dict() _a = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _a = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _a = f"""{prefix}.embeddings.{w}.weight""" _a = state_dict[param_name] for w in ["weight", "bias"]: _a = f"""{prefix}.embeddings.LayerNorm.{w}""" _a = state_dict[param_name] # Transformer Blocks # _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _a = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] _a = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _a = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[f"""lm_head.dense.{w}"""] _a = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _a = state_dict[f"""{prefix}.ln_f.{w}"""] _a = state_dict["lm_head.weight"] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
350
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _a = 'bert-base-cased' _a = 'google/pegasus-xsum' _a = [' Sam ate lunch today.', 'Sams lunch ingredients.'] _a = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] _a = 'patrickvonplaten/t5-tiny-random' _a = 'sshleifer/bart-tiny-random' _a = 'sshleifer/tiny-mbart' _a = 'sshleifer/tiny-marian-en-de' def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = '''\n'''.join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open("w" ).writelines(lowerCAmelCase__ ) def __a ( __lowerCamelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__, f"""{split}.source""" ), lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__, f"""{split}.target""" ), lowerCAmelCase__ ) return tmp_dir class A_ (__lowercase ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) UpperCAmelCase_ : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase_ : Union[str, Any] = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) UpperCAmelCase_ : str = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) UpperCAmelCase_ : str = 4 UpperCAmelCase_ : Dict = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCAmelCase_ : Any = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. UpperCAmelCase_ : List[Any] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path="train" , max_source_length=snake_case_ , max_target_length=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , ) UpperCAmelCase_ : Dict = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(snake_case_ , snake_case_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCAmelCase_ : Dict = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ ) UpperCAmelCase_ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase_ : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) UpperCAmelCase_ : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : Optional[int] = LegacySeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path="train" , max_source_length=20 , max_target_length=snake_case_ , ) UpperCAmelCase_ : Optional[Any] = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) UpperCAmelCase_ : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCAmelCase_ : Optional[int] = tmp_dir.joinpath("train.source" ).open().readlines() UpperCAmelCase_ : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(snake_case_ , snake_case_ , 128 , snake_case_ ) UpperCAmelCase_ : Optional[Any] = {x.name for x in tmp_dir.iterdir()} UpperCAmelCase_ : Union[str, Any] = {x.name for x in save_dir.iterdir()} UpperCAmelCase_ : str = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(snake_case_ ) < len(snake_case_ ) assert len(snake_case_ ) == 1 assert len(packed_examples[0] ) == sum(len(snake_case_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def UpperCamelCase__ ( self ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return UpperCAmelCase_ : Any = self._get_dataset(max_len=64 ) UpperCAmelCase_ : int = 64 UpperCAmelCase_ : List[str] = ds.make_dynamic_sampler(snake_case_ , required_batch_size_multiple=snake_case_ ) UpperCAmelCase_ : List[str] = [len(snake_case_ ) for x in batch_sampler] assert len(set(snake_case_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(snake_case_ ) == len(snake_case_ ) # no dropped or added examples UpperCAmelCase_ : Union[str, Any] = DataLoader(snake_case_ , batch_sampler=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Union[str, Any] = [] for batch in data_loader: UpperCAmelCase_ : Any = batch['''input_ids'''].shape UpperCAmelCase_ : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCAmelCase_ : Optional[Any] = np.product(batch["input_ids"].shape ) num_src_per_batch.append(snake_case_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(snake_case_ ) assert num_src_per_batch[0] == max(snake_case_ ) if failures: raise AssertionError(F"""too many tokens in {len(snake_case_ )} batches""" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self._get_dataset(max_len=512 ) UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : str = ds.make_sortish_sampler(snake_case_ , shuffle=snake_case_ ) UpperCAmelCase_ : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase_ : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=snake_case_ ) UpperCAmelCase_ : Optional[int] = tokenizer.pad_token_id def count_pad_tokens(lowercase_ , lowercase_="input_ids" ): return [batch[k].eq(snake_case_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(snake_case_ , k="labels" ) ) < sum(count_pad_tokens(snake_case_ , k="labels" ) ) assert sum(count_pad_tokens(snake_case_ ) ) < sum(count_pad_tokens(snake_case_ ) ) assert len(snake_case_ ) == len(snake_case_ ) def UpperCamelCase__ ( self , lowercase_=1000 , lowercase_=128 ): """simple docstring""" if os.getenv("USE_REAL_DATA" , snake_case_ ): UpperCAmelCase_ : Optional[int] = '''examples/seq2seq/wmt_en_ro''' UpperCAmelCase_ : List[Any] = max_len * 2 * 64 if not Path(snake_case_ ).joinpath("train.len" ).exists(): save_len_file(snake_case_ , snake_case_ ) else: UpperCAmelCase_ : int = '''examples/seq2seq/test_data/wmt_en_ro''' UpperCAmelCase_ : List[str] = max_len * 4 save_len_file(snake_case_ , snake_case_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(snake_case_ ) UpperCAmelCase_ : Optional[int] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path="train" , max_source_length=snake_case_ , max_target_length=snake_case_ , n_obs=snake_case_ , ) return ds, max_tokens, tokenizer def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self._get_dataset() UpperCAmelCase_ : Optional[Any] = set(DistributedSortishSampler(snake_case_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=snake_case_ ) ) UpperCAmelCase_ : Tuple = set(DistributedSortishSampler(snake_case_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=snake_case_ ) ) assert idsa.intersection(snake_case_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ , use_fast=snake_case_ ) if tok_name == MBART_TINY: UpperCAmelCase_ : Any = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) UpperCAmelCase_ : Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCAmelCase_ : Optional[Any] = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) UpperCAmelCase_ : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(snake_case_ ) == 1 if tok_name == BART_TINY else len(snake_case_ ) == 0
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = checkpoint UpperCAmelCase_ : Any = {} UpperCAmelCase_ : List[Any] = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ : Dict = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ : int = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ : int = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ : Any = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ : Optional[int] = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ : Tuple = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ : List[Any] = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ : List[Any] = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ : List[str] = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ : Optional[Any] = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ : List[Any] = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ : Dict = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ : Union[str, Any] = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ : str = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ : Dict = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ : Optional[int] = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ : Tuple = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ : Any = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } for i in range(__lowerCamelCase ): UpperCAmelCase_ : int = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : int = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ : int = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ : Optional[Any] = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Dict = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : List[str] = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ : Tuple = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : Any = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ : Any = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Any = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Tuple = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ : int = renew_vae_attention_paths(__lowerCamelCase ) UpperCAmelCase_ : List[str] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) for i in range(__lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = num_up_blocks - 1 - i UpperCAmelCase_ : List[str] = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Optional[int] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ : Optional[Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ : str = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Tuple = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : List[str] = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ : Union[str, Any] = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : List[Any] = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ : List[Any] = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : int = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : List[str] = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ : List[Any] = renew_vae_attention_paths(__lowerCamelCase ) UpperCAmelCase_ : Tuple = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) return new_checkpoint def __a ( __lowerCamelCase, __lowerCamelCase, ): UpperCAmelCase_ : str = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ : List[str] = io.BytesIO(r.content ) UpperCAmelCase_ : Union[str, Any] = OmegaConf.load(__lowerCamelCase ) UpperCAmelCase_ : Dict = 512 UpperCAmelCase_ : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ : Tuple = {} with safe_open(__lowerCamelCase, framework="pt", device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ : str = f.get_tensor(__lowerCamelCase ) else: UpperCAmelCase_ : str = torch.load(__lowerCamelCase, map_location=__lowerCamelCase )["state_dict"] # Convert the VAE model. UpperCAmelCase_ : Union[str, Any] = create_vae_diffusers_config(__lowerCamelCase, image_size=__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = custom_convert_ldm_vae_checkpoint(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Any = AutoencoderKL(**__lowerCamelCase ) vae.load_state_dict(__lowerCamelCase ) vae.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" from __future__ import annotations from random import choice def __a ( __lowerCamelCase ): return choice(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = random_pivot(__lowerCamelCase ) # partition based on pivot # linear time UpperCAmelCase_ : Any = [e for e in lst if e < pivot] UpperCAmelCase_ : List[Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__lowerCamelCase ) < k - 1: return kth_number(__lowerCamelCase, k - len(__lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } _a = { 'facebook/mbart-large-en-ro': 1_024, 'facebook/mbart-large-cc25': 1_024, } # fmt: off _a = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class A_ (UpperCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ : str = MBartTokenizer SCREAMING_SNAKE_CASE__ : List[int] = [] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( vocab_file=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCAmelCase_ : List[Any] = vocab_file UpperCAmelCase_ : Optional[Any] = False if not self.vocab_file else True UpperCAmelCase_ : int = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) UpperCAmelCase_ : int = { lang_code: self.convert_tokens_to_ids(UpperCamelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ : Tuple = src_lang if src_lang is not None else "en_XX" UpperCAmelCase_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : int = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ : Union[str, Any] = src_lang UpperCAmelCase_ : Tuple = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase_ : int = self.convert_tokens_to_ids(UpperCamelCase_ ) UpperCAmelCase_ : int = tgt_lang_id return inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_ = "en_XX" , lowercase_ = None , lowercase_ = "ro_RO" , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Any = src_lang UpperCAmelCase_ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = self.convert_tokens_to_ids(UpperCamelCase_ ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[str] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase_ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = self.convert_tokens_to_ids(UpperCamelCase_ ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : Any = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCAmelCase_ : Union[str, Any] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
354
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class A_ (lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = """blip_text_model""" def __init__( self , lowercase_=3_0524 , lowercase_=768 , lowercase_=768 , lowercase_=3072 , lowercase_=768 , lowercase_=12 , lowercase_=8 , lowercase_=512 , lowercase_="gelu" , lowercase_=1E-1_2 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=3_0522 , lowercase_=2 , lowercase_=0 , lowercase_=102 , lowercase_=True , lowercase_=True , **lowercase_ , ): """simple docstring""" super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , sep_token_id=__lowerCamelCase , **__lowerCamelCase , ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Optional[int] = encoder_hidden_size UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Any = projection_dim UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : Dict = is_decoder UpperCAmelCase_ : List[Any] = use_cache @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" cls._set_token_in_kwargs(__lowerCamelCase ) UpperCAmelCase_ : Dict = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase_ : Tuple = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class A_ (lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = """blip_vision_model""" def __init__( self , lowercase_=768 , lowercase_=3072 , lowercase_=512 , lowercase_=12 , lowercase_=12 , lowercase_=384 , lowercase_=16 , lowercase_="gelu" , lowercase_=1E-5 , lowercase_=0.0 , lowercase_=1E-1_0 , **lowercase_ , ): """simple docstring""" super().__init__(**__lowerCamelCase ) UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Optional[int] = projection_dim UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : Dict = hidden_act @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" cls._set_token_in_kwargs(__lowerCamelCase ) UpperCAmelCase_ : Any = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase_ : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class A_ (lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = """blip""" SCREAMING_SNAKE_CASE__ : List[Any] = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=512 , lowercase_=2.65_92 , lowercase_=256 , **lowercase_ , ): """simple docstring""" super().__init__(**__lowerCamelCase ) if text_config is None: UpperCAmelCase_ : List[Any] = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: UpperCAmelCase_ : List[Any] = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) UpperCAmelCase_ : List[Any] = BlipTextConfig(**__lowerCamelCase ) UpperCAmelCase_ : int = BlipVisionConfig(**__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = self.vision_config.hidden_size UpperCAmelCase_ : Any = projection_dim UpperCAmelCase_ : Dict = logit_scale_init_value UpperCAmelCase_ : int = 1.0 UpperCAmelCase_ : Tuple = 0.02 UpperCAmelCase_ : Union[str, Any] = image_text_hidden_size @classmethod def UpperCamelCase__ ( cls , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : int = self.text_config.to_dict() UpperCAmelCase_ : Tuple = self.vision_config.to_dict() UpperCAmelCase_ : List[Any] = self.__class__.model_type return output
355
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
0
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return 0.0 def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) UpperCAmelCase_ : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = 512 UpperCAmelCase_ : int = [1] + [0] * (size - 1) UpperCAmelCase_ : Tuple = [filter_type.process(UpperCAmelCase_ ) for item in inputs] UpperCAmelCase_ : Union[str, Any] = [0] * (samplerate - size) # zero-padding outputs += filler UpperCAmelCase_ : Any = np.abs(np.fft.fft(UpperCAmelCase_ ) ) UpperCAmelCase_ : Optional[int] = 20 * np.logaa(UpperCAmelCase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds UpperCAmelCase_ : Any = get_bounds(UpperCAmelCase_, UpperCAmelCase_ ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(UpperCAmelCase_ ) plt.show() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = 512 UpperCAmelCase_ : Optional[Any] = [1] + [0] * (size - 1) UpperCAmelCase_ : str = [filter_type.process(UpperCAmelCase_ ) for item in inputs] UpperCAmelCase_ : List[str] = [0] * (samplerate - size) # zero-padding outputs += filler UpperCAmelCase_ : Dict = np.angle(np.fft.fft(UpperCAmelCase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(UpperCAmelCase_, -2 * pi ) ) plt.show()
356
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _a = logging.get_logger(__name__) class A_ (lowerCamelCase__ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
357
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
0
"""simple docstring""" class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = len(A__ ) UpperCAmelCase_ : str = [0] * len_array if len_array > 0: UpperCAmelCase_ : List[str] = array[0] for i in range(1 , A__ ): UpperCAmelCase_ : Dict = self.prefix_sum[i - 1] + array[i] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
0
import math def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [True] * n UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Optional[Any] = True for i in range(3, int(n**0.5 + 1 ), 2 ): UpperCAmelCase_ : Dict = i * 2 while index < n: UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : str = index + i UpperCAmelCase_ : List[Any] = [2] for i in range(3, __lowerCamelCase, 2 ): if is_prime[i]: primes.append(__lowerCamelCase ) return primes def __a ( __lowerCamelCase = 9999_6666_3333 ): UpperCAmelCase_ : Optional[Any] = math.floor(math.sqrt(__lowerCamelCase ) ) + 100 UpperCAmelCase_ : List[Any] = prime_sieve(__lowerCamelCase ) UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Any = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase_ : Tuple = primes[prime_index + 1] UpperCAmelCase_ : Tuple = last_prime**2 UpperCAmelCase_ : str = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase_ : Any = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase_ : Tuple = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase_ : str = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase_ : List[str] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
359
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
0
"""simple docstring""" _a = 256 # Modulus to hash a string _a = 1_000_003 def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = len(__lowerCamelCase ) UpperCAmelCase_ : Any = len(__lowerCamelCase ) if p_len > t_len: return False UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[str] = 1 # Calculating the hash of pattern and substring of text for i in range(__lowerCamelCase ): UpperCAmelCase_ : Any = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus UpperCAmelCase_ : List[str] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue UpperCAmelCase_ : Optional[Any] = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash UpperCAmelCase_ : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __a ( ): UpperCAmelCase_ : Optional[Any] = '''abc1abc12''' UpperCAmelCase_ : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' UpperCAmelCase_ : Tuple = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(__lowerCamelCase, __lowerCamelCase ) and not rabin_karp(__lowerCamelCase, __lowerCamelCase ) # Test 2) UpperCAmelCase_ : int = '''ABABX''' UpperCAmelCase_ : Dict = '''ABABZABABYABABX''' assert rabin_karp(__lowerCamelCase, __lowerCamelCase ) # Test 3) UpperCAmelCase_ : int = '''AAAB''' UpperCAmelCase_ : List[Any] = '''ABAAAAAB''' assert rabin_karp(__lowerCamelCase, __lowerCamelCase ) # Test 4) UpperCAmelCase_ : Optional[int] = '''abcdabcy''' UpperCAmelCase_ : List[str] = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__lowerCamelCase, __lowerCamelCase ) # Test 5) UpperCAmelCase_ : int = '''Lü''' UpperCAmelCase_ : int = '''Lüsai''' assert rabin_karp(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : str = '''Lue''' assert not rabin_karp(__lowerCamelCase, __lowerCamelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""pixel_values"""] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = True , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = None , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" super().__init__(**__a ) UpperCAmelCase_ : List[str] = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : Tuple = get_size_dict(__a ) UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : Optional[int] = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : str = do_rescale UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : List[str] = do_center_crop UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : int = resample UpperCAmelCase_ : int = rescale_factor UpperCAmelCase_ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_size_dict(__a ) if "shortest_edge" in size: UpperCAmelCase_ : str = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ : Dict = (size["height"], size["width"]) else: raise ValueError(F"""Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}""" ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : str = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ ): """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[str] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Any = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Optional[int] = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) UpperCAmelCase_ : Any = resample if resample is not None else self.resample UpperCAmelCase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : Optional[int] = get_size_dict(__a ) if not is_batched(__a ): UpperCAmelCase_ : str = [images] if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Dict = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase_ : Dict = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase_ : int = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase_ : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase_ : Optional[int] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase_ : Optional[int] = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ : List[Any] = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
361
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
0
import math import unittest def __a ( __lowerCamelCase ): assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
"""simple docstring""" import sys _a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE_ ) return product def __a ( __lowerCamelCase = N ): UpperCAmelCase_ : Dict = -sys.maxsize - 1 UpperCAmelCase_ : str = n[:13] UpperCAmelCase_ : Any = 13 while cur_index < len(SCREAMING_SNAKE_CASE_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCAmelCase_ : int = substr[1:] + n[cur_index] cur_index += 1 else: UpperCAmelCase_ : Optional[Any] = max(SCREAMING_SNAKE_CASE_, str_eval(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_ : int = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _a = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _a = direct_transformers_import(PATH_TO_TRANSFORMERS) _a = transformers.models.auto.configuration_auto.CONFIG_MAPPING _a = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ : Dict = True # Deal with multi-line cases elif ( re.search( rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""", snake_case__, ) is not None ): UpperCAmelCase_ : Dict = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ : Tuple = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ : Tuple = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] UpperCAmelCase_ : Union[str, Any] = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed UpperCAmelCase_ : int = True if not attribute_used: UpperCAmelCase_ : Dict = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ : Dict = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ : List[str] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ : Dict = True elif attribute.endswith("_token_id" ): UpperCAmelCase_ : int = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ : Tuple = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) UpperCAmelCase_ : Tuple = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[Any] = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ : str = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] UpperCAmelCase_ : int = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ : Tuple = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ : List[str] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ : Optional[int] = inspect.getsourcefile(snake_case__ ) UpperCAmelCase_ : List[str] = os.path.dirname(snake_case__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ : List[str] = [os.path.join(snake_case__, snake_case__ ) for fn in os.listdir(snake_case__ ) if fn.startswith("modeling_" )] # Get the source code strings UpperCAmelCase_ : Optional[Any] = [] for path in modeling_paths: if os.path.isfile(snake_case__ ): with open(snake_case__ ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ : List[Any] = [] for config_param, default_value in zip(snake_case__, snake_case__ ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ : Tuple = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case__, snake_case__, snake_case__, snake_case__ ): unused_attributes.append(attributes[0] ) return sorted(snake_case__ ) def __a ( ): UpperCAmelCase_ : List[str] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ : List[str] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda __lowerCamelCase : inspect.isclass(snake_case__ ) and issubclass(snake_case__, snake_case__ ) and inspect.getmodule(snake_case__ ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: UpperCAmelCase_ : List[Any] = check_config_attributes_being_used(snake_case__ ) if len(snake_case__ ) > 0: UpperCAmelCase_ : List[Any] = unused_attributes if len(snake_case__ ) > 0: UpperCAmelCase_ : Optional[Any] = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(snake_case__ ) if __name__ == "__main__": check_config_attributes()
364
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ (_SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=False , lowercase_=True , lowercase_="None" , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[Any] = use_token_type_ids UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : List[Any] = relative_attention UpperCAmelCase_ : Tuple = position_biased_input UpperCAmelCase_ : str = pos_att_type UpperCAmelCase_ : Optional[int] = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = None if self.use_input_mask: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Any = None UpperCAmelCase_ : str = None UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.get_config() UpperCAmelCase_ : List[str] = 300 return config def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = DebertaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase_ : Any = model(lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase_ : Optional[int] = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = DebertaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Tuple = DebertaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Any = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = DebertaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = DebertaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Any = config_and_inputs UpperCAmelCase_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = DebertaModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[str] = DebertaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = DebertaModel.from_pretrained("microsoft/deberta-base" ) UpperCAmelCase_ : Dict = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCAmelCase_ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase_ : Optional[int] = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
365
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __a ( __lowerCamelCase = 8 ): UpperCAmelCase_ : Tuple = ascii_letters + digits + punctuation return "".join(secrets.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) def __a ( __lowerCamelCase, __lowerCamelCase ): i -= len(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = i // 3 UpperCAmelCase_ : List[str] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCAmelCase_ : Any = ( chars_incl + random(__lowerCamelCase, quotient + remainder ) + random(__lowerCamelCase, __lowerCamelCase ) + random(__lowerCamelCase, __lowerCamelCase ) ) UpperCAmelCase_ : str = list(__lowerCamelCase ) shuffle(__lowerCamelCase ) return "".join(__lowerCamelCase ) # random is a generalised function for letters, characters and numbers def __a ( __lowerCamelCase, __lowerCamelCase ): return "".join(secrets.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) def __a ( __lowerCamelCase, __lowerCamelCase ): pass # Put your code here... def __a ( __lowerCamelCase, __lowerCamelCase ): pass # Put your code here... def __a ( __lowerCamelCase, __lowerCamelCase ): pass # Put your code here... def __a ( __lowerCamelCase, __lowerCamelCase = 8 ): if len(__lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False UpperCAmelCase_ : Union[str, Any] = any(char in ascii_uppercase for char in password ) UpperCAmelCase_ : Optional[Any] = any(char in ascii_lowercase for char in password ) UpperCAmelCase_ : List[str] = any(char in digits for char in password ) UpperCAmelCase_ : str = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __a ( ): UpperCAmelCase_ : Tuple = int(input("Please indicate the max length of your password: " ).strip() ) UpperCAmelCase_ : Any = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:", password_generator(__lowerCamelCase ) ) print( "Alternative Password generated:", alternative_password_generator(__lowerCamelCase, __lowerCamelCase ), ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
366
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A_ (UpperCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE__ : List[Any] = """AutoImageProcessor""" SCREAMING_SNAKE_CASE__ : Any = """AutoTokenizer""" def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__(__a , __a ) UpperCAmelCase_ : List[str] = self.image_processor def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase_ : Tuple = self.tokenizer(__a , return_tensors=__a , **__a ) if images is not None: UpperCAmelCase_ : Optional[int] = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: UpperCAmelCase_ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self ): """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
def __a ( __lowerCamelCase ): if any(not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_, sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (__snake_case ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = LongformerTokenizer SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Any = LongformerTokenizerFast SCREAMING_SNAKE_CASE__ : Any = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase_ : Tuple = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) UpperCAmelCase_ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ : Optional[Any] = {"unk_token": "<unk>"} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase__ ) ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = "lower newer" UpperCAmelCase_ : Optional[Any] = "lower newer" return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : Any = "lower newer" UpperCAmelCase_ : Optional[int] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase_ : List[str] = tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ : str = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCamelCase__ ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCamelCase__ ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) UpperCAmelCase_ : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase_ : List[Any] = tokenizer.encode( "sequence builders" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase_ : Dict = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = "Encode this sequence." UpperCAmelCase_ : Optional[int] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments UpperCAmelCase_ : Tuple = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) UpperCAmelCase_ : str = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens UpperCAmelCase_ : Optional[Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space UpperCAmelCase_ : List[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) UpperCAmelCase_ : Any = "Encode <mask> sequence" UpperCAmelCase_ : str = "Encode <mask>sequence" UpperCAmelCase_ : Any = tokenizer.encode(UpperCamelCase__ ) UpperCAmelCase_ : str = encoded.index(UpperCamelCase__ ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(UpperCamelCase__ ) UpperCAmelCase_ : Optional[Any] = encoded.index(UpperCamelCase__ ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase_ : str = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase_ : int = "A, <mask> AllenNLP sentence." UpperCAmelCase_ : Optional[Any] = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) UpperCAmelCase_ : Tuple = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase_ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase_ : str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def UpperCamelCase__ ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase_ : str = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase_ : int = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCamelCase__ ) self.assertEqual(post_processor_state["add_prefix_space"] , UpperCamelCase__ ) self.assertEqual(post_processor_state["trim_offsets"] , UpperCamelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Any = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_ : int = F"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase_ : Any = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase_ : str = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase_ : int = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase_ : int = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase_ : str = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase_ : str = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
369
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
0
"""simple docstring""" import warnings from .generation import TFGenerationMixin class A_ (lowerCamelCase_ ): '''simple docstring''' # warning at import time warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" ,lowerCamelCase_ ,)
370
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ) -> Any: UpperCAmelCase_ : List[Any] = DPTConfig() if "large" in checkpoint_url: UpperCAmelCase_ : str = 1024 UpperCAmelCase_ : Tuple = 4096 UpperCAmelCase_ : List[Any] = 24 UpperCAmelCase_ : Tuple = 16 UpperCAmelCase_ : Union[str, Any] = [5, 11, 17, 23] UpperCAmelCase_ : str = [256, 512, 1024, 1024] UpperCAmelCase_ : Dict = (1, 384, 384) if "ade" in checkpoint_url: UpperCAmelCase_ : str = True UpperCAmelCase_ : Any = 150 UpperCAmelCase_ : Union[str, Any] = "huggingface/label-files" UpperCAmelCase_ : Union[str, Any] = "ade20k-id2label.json" UpperCAmelCase_ : int = json.load(open(cached_download(hf_hub_url(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ) ), "r" ) ) UpperCAmelCase_ : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = idalabel UpperCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = [1, 150, 480, 480] return config, expected_shape def __a ( __lowerCamelCase ) -> Tuple: UpperCAmelCase_ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase_ : Dict = name.replace("pretrained.model", "dpt.encoder" ) if "pretrained.model" in name: UpperCAmelCase_ : Dict = name.replace("pretrained.model", "dpt.embeddings" ) if "patch_embed" in name: UpperCAmelCase_ : Optional[int] = name.replace("patch_embed", "patch_embeddings" ) if "pos_embed" in name: UpperCAmelCase_ : List[str] = name.replace("pos_embed", "position_embeddings" ) if "attn.proj" in name: UpperCAmelCase_ : List[str] = name.replace("attn.proj", "attention.output.dense" ) if "proj" in name and "project" not in name: UpperCAmelCase_ : Union[str, Any] = name.replace("proj", "projection" ) if "blocks" in name: UpperCAmelCase_ : int = name.replace("blocks", "layer" ) if "mlp.fc1" in name: UpperCAmelCase_ : int = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ : Optional[int] = name.replace("mlp.fc2", "output.dense" ) if "norm1" in name: UpperCAmelCase_ : Tuple = name.replace("norm1", "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ : List[str] = name.replace("norm2", "layernorm_after" ) if "scratch.output_conv" in name: UpperCAmelCase_ : List[str] = name.replace("scratch.output_conv", "head" ) if "scratch" in name: UpperCAmelCase_ : Any = name.replace("scratch", "neck" ) if "layer1_rn" in name: UpperCAmelCase_ : Optional[int] = name.replace("layer1_rn", "convs.0" ) if "layer2_rn" in name: UpperCAmelCase_ : Any = name.replace("layer2_rn", "convs.1" ) if "layer3_rn" in name: UpperCAmelCase_ : List[str] = name.replace("layer3_rn", "convs.2" ) if "layer4_rn" in name: UpperCAmelCase_ : List[str] = name.replace("layer4_rn", "convs.3" ) if "refinenet" in name: UpperCAmelCase_ : str = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase_ : Optional[int] = name.replace(f"""refinenet{layer_idx}""", f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase_ : Optional[Any] = name.replace("out_conv", "projection" ) if "resConfUnit1" in name: UpperCAmelCase_ : Optional[int] = name.replace("resConfUnit1", "residual_layer1" ) if "resConfUnit2" in name: UpperCAmelCase_ : List[Any] = name.replace("resConfUnit2", "residual_layer2" ) if "conv1" in name: UpperCAmelCase_ : Tuple = name.replace("conv1", "convolution1" ) if "conv2" in name: UpperCAmelCase_ : Optional[int] = name.replace("conv2", "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase_ : List[Any] = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase_ : int = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase_ : Optional[int] = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase_ : int = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase_ : Tuple = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase_ : Optional[Any] = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase_ : Any = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: UpperCAmelCase_ : List[str] = name.replace("pretrained", "dpt" ) if "bn" in name: UpperCAmelCase_ : List[str] = name.replace("bn", "batch_norm" ) if "head" in name: UpperCAmelCase_ : Dict = name.replace("head", "head.head" ) if "encoder.norm" in name: UpperCAmelCase_ : Optional[int] = name.replace("encoder.norm", "layernorm" ) if "auxlayer" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("auxlayer", "auxiliary_head.head" ) return name def __a ( __lowerCamelCase, __lowerCamelCase ) -> Dict: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : int = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : List[Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] UpperCAmelCase_ : Union[str, Any] = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : List[Any] = in_proj_bias[-config.hidden_size :] def __a ( ) -> Dict: UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Any = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(__lowerCamelCase, map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase_ : Optional[Any] = state_dict.pop(__lowerCamelCase ) UpperCAmelCase_ : str = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : Optional[Any] = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image UpperCAmelCase_ : str = 480 if "ade" in checkpoint_url else 384 UpperCAmelCase_ : str = DPTImageProcessor(size=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : List[str] = image_processor(__lowerCamelCase, return_tensors="pt" ) # forward pass UpperCAmelCase_ : str = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth # Assert logits UpperCAmelCase_ : Tuple = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCAmelCase_ : Union[str, Any] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(__lowerCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3], __lowerCamelCase, atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], __lowerCamelCase ) ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase, __lowerCamelCase ), organization="nielsr", commit_message="Add model", use_temp_dir=__lowerCamelCase, ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCamelCase, __lowerCamelCase ), organization="nielsr", commit_message="Add image processor", use_temp_dir=__lowerCamelCase, ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) _a = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("<mask>" ) == 1 UpperCAmelCase_ : str = torch.tensor(tokenizer.encode(__lowerCamelCase, add_special_tokens=__lowerCamelCase ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase_ : Any = model(__lowerCamelCase )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase_ : Optional[int] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase_ : List[str] = logits[0, masked_index, :] UpperCAmelCase_ : int = logits.softmax(dim=0 ) UpperCAmelCase_ : Optional[Any] = prob.topk(k=__lowerCamelCase, dim=0 ) UpperCAmelCase_ : int = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__lowerCamelCase ) )] ) UpperCAmelCase_ : int = tokenizer.mask_token UpperCAmelCase_ : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): UpperCAmelCase_ : Optional[Any] = predicted_token_bpe.replace("\u2581", " " ) if " {0}".format(__lowerCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(__lowerCamelCase ), __lowerCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__lowerCamelCase, __lowerCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _a = CamembertTokenizer.from_pretrained('camembert-base') _a = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() _a = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
350
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = value UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = tree def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
"""simple docstring""" from math import loga def __a ( __lowerCamelCase ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" from __future__ import annotations def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if len(__lowerCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(__lowerCamelCase ) or left < -len(__lowerCamelCase ) or right >= len(__lowerCamelCase ) or right < -len(__lowerCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] UpperCAmelCase_ : int = (left + right) >> 1 # the middle UpperCAmelCase_ : Union[str, Any] = find_max(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # find max in range[left, mid] UpperCAmelCase_ : Any = find_max(__lowerCamelCase, mid + 1, __lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
353
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __a ( __lowerCamelCase ): def wrapper(*__lowerCamelCase, **__lowerCamelCase ): UpperCAmelCase_ : Dict = timeit.default_timer() UpperCAmelCase_ : Any = func(*__lowerCamelCase, **__lowerCamelCase ) UpperCAmelCase_ : Dict = timeit.default_timer() - starttime return delta UpperCAmelCase_ : Dict = func.__name__ return wrapper def __a ( __lowerCamelCase, __lowerCamelCase=100, __lowerCamelCase=None ): UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = seq_shapes or {} for i in range(__lowerCamelCase ): UpperCAmelCase_ : List[str] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCamelCase, _ArrayXD ): UpperCAmelCase_ : int = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCamelCase, datasets.Value ): if v.dtype == "string": UpperCAmelCase_ : Union[str, Any] = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase_ : Dict = np.random.randint(10, size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCamelCase, datasets.Sequence ): while isinstance(__lowerCamelCase, datasets.Sequence ): UpperCAmelCase_ : Dict = v.feature UpperCAmelCase_ : str = seq_shapes[k] UpperCAmelCase_ : List[Any] = np.random.rand(*__lowerCamelCase ).astype(v.dtype ) UpperCAmelCase_ : Optional[Any] = data dummy_data.append((i, example) ) return dummy_data def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=100, __lowerCamelCase=None ): UpperCAmelCase_ : List[Any] = generate_examples(__lowerCamelCase, num_examples=__lowerCamelCase, seq_shapes=__lowerCamelCase ) with ArrowWriter(features=__lowerCamelCase, path=__lowerCamelCase ) as writer: for key, record in dummy_data: UpperCAmelCase_ : Optional[int] = features.encode_example(__lowerCamelCase ) writer.write(__lowerCamelCase ) UpperCAmelCase_ : Dict = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) UpperCAmelCase_ : Union[str, Any] = datasets.Dataset.from_file(filename=__lowerCamelCase, info=datasets.DatasetInfo(features=__lowerCamelCase ) ) return dataset
354
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _a = logging.get_logger(__name__) class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = question_encoder UpperCAmelCase_ : int = generator UpperCAmelCase_ : List[Any] = self.question_encoder def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if os.path.isfile(lowercase_ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCAmelCase_ : int = os.path.join(lowercase_ , "question_encoder_tokenizer" ) UpperCAmelCase_ : Any = os.path.join(lowercase_ , "generator_tokenizer" ) self.question_encoder.save_pretrained(lowercase_ ) self.generator.save_pretrained(lowercase_ ) @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ : Optional[int] = kwargs.pop("config" , lowercase_ ) if config is None: UpperCAmelCase_ : Dict = RagConfig.from_pretrained(lowercase_ ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=lowercase_ , generator=lowercase_ ) def __call__( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.current_tokenizer(*lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.generator.batch_decode(*lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.generator.decode(*lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.question_encoder def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.generator def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = "longest" , lowercase_ = None , lowercase_ = True , **lowercase_ , ): """simple docstring""" warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , lowercase_ , ) if max_length is None: UpperCAmelCase_ : int = self.current_tokenizer.model_max_length UpperCAmelCase_ : Union[str, Any] = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ : List[str] = self.current_tokenizer.model_max_length UpperCAmelCase_ : Union[str, Any] = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : List[Any] = labels["input_ids"] return model_inputs
355
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : List[str] = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : Dict = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = (1 - _cos) / 2 UpperCAmelCase_ : Optional[Any] = 1 - _cos UpperCAmelCase_ : Tuple = 1 + alpha UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Optional[Any] = tau * frequency / samplerate UpperCAmelCase_ : List[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : Tuple = cos(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Tuple = (1 + _cos) / 2 UpperCAmelCase_ : Optional[Any] = -1 - _cos UpperCAmelCase_ : Dict = 1 + alpha UpperCAmelCase_ : Tuple = -2 * _cos UpperCAmelCase_ : Union[str, Any] = 1 - alpha UpperCAmelCase_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : List[str] = sin(__lowerCamelCase ) UpperCAmelCase_ : str = cos(__lowerCamelCase ) UpperCAmelCase_ : Dict = _sin / (2 * q_factor) UpperCAmelCase_ : str = _sin / 2 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : int = -ba UpperCAmelCase_ : int = 1 + alpha UpperCAmelCase_ : Tuple = -2 * _cos UpperCAmelCase_ : str = 1 - alpha UpperCAmelCase_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : Any = sin(__lowerCamelCase ) UpperCAmelCase_ : int = cos(__lowerCamelCase ) UpperCAmelCase_ : Any = _sin / (2 * q_factor) UpperCAmelCase_ : Any = 1 - alpha UpperCAmelCase_ : Union[str, Any] = -2 * _cos UpperCAmelCase_ : Dict = 1 + alpha UpperCAmelCase_ : int = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : Optional[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : str = 1 + alpha * big_a UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Optional[Any] = 1 - alpha * big_a UpperCAmelCase_ : List[str] = 1 + alpha / big_a UpperCAmelCase_ : List[Any] = -2 * _cos UpperCAmelCase_ : Optional[int] = 1 - alpha / big_a UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Optional[Any] = tau * frequency / samplerate UpperCAmelCase_ : Optional[int] = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Tuple = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : str = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Dict = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : List[str] = big_a * (pmc + aaa) UpperCAmelCase_ : Any = 2 * big_a * mpc UpperCAmelCase_ : List[str] = big_a * (pmc - aaa) UpperCAmelCase_ : Dict = ppmc + aaa UpperCAmelCase_ : Optional[Any] = -2 * pmpc UpperCAmelCase_ : Union[str, Any] = ppmc - aaa UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Optional[int] = tau * frequency / samplerate UpperCAmelCase_ : List[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = cos(__lowerCamelCase ) UpperCAmelCase_ : str = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Any = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Optional[int] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Any = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : int = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : Dict = big_a * (ppmc + aaa) UpperCAmelCase_ : Optional[int] = -2 * big_a * pmpc UpperCAmelCase_ : Union[str, Any] = big_a * (ppmc - aaa) UpperCAmelCase_ : Optional[Any] = pmc + aaa UpperCAmelCase_ : Any = 2 * mpc UpperCAmelCase_ : List[str] = pmc - aaa UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt
356
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = """llama""" SCREAMING_SNAKE_CASE__ : List[Any] = ["""past_key_values"""] def __init__( self , lowercase_=3_2000 , lowercase_=4096 , lowercase_=1_1008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.02 , lowercase_=1E-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = num_key_value_heads UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Dict = rms_norm_eps UpperCAmelCase_ : str = pretraining_tp UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) UpperCAmelCase_ : Any = self.rope_scaling.get("type" , lowercase_ ) UpperCAmelCase_ : Optional[Any] = self.rope_scaling.get("factor" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
357
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _a = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""pixel_values"""] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = True , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : List[str] = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : int = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size" ) UpperCAmelCase_ : Any = do_resize UpperCAmelCase_ : List[Any] = size UpperCAmelCase_ : Union[str, Any] = resample UpperCAmelCase_ : int = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : Optional[Any] = do_rescale UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : Union[str, Any] = do_normalize UpperCAmelCase_ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : List[Any] = do_convert_rgb def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase_ : str = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : str = get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_ ) UpperCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Optional[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : Tuple = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : List[str] = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Dict = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : List[str] = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase_ : Optional[Any] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase_ : List[Any] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase_ : str = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase_ : Tuple = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
358
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
0
_a = 8.31_4462 # Unit - J mol-1 K-1 def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
359
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
0
"""simple docstring""" def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = [0] * len(__lowerCamelCase ) for i in range(1, len(__lowerCamelCase ) ): # use last results for better performance - dynamic programming UpperCAmelCase_ : str = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase_ : Optional[int] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase_ : Dict = j return prefix_result def __a ( __lowerCamelCase ): return max(prefix_function(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
0
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
361
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
0
import sys import turtle def __a ( __lowerCamelCase, __lowerCamelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(__lowerCamelCase, get_mid(__lowerCamelCase, __lowerCamelCase ), get_mid(__lowerCamelCase, __lowerCamelCase ), depth - 1 ) triangle(__lowerCamelCase, get_mid(__lowerCamelCase, __lowerCamelCase ), get_mid(__lowerCamelCase, __lowerCamelCase ), depth - 1 ) triangle(__lowerCamelCase, get_mid(__lowerCamelCase, __lowerCamelCase ), get_mid(__lowerCamelCase, __lowerCamelCase ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) _a = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') _a = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
"""simple docstring""" def __a ( __lowerCamelCase ): return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a = int(input('Enter number: ').strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase ): return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
364
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'sentencepiece.model'} _a = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _a = { 'google/rembert': 256, } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="[CLS]" , lowercase_="[SEP]" , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ): """simple docstring""" super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : int = do_lower_case UpperCAmelCase_ : Tuple = remove_space UpperCAmelCase_ : str = keep_accents UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : Any = spm.SentencePieceProcessor() self.sp_model.Load(lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Union[str, Any] = None return state def __setstate__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = d UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=False ): """simple docstring""" UpperCAmelCase_ : Tuple = self.sp_model.EncodeAsPieces(lowercase_ ) return pieces def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.sp_model.PieceToId(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.sp_model.IdToPiece(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = self.sp_model.decode_pieces(lowercase_ ) return out_string def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : List[Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
365
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , **lowercase_ ): """simple docstring""" requires_backends(self , ["bs4"] ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCAmelCase_ : Optional[int] = parent.find_all(child.name , recursive=lowercase_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(lowercase_ ) else next(i for i, s in enumerate(lowercase_ , 1 ) if s is child ) ) UpperCAmelCase_ : Union[str, Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = BeautifulSoup(lowercase_ , "html.parser" ) UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[Any] = [] for element in html_code.descendants: if type(lowercase_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCAmelCase_ : List[str] = html.unescape(lowercase_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(lowercase_ ) UpperCAmelCase_ : List[Any] = self.xpath_soup(lowercase_ ) stringaxtag_seq.append(lowercase_ ) stringaxsubs_seq.append(lowercase_ ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = "" for tagname, subs in zip(lowercase_ , lowercase_ ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = False # Check that strings has a valid type if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[str] = True elif isinstance(lowercase_ , (list, tuple) ): if len(lowercase_ ) == 0 or isinstance(html_strings[0] , lowercase_ ): UpperCAmelCase_ : List[str] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F"""but is of type {type(lowercase_ )}.""" ) UpperCAmelCase_ : str = bool(isinstance(lowercase_ , (list, tuple) ) and (isinstance(html_strings[0] , lowercase_ )) ) if not is_batched: UpperCAmelCase_ : Tuple = [html_strings] # Get nodes + xpaths UpperCAmelCase_ : int = [] UpperCAmelCase_ : List[Any] = [] for html_string in html_strings: UpperCAmelCase_ : Tuple = self.get_three_from_single(lowercase_ ) nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = [] for node, tag_list, sub_list in zip(lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase_ : Any = self.construct_xpath(lowercase_ , lowercase_ ) xpath_strings.append(lowercase_ ) xpaths.append(lowercase_ ) # return as Dict UpperCAmelCase_ : Optional[int] = {"nodes": nodes, "xpaths": xpaths} UpperCAmelCase_ : Union[str, Any] = BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) return encoded_inputs
366
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
0
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _a = logging.get_logger('transformers.models.speecht5') def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): hf_model.apply_weight_norm() UpperCAmelCase_ : Any = checkpoint["input_conv.weight_g"] UpperCAmelCase_ : Any = checkpoint["input_conv.weight_v"] UpperCAmelCase_ : List[str] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): UpperCAmelCase_ : int = checkpoint[f"""upsamples.{i}.1.weight_g"""] UpperCAmelCase_ : Dict = checkpoint[f"""upsamples.{i}.1.weight_v"""] UpperCAmelCase_ : Optional[int] = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase_ : Dict = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase_ : str = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase_ : Any = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase_ : Any = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase_ : List[Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase_ : int = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase_ : Union[str, Any] = checkpoint["output_conv.1.weight_g"] UpperCAmelCase_ : str = checkpoint["output_conv.1.weight_v"] UpperCAmelCase_ : List[str] = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, ): if config_path is not None: UpperCAmelCase_ : Any = SpeechTaHifiGanConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig() UpperCAmelCase_ : List[str] = SpeechTaHifiGan(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = torch.load(__lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"], __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = np.load(__lowerCamelCase ) UpperCAmelCase_ : Dict = stats[0].reshape(-1 ) UpperCAmelCase_ : Optional[int] = stats[1].reshape(-1 ) UpperCAmelCase_ : Tuple = torch.from_numpy(__lowerCamelCase ).float() UpperCAmelCase_ : Dict = torch.from_numpy(__lowerCamelCase ).float() model.save_pretrained(__lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _a = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """MCTCTFeatureExtractor""" SCREAMING_SNAKE_CASE__ : Dict = """AutoTokenizer""" def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__(lowercase_ , lowercase_ ) UpperCAmelCase_ : int = self.feature_extractor UpperCAmelCase_ : Any = False def __call__( self , *lowercase_ , **lowercase_ ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ : List[Any] = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ : List[Any] = kwargs.pop("audio" , lowercase_ ) UpperCAmelCase_ : List[Any] = kwargs.pop("sampling_rate" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("text" , lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase_ : Dict = args[0] UpperCAmelCase_ : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ : List[Any] = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) if text is not None: UpperCAmelCase_ : List[Any] = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ : Union[str, Any] = encodings["input_ids"] return inputs def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase_ , **lowercase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("input_features" , lowercase_ ) UpperCAmelCase_ : Tuple = kwargs.pop("labels" , lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase_ : Optional[Any] = args[0] UpperCAmelCase_ : str = args[1:] if input_features is not None: UpperCAmelCase_ : Union[str, Any] = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) if labels is not None: UpperCAmelCase_ : Optional[Any] = self.tokenizer.pad(lowercase_ , **lowercase_ ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ : Union[str, Any] = labels["input_ids"] return input_features def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @contextmanager def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ : str = True UpperCAmelCase_ : List[str] = self.tokenizer yield UpperCAmelCase_ : List[str] = self.feature_extractor UpperCAmelCase_ : Optional[Any] = False
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" import logging import os from .state import PartialState class A_ (logging.LoggerAdapter ): '''simple docstring''' @staticmethod def UpperCamelCase__ ( lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) UpperCAmelCase_ : Dict = kwargs.pop("main_process_only" , lowercase_ ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("in_order" , lowercase_ ) if self.isEnabledFor(lowercase_ ): if self._should_log(lowercase_ ): UpperCAmelCase_ : str = self.process(lowercase_ , lowercase_ ) self.logger.log(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ) elif in_order: UpperCAmelCase_ : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase_ : Dict = self.process(lowercase_ , lowercase_ ) self.logger.log(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ) state.wait_for_everyone() def __a ( __lowerCamelCase, __lowerCamelCase = None ) -> List[Any]: if log_level is None: UpperCAmelCase_ : str = os.environ.get("ACCELERATE_LOG_LEVEL", __lowerCamelCase ) UpperCAmelCase_ : Dict = logging.getLogger(__lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__lowerCamelCase, {} )
369
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
0
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) _a = parser.parse_args() _a = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
370
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _a = logging.get_logger(__name__) _a = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class A_ : '''simple docstring''' def __init__( self , lowercase_=None , **lowercase_ ): """simple docstring""" logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) UpperCAmelCase_ : List[str] = model UpperCAmelCase_ : Dict = kwargs.get("model_save_dir" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.get("latest_model_name" , lowercase_ ) def __call__( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = {k: np.array(lowercase_ ) for k, v in kwargs.items()} return self.model.run(lowercase_ , lowercase_ ) @staticmethod def UpperCamelCase__ ( lowercase_ , lowercase_=None , lowercase_=None ): """simple docstring""" if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) UpperCAmelCase_ : List[str] = "CPUExecutionProvider" return ort.InferenceSession(lowercase_ , providers=[provider] , sess_options=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(lowercase_ ) if src_path.exists(): UpperCAmelCase_ : Tuple = Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass def UpperCamelCase__ ( self , lowercase_ , **lowercase_ , ): """simple docstring""" if os.path.isfile(lowercase_ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) # saving model weights/files self._save_pretrained(lowercase_ , **lowercase_ ) @classmethod def UpperCamelCase__ ( cls , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase_ ): UpperCAmelCase_ : str = OnnxRuntimeModel.load_model( os.path.join(lowercase_ , lowercase_ ) , provider=lowercase_ , sess_options=lowercase_ ) UpperCAmelCase_ : List[Any] = Path(lowercase_ ) # load model from hub else: # download model UpperCAmelCase_ : Union[str, Any] = hf_hub_download( repo_id=lowercase_ , filename=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , ) UpperCAmelCase_ : str = Path(lowercase_ ).parent UpperCAmelCase_ : Dict = Path(lowercase_ ).name UpperCAmelCase_ : Optional[int] = OnnxRuntimeModel.load_model(lowercase_ , provider=lowercase_ , sess_options=lowercase_ ) return cls(model=lowercase_ , **lowercase_ ) @classmethod def UpperCamelCase__ ( cls , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = None if len(str(lowercase_ ).split("@" ) ) == 2: UpperCAmelCase_ : Dict = model_id.split("@" ) return cls._from_pretrained( model_id=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , use_auth_token=lowercase_ , **lowercase_ , )
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _a = logging.getLogger(__name__) _a = 50 # max width of layer names _a = 70 # max width of quantizer names def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec", type=__lowerCamelCase, default=8, help="weight precision" ) group.add_argument("--aprec", type=__lowerCamelCase, default=8, help="activation precision" ) group.add_argument("--quant-per-tensor", action="store_true", help="per tensor weight scaling" ) group.add_argument("--quant-disable", action="store_true", help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings", action="store_true", help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword", type=__lowerCamelCase, nargs="+", help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module", type=__lowerCamelCase, help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module", type=__lowerCamelCase, help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator", default="max", help="which quantization range calibrator to use" ) group.add_argument("--percentile", default=__lowerCamelCase, type=__lowerCamelCase, help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv", action="store_true", help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu", metavar="N", type=__lowerCamelCase, help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights", action="store_true", help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ), ) def __a ( __lowerCamelCase ): if args.calibrator == "max": UpperCAmelCase_ : Union[str, Any] = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCAmelCase_ : Optional[int] = "histogram" elif args.calibrator == "mse": UpperCAmelCase_ : Union[str, Any] = "histogram" else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) UpperCAmelCase_ : str = QuantDescriptor(num_bits=args.aprec, calib_method=__lowerCamelCase ) UpperCAmelCase_ : str = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase=False ): logger.info("Configuring Model for Quantization" ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCamelCase, ["embeddings"], which="weight", _disabled=__lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCamelCase, [""], _disabled=__lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCamelCase, args.quant_disable_keyword, _disabled=__lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCamelCase, [r"layer.\d+." + args.quant_disable_layer_module], _disabled=__lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCamelCase, [r"layer.\d+." + args.quant_enable_layer_module], _disabled=__lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCamelCase ) if args.fuse_qkv: fuse_qkv(__lowerCamelCase, __lowerCamelCase ) if args.clip_gelu: clip_gelu(__lowerCamelCase, args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCamelCase ) def __a ( __lowerCamelCase ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def __a ( __lowerCamelCase, __lowerCamelCase ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator, calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile", percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): def fusea(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(__lowerCamelCase, "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCAmelCase_ : Tuple = qq._amax.detach().item() UpperCAmelCase_ : List[Any] = qk._amax.detach().item() UpperCAmelCase_ : Dict = qv._amax.detach().item() UpperCAmelCase_ : Dict = max(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) qq._amax.fill_(__lowerCamelCase ) qk._amax.fill_(__lowerCamelCase ) qv._amax.fill_(__lowerCamelCase ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer ) def __a ( __lowerCamelCase, __lowerCamelCase ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCAmelCase_ : Dict = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def __a ( __lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase, "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase_ : Optional[Any] = mod.weight.shape[0] UpperCAmelCase_ : int = mod._weight_quantizer._amax.detach() UpperCAmelCase_ : List[Any] = torch.ones(__lowerCamelCase, dtype=amax.dtype, device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def __a ( __lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase, "_weight_quantizer" ): if not hasattr(mod.weight_quantizer, "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase_ : Optional[int] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase_ : int = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase_ : Any = pytorch_quantization.utils.reduce_amax(mod.weight, axis=__lowerCamelCase, keepdims=__lowerCamelCase ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) UpperCAmelCase_ : int = amax def __a ( __lowerCamelCase, __lowerCamelCase=25, __lowerCamelCase=180, __lowerCamelCase=None ): if ignore is None: UpperCAmelCase_ : List[Any] = [] elif not isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [ignore] UpperCAmelCase_ : Dict = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCamelCase, "weight" ): continue UpperCAmelCase_ : List[Any] = max(__lowerCamelCase, len(__lowerCamelCase ) ) for name, mod in model.named_modules(): UpperCAmelCase_ : List[Any] = getattr(__lowerCamelCase, "_input_quantizer", __lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = getattr(__lowerCamelCase, "_weight_quantizer", __lowerCamelCase ) if not hasattr(__lowerCamelCase, "weight" ): continue if type(__lowerCamelCase ) in ignore: continue if [True for s in ignore if type(__lowerCamelCase ) is str and s in name]: continue UpperCAmelCase_ : Optional[int] = f"""Act:{input_q.extra_repr()}""" UpperCAmelCase_ : Optional[int] = f"""Wgt:{weight_q.extra_repr()}""" UpperCAmelCase_ : List[str] = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(__lowerCamelCase ) <= line_width: logger.info(__lowerCamelCase ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = 0 for name, mod in model.named_modules(): if isinstance(__lowerCamelCase, pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = getattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if quantizer_mod is not None: assert hasattr(__lowerCamelCase, __lowerCamelCase ) setattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: logger.warning(f"""{name} has no {quantizer}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="both", **__lowerCamelCase ): UpperCAmelCase_ : List[Any] = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(__lowerCamelCase, __lowerCamelCase, "_input_quantizer", __lowerCamelCase, __lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCamelCase, __lowerCamelCase, "_weight_quantizer", __lowerCamelCase, __lowerCamelCase ) logger.info(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase, "_input_quantizer" ) or hasattr(__lowerCamelCase, "_weight_quantizer" ): for n in names: if re.search(__lowerCamelCase, __lowerCamelCase ): set_quantizers(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ) elif name.endswith("_quantizer" ): for n in names: if re.search(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) logger.info(__lowerCamelCase )
350
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(__lowerCamelCase ) * abs(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = AltDiffusionPipeline SCREAMING_SNAKE_CASE__ : str = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase_ : str = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCAmelCase_ : Tuple = CLIPTextModel(lowercase_ ) UpperCAmelCase_ : Any = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCAmelCase_ : Tuple = 77 UpperCAmelCase_ : Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : List[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Dict = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Tuple = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase_ : Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase_ : Optional[Any] = RobertaSeriesModelWithTransformation(lowercase_ ) UpperCAmelCase_ : int = text_encoder UpperCAmelCase_ : Optional[Any] = AltDiffusionPipeline(**lowercase_ ) UpperCAmelCase_ : Dict = alt_pipe.to(lowercase_ ) alt_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : Dict = "A photo of an astronaut" UpperCAmelCase_ : List[Any] = alt_pipe(**lowercase_ ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : str = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase_ : Dict = RobertaSeriesModelWithTransformation(lowercase_ ) UpperCAmelCase_ : Dict = text_encoder UpperCAmelCase_ : Optional[int] = AltDiffusionPipeline(**lowercase_ ) UpperCAmelCase_ : Any = alt_pipe.to(lowercase_ ) alt_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : int = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : Optional[Any] = alt_pipe(**lowercase_ ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = alt_pipe.to(lowercase_ ) alt_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : int = "A painting of a squirrel eating a burger" UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = alt_pipe([prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCAmelCase_ : List[Any] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=lowercase_ , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[Any] = alt_pipe.to(lowercase_ ) alt_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : str = "A painting of a squirrel eating a burger" UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : Dict = alt_pipe([prompt] , generator=lowercase_ , num_inference_steps=2 , output_type="numpy" ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Dict = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
353
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = SwinConfig(image_size=192 ) if "base" in model_name: UpperCAmelCase_ : str = 6 UpperCAmelCase_ : List[Any] = 128 UpperCAmelCase_ : int = (2, 2, 18, 2) UpperCAmelCase_ : Optional[Any] = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase_ : Any = 12 UpperCAmelCase_ : Tuple = 192 UpperCAmelCase_ : Dict = (2, 2, 18, 2) UpperCAmelCase_ : int = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : Optional[int] = embed_dim UpperCAmelCase_ : str = depths UpperCAmelCase_ : Dict = num_heads return config def __a ( __lowerCamelCase ): if "encoder.mask_token" in name: UpperCAmelCase_ : Optional[int] = name.replace("encoder.mask_token", "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: UpperCAmelCase_ : List[str] = name.replace("encoder.patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("encoder.patch_embed.norm", "embeddings.norm" ) if "attn.proj" in name: UpperCAmelCase_ : Any = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: UpperCAmelCase_ : int = name.replace("attn", "attention.self" ) if "norm1" in name: UpperCAmelCase_ : List[Any] = name.replace("norm1", "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ : str = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ : List[str] = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ : Optional[int] = name.replace("mlp.fc2", "output.dense" ) if name == "encoder.norm.weight": UpperCAmelCase_ : List[Any] = "layernorm.weight" if name == "encoder.norm.bias": UpperCAmelCase_ : Optional[int] = "layernorm.bias" if "decoder" in name: pass else: UpperCAmelCase_ : str = "swin." + name return name def __a ( __lowerCamelCase, __lowerCamelCase ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : List[str] = orig_state_dict.pop(__lowerCamelCase ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase_ : Optional[Any] = key.split("." ) UpperCAmelCase_ : List[str] = int(key_split[2] ) UpperCAmelCase_ : Dict = int(key_split[4] ) UpperCAmelCase_ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ : List[str] = val[:dim, :] UpperCAmelCase_ : List[Any] = val[ dim : dim * 2, : ] UpperCAmelCase_ : Optional[int] = val[-dim:, :] else: UpperCAmelCase_ : Tuple = val[ :dim ] UpperCAmelCase_ : List[str] = val[ dim : dim * 2 ] UpperCAmelCase_ : Any = val[ -dim: ] else: UpperCAmelCase_ : List[str] = val return orig_state_dict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = torch.load(__lowerCamelCase, map_location="cpu" )["model"] UpperCAmelCase_ : List[Any] = get_swin_config(__lowerCamelCase ) UpperCAmelCase_ : Dict = SwinForMaskedImageModeling(__lowerCamelCase ) model.eval() UpperCAmelCase_ : int = convert_state_dict(__lowerCamelCase, __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = ViTImageProcessor(size={"height": 192, "width": 192} ) UpperCAmelCase_ : Dict = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) UpperCAmelCase_ : Any = image_processor(images=__lowerCamelCase, return_tensors="pt" ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**__lowerCamelCase ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
354
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
355
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
0
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class A_ (datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=lowercase_ , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowercase_ ) class A_ (datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=lowercase_ , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowercase_ ) def __a ( ): return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def __a ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class A_ (lowercase__ ): '''simple docstring''' @require_beam def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ : str = DummyBeamDataset(cache_dir=lowercase_ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase_ : Union[str, Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowercase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowercase_ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def UpperCamelCase__ ( self ): """simple docstring""" import apache_beam as beam UpperCAmelCase_ : Any = beam.io.parquetio.WriteToParquet UpperCAmelCase_ : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ : List[str] = DummyBeamDataset(cache_dir=lowercase_ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase_ : Optional[int] = partial(lowercase_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowercase_ , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( lowercase_ , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase_ : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowercase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowercase_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ : str = DummyBeamDataset(cache_dir=lowercase_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ : Tuple = NestedBeamDataset(cache_dir=lowercase_ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase_ : List[str] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowercase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowercase_ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
356
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
0
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _a = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] _a = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = ' Hello world! cécé herlolip' _a = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = val def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = torch.load(__lowerCamelCase, map_location="cpu" ) UpperCAmelCase_ : Dict = torch.hub.load("pytorch/fairseq", "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = emb.weight.shape UpperCAmelCase_ : Dict = nn.Linear(__lowerCamelCase, __lowerCamelCase, bias=__lowerCamelCase ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): if not os.path.exists(__lowerCamelCase ): UpperCAmelCase_ : Optional[int] = torch.hub.load("pytorch/fairseq", __lowerCamelCase ).eval() else: UpperCAmelCase_ : str = load_xsum_checkpoint(__lowerCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCAmelCase_ : Optional[Any] = checkpoint_path.replace(".", "-" ) UpperCAmelCase_ : int = BartConfig.from_pretrained(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = bart.encode(__lowerCamelCase ).unsqueeze(0 ) UpperCAmelCase_ : Optional[int] = BartTokenizer.from_pretrained(__lowerCamelCase ).encode(__lowerCamelCase, return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__lowerCamelCase, __lowerCamelCase ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCAmelCase_ : Optional[int] = bart.state_dict() remove_ignore_keys_(__lowerCamelCase ) UpperCAmelCase_ : Any = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Any = BartForSequenceClassification(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = bart.predict("mnli", __lowerCamelCase, return_logits=__lowerCamelCase ) UpperCAmelCase_ : Any = model(__lowerCamelCase )[0] # logits else: # no classification heads to worry about UpperCAmelCase_ : Tuple = bart.model.state_dict() remove_ignore_keys_(__lowerCamelCase ) UpperCAmelCase_ : Dict = state_dict["decoder.embed_tokens.weight"] UpperCAmelCase_ : Optional[Any] = bart.extract_features(__lowerCamelCase ) if hf_checkpoint_name == "facebook/bart-large": UpperCAmelCase_ : Optional[int] = BartModel(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ).model[0] else: UpperCAmelCase_ : Tuple = BartForConditionalGeneration(__lowerCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(__lowerCamelCase ) if hasattr(__lowerCamelCase, "lm_head" ): UpperCAmelCase_ : int = make_linear_from_emb(model.model.shared ) UpperCAmelCase_ : Dict = model.model(__lowerCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) _a = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
357
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A_ (lowercase__ ,lowercase__ ,lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = False , ): """simple docstring""" super().__init__() UpperCAmelCase_ : int = nn.Embedding(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = nn.Embedding(lowercase_ , lowercase_ ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : Tuple = nn.Dropout(p=lowercase_ ) UpperCAmelCase_ : Optional[int] = TaConfig( vocab_size=lowercase_ , d_model=lowercase_ , num_heads=lowercase_ , d_kv=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ , feed_forward_proj=lowercase_ , is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , ) UpperCAmelCase_ : int = nn.ModuleList() for lyr_num in range(lowercase_ ): UpperCAmelCase_ : int = TaBlock(lowercase_ ) self.encoders.append(lowercase_ ) UpperCAmelCase_ : Optional[int] = TaLayerNorm(lowercase_ ) UpperCAmelCase_ : Optional[int] = nn.Dropout(p=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = self.token_embedder(lowercase_ ) UpperCAmelCase_ : List[Any] = encoder_input_tokens.shape[1] UpperCAmelCase_ : str = torch.arange(lowercase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowercase_ ) UpperCAmelCase_ : Optional[Any] = self.dropout_pre(lowercase_ ) # inverted the attention mask UpperCAmelCase_ : str = encoder_input_tokens.size() UpperCAmelCase_ : Optional[int] = self.get_extended_attention_mask(lowercase_ , lowercase_ ) for lyr in self.encoders: UpperCAmelCase_ : Any = lyr(lowercase_ , lowercase_ )[0] UpperCAmelCase_ : List[str] = self.layer_norm(lowercase_ ) return self.dropout_post(lowercase_ ), encoder_inputs_mask
359
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: UpperCAmelCase_ : Dict = 1024 UpperCAmelCase_ : List[str] = 4096 UpperCAmelCase_ : Union[str, Any] = 24 UpperCAmelCase_ : str = 16 UpperCAmelCase_ : Tuple = [5, 11, 17, 23] UpperCAmelCase_ : int = [256, 512, 1024, 1024] UpperCAmelCase_ : Any = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase_ : Optional[int] = 768 UpperCAmelCase_ : List[str] = [1, 1, 1, 0.5] UpperCAmelCase_ : str = [256, 512, 768, 768] UpperCAmelCase_ : str = 150 UpperCAmelCase_ : List[Any] = 16 UpperCAmelCase_ : Optional[Any] = (1, 384, 384) UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = "project" if "ade" in checkpoint_url: UpperCAmelCase_ : Any = True UpperCAmelCase_ : Dict = 768 UpperCAmelCase_ : Any = [1, 1, 1, 0.5] UpperCAmelCase_ : Dict = 150 UpperCAmelCase_ : str = 16 UpperCAmelCase_ : Optional[int] = "huggingface/label-files" UpperCAmelCase_ : Dict = "ade20k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ) ), "r" ) ) UpperCAmelCase_ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = [1, 150, 480, 480] return config, expected_shape def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase_ : int = name.replace("pretrained.model", "dpt.encoder" ) if "pretrained.model" in name: UpperCAmelCase_ : int = name.replace("pretrained.model", "dpt.embeddings" ) if "patch_embed" in name: UpperCAmelCase_ : List[Any] = name.replace("patch_embed", "" ) if "pos_embed" in name: UpperCAmelCase_ : int = name.replace("pos_embed", "position_embeddings" ) if "attn.proj" in name: UpperCAmelCase_ : Optional[int] = name.replace("attn.proj", "attention.output.dense" ) if "proj" in name and "project" not in name: UpperCAmelCase_ : Tuple = name.replace("proj", "projection" ) if "blocks" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("blocks", "layer" ) if "mlp.fc1" in name: UpperCAmelCase_ : Any = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ : Optional[int] = name.replace("mlp.fc2", "output.dense" ) if "norm1" in name and "backbone" not in name: UpperCAmelCase_ : Union[str, Any] = name.replace("norm1", "layernorm_before" ) if "norm2" in name and "backbone" not in name: UpperCAmelCase_ : Tuple = name.replace("norm2", "layernorm_after" ) if "scratch.output_conv" in name: UpperCAmelCase_ : List[Any] = name.replace("scratch.output_conv", "head" ) if "scratch" in name: UpperCAmelCase_ : int = name.replace("scratch", "neck" ) if "layer1_rn" in name: UpperCAmelCase_ : Dict = name.replace("layer1_rn", "convs.0" ) if "layer2_rn" in name: UpperCAmelCase_ : Dict = name.replace("layer2_rn", "convs.1" ) if "layer3_rn" in name: UpperCAmelCase_ : List[Any] = name.replace("layer3_rn", "convs.2" ) if "layer4_rn" in name: UpperCAmelCase_ : Tuple = name.replace("layer4_rn", "convs.3" ) if "refinenet" in name: UpperCAmelCase_ : Optional[Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase_ : List[Any] = name.replace(f"""refinenet{layer_idx}""", f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase_ : List[str] = name.replace("out_conv", "projection" ) if "resConfUnit1" in name: UpperCAmelCase_ : Optional[int] = name.replace("resConfUnit1", "residual_layer1" ) if "resConfUnit2" in name: UpperCAmelCase_ : int = name.replace("resConfUnit2", "residual_layer2" ) if "conv1" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("conv1", "convolution1" ) if "conv2" in name: UpperCAmelCase_ : int = name.replace("conv2", "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase_ : List[Any] = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase_ : List[Any] = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase_ : Any = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase_ : Any = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: UpperCAmelCase_ : Any = name.replace("pretrained", "dpt" ) if "bn" in name: UpperCAmelCase_ : List[str] = name.replace("bn", "batch_norm" ) if "head" in name: UpperCAmelCase_ : List[str] = name.replace("head", "head.head" ) if "encoder.norm" in name: UpperCAmelCase_ : int = name.replace("encoder.norm", "layernorm" ) if "auxlayer" in name: UpperCAmelCase_ : Any = name.replace("auxlayer", "auxiliary_head.head" ) if "backbone" in name: UpperCAmelCase_ : List[Any] = name.replace("backbone", "backbone.bit.encoder" ) if ".." in name: UpperCAmelCase_ : Union[str, Any] = name.replace("..", "." ) if "stem.conv" in name: UpperCAmelCase_ : str = name.replace("stem.conv", "bit.embedder.convolution" ) if "blocks" in name: UpperCAmelCase_ : Dict = name.replace("blocks", "layers" ) if "convolution" in name and "backbone" in name: UpperCAmelCase_ : str = name.replace("convolution", "conv" ) if "layer" in name and "backbone" in name: UpperCAmelCase_ : Dict = name.replace("layer", "layers" ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase_ : List[str] = name.replace("backbone.bit.encoder.bit", "backbone.bit" ) if "embedder.conv" in name: UpperCAmelCase_ : str = name.replace("embedder.conv", "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm" ) return name def __a ( __lowerCamelCase, __lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : List[Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : List[Any] = in_proj_bias[-config.hidden_size :] def __a ( ): UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Union[str, Any] = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase_ : Union[str, Any] = torch.load(__lowerCamelCase, map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase_ : Optional[Any] = state_dict.pop(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image UpperCAmelCase_ : List[Any] = 480 if "ade" in checkpoint_url else 384 UpperCAmelCase_ : List[str] = DPTImageProcessor(size=__lowerCamelCase ) UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : int = image_processor(__lowerCamelCase, return_tensors="pt" ) # forward pass UpperCAmelCase_ : int = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth if show_prediction: UpperCAmelCase_ : Any = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=__lowerCamelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) _a = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
0
"""simple docstring""" import requests from bsa import BeautifulSoup def __a ( __lowerCamelCase = "https://www.worldometers.info/coronavirus" ): UpperCAmelCase_ : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text, "html.parser" ) UpperCAmelCase_ : Optional[Any] = soup.findAll("h1" ) UpperCAmelCase_ : Union[str, Any] = soup.findAll("div", {"class": "maincounter-number"} ) keys += soup.findAll("span", {"class": "panel-title"} ) values += soup.findAll("div", {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCamelCase, __lowerCamelCase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
361
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = BlenderbotConfig SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu""" def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=20 , lowercase_=2 , lowercase_=1 , lowercase_=0 , ): """simple docstring""" UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : int = eos_token_id UpperCAmelCase_ : Optional[int] = pad_token_id UpperCAmelCase_ : Optional[int] = bos_token_id def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : Tuple = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFBlenderbotModel(config=lowercase_ ).get_decoder() UpperCAmelCase_ : Optional[Any] = inputs_dict["input_ids"] UpperCAmelCase_ : int = input_ids[:1, :] UpperCAmelCase_ : Optional[Any] = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ : Optional[Any] = inputs_dict["head_mask"] UpperCAmelCase_ : Optional[int] = 1 # first forward pass UpperCAmelCase_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase_ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ )[0] UpperCAmelCase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : Tuple = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: UpperCAmelCase_ : int = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCAmelCase_ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : int = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = TFBlenderbotModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_tokenizers @require_tf class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""My friends are cool but they eat too many carbs."""] SCREAMING_SNAKE_CASE__ : Optional[Any] = """facebook/blenderbot-400M-distill""" @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.tokenizer(self.src_text , return_tensors="tf" ) UpperCAmelCase_ : Union[str, Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase_ : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _a = 'http://www.mocksite.com/file1.txt' _a = '"text": ["foo", "foo"]' _a = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 200 SCREAMING_SNAKE_CASE__ : Dict = {"""Content-Length""": """100"""} SCREAMING_SNAKE_CASE__ : Dict = {} def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return [bytes(lowercase_ , "utf-8" )] def __a ( *__lowerCamelCase, **__lowerCamelCase ): return MockResponse() @pytest.mark.parametrize("urls_type", [str, list, dict] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): import requests monkeypatch.setattr(__lowerCamelCase, "request", __lowerCamelCase ) UpperCAmelCase_ : Tuple = URL if issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = url elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = [url] elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = {"train": url} UpperCAmelCase_ : Union[str, Any] = "dummy" UpperCAmelCase_ : Optional[Any] = "downloads" UpperCAmelCase_ : Optional[int] = tmp_path UpperCAmelCase_ : List[str] = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase, __lowerCamelCase ), use_etag=__lowerCamelCase, ) UpperCAmelCase_ : List[Any] = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase ) UpperCAmelCase_ : List[Any] = dl_manager.download(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = [downloaded_paths] UpperCAmelCase_ : int = [urls] elif isinstance(__lowerCamelCase, __lowerCamelCase ): assert "train" in downloaded_paths.keys() UpperCAmelCase_ : Tuple = downloaded_paths.values() UpperCAmelCase_ : str = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase, __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCAmelCase_ : List[str] = Path(__lowerCamelCase ) UpperCAmelCase_ : List[str] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCAmelCase_ : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT UpperCAmelCase_ : str = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() UpperCAmelCase_ : Dict = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type", [str, list, dict] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = str(__lowerCamelCase ) if issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = filename elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [filename] elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = {"train": filename} UpperCAmelCase_ : Optional[int] = "dummy" UpperCAmelCase_ : List[Any] = xz_file.parent UpperCAmelCase_ : List[Any] = "extracted" UpperCAmelCase_ : Tuple = DownloadConfig( cache_dir=__lowerCamelCase, use_etag=__lowerCamelCase, ) UpperCAmelCase_ : Any = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase ) UpperCAmelCase_ : List[str] = dl_manager.extract(__lowerCamelCase ) UpperCAmelCase_ : Dict = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [extracted_paths] UpperCAmelCase_ : str = [paths] elif isinstance(__lowerCamelCase, __lowerCamelCase ): assert "train" in extracted_paths.keys() UpperCAmelCase_ : str = extracted_paths.values() UpperCAmelCase_ : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase, __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCAmelCase_ : Union[str, Any] = Path(__lowerCamelCase ) UpperCAmelCase_ : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase, etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCAmelCase_ : List[str] = extracted_path.read_text() UpperCAmelCase_ : str = text_file.read_text() assert extracted_file_content == expected_file_content def __a ( __lowerCamelCase, __lowerCamelCase ): assert path.endswith(".jsonl" ) for num_items, line in enumerate(__lowerCamelCase, start=1 ): UpperCAmelCase_ : Any = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"] ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = request.getfixturevalue(__lowerCamelCase ) UpperCAmelCase_ : Dict = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): _test_jsonl(__lowerCamelCase, __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = request.getfixturevalue(__lowerCamelCase ) UpperCAmelCase_ : int = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): _test_jsonl(__lowerCamelCase, __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ), start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def __a ( __lowerCamelCase ): return (gray > 127) & (gray <= 255) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = np.zeros_like(__lowerCamelCase ) UpperCAmelCase_ : Any = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase_ : Any = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase_ : Union[str, Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase_ : Tuple = int(summation > 0 ) return output if __name__ == "__main__": # read original image _a = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' _a = np.array(Image.open(lena_path)) # kernel to be applied _a = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _a = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _a = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
364
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
0
"""simple docstring""" import os import numpy import onnx def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = a.name UpperCAmelCase_ : Any = b.name UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Dict = "" UpperCAmelCase_ : List[Any] = a == b UpperCAmelCase_ : List[Any] = name_a UpperCAmelCase_ : Any = name_b return res def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowerCamelCase, __lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, __lowerCamelCase, __lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g, __lowerCamelCase, __lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, __lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for n in graph_proto.node: _node_replace_input_with(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = list(model.graph.initializer ) UpperCAmelCase_ : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase_ : List[str] = inits[i].name UpperCAmelCase_ : Union[str, Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, __lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : str = os.path.dirname(__lowerCamelCase ) UpperCAmelCase_ : Dict = os.path.basename(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = onnx.load(os.path.join(__lowerCamelCase, __lowerCamelCase ) ) UpperCAmelCase_ : Dict = list(model.graph.initializer ) UpperCAmelCase_ : Any = set() UpperCAmelCase_ : List[Any] = {} UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : str = 0 for i in range(len(__lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1, len(__lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j] ): dup_set.add(__lowerCamelCase ) dup_set.add(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = inits[j].data_type UpperCAmelCase_ : int = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: ", __lowerCamelCase ) total_reduced_size += mem_size UpperCAmelCase_ : Optional[Any] = inits[i].name UpperCAmelCase_ : Dict = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowerCamelCase ) else: UpperCAmelCase_ : Optional[Any] = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: ", total_reduced_size / 1024 / 1024 / 1024, "GB" ) UpperCAmelCase_ : str = sorted(__lowerCamelCase ) _remove_dup_initializers_from_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = "optimized_" + model_file_name UpperCAmelCase_ : int = os.path.join(__lowerCamelCase, __lowerCamelCase ) onnx.save(__lowerCamelCase, __lowerCamelCase ) return new_model
365
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A_ (unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=18 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCAmelCase_ : Any = size if size is not None else {"shortest_edge": 18} UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : Dict = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : Any = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[Any] = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : List[Any] = image_std def UpperCamelCase__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , "image_mean" ) ) self.assertTrue(hasattr(lowercase_ , "image_std" ) ) self.assertTrue(hasattr(lowercase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase_ , "do_resize" ) ) self.assertTrue(hasattr(lowercase_ , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase_ , "size" ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : str = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
366
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _a = logging.get_logger(__name__) _a = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _a = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _a = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _a = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _a = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _a = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _a = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _a = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _a = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _a = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _a = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _a = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _a = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _a = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = FLAX_MODEL_MAPPING _a = auto_class_update(FlaxAutoModel) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_PRETRAINING_MAPPING _a = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _a = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_MASKED_LM_MAPPING _a = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _a = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _a = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _a = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _a = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _a = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} SCREAMING_SNAKE_CASE__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCAmelCase_ : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ : str = CLIPTextModel(lowercase_ ) UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : List[str] = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : int = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Optional[Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ) UpperCAmelCase_ : int = floats_tensor(control_image.shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : str = Image.fromarray(np.uinta(lowercase_ ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} SCREAMING_SNAKE_CASE__ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Union[str, Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowercase_ ): if isinstance(lowercase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCAmelCase_ : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ : Optional[int] = CLIPTextModel(lowercase_ ) UpperCAmelCase_ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : Optional[int] = MultiControlNetModel([controlneta, controlneta] ) UpperCAmelCase_ : Optional[int] = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : int = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Any = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), ] UpperCAmelCase_ : str = floats_tensor(control_image[0].shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(lowercase_ ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Tuple = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) UpperCAmelCase_ : Any = 10.0 UpperCAmelCase_ : Optional[int] = 4 UpperCAmelCase_ : str = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : str = steps UpperCAmelCase_ : Optional[int] = scale UpperCAmelCase_ : Union[str, Any] = pipe(**lowercase_ )[0] UpperCAmelCase_ : Tuple = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = steps UpperCAmelCase_ : List[Any] = scale UpperCAmelCase_ : Union[str, Any] = pipe(**lowercase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCAmelCase_ : str = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = steps UpperCAmelCase_ : Union[str, Any] = scale UpperCAmelCase_ : int = pipe(**lowercase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = steps UpperCAmelCase_ : Union[str, Any] = scale UpperCAmelCase_ : Union[str, Any] = pipe(**lowercase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Tuple = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowercase_ ) except NotImplementedError: pass @slow @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) UpperCAmelCase_ : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=lowercase_ , controlnet=lowercase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ : List[str] = "evil space-punk bird" UpperCAmelCase_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) UpperCAmelCase_ : Optional[int] = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) UpperCAmelCase_ : Union[str, Any] = pipe( lowercase_ , lowercase_ , control_image=lowercase_ , generator=lowercase_ , output_type="np" , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase_ : Tuple = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase_ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( __lowerCamelCase ) -> List[str]: UpperCAmelCase_ : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ) -> Any: UpperCAmelCase_ : List[str] = emb.weight.shape UpperCAmelCase_ : List[str] = nn.Linear(__lowerCamelCase, __lowerCamelCase, bias=__lowerCamelCase ) UpperCAmelCase_ : Any = emb.weight.data return lin_layer def __a ( __lowerCamelCase, __lowerCamelCase=None ) -> int: UpperCAmelCase_ : str = {} for old_key in state_dict.keys(): UpperCAmelCase_ : Optional[int] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_ : str = key.replace("moe_layer.experts.0", f"""ffn.experts.expert_{expert_idx}""" ) else: UpperCAmelCase_ : Union[str, Any] = key.replace("moe_layer.experts.", "ffn.experts.expert_" ) if "gate" in key: UpperCAmelCase_ : int = key.replace(".moe_layer.gate.wg", ".ffn.router.classifier" ) if "fc2" and "experts" not in key: UpperCAmelCase_ : Tuple = key.replace(".fc2.", ".ffn.fc2." ) if "fc1" and "experts" not in key: UpperCAmelCase_ : str = key.replace(".fc1.", ".ffn.fc1." ) if ".encoder_attn." in key: UpperCAmelCase_ : Any = key.replace(".encoder_attn.", ".cross_attention." ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_ : str = key.replace("encoder_attn_layer_norm", "cross_attention_layer_norm" ) if "final_layer_norm" in key: UpperCAmelCase_ : Optional[Any] = key.replace("final_layer_norm", "ff_layer_norm" ) UpperCAmelCase_ : str = state_dict[old_key] return new_dict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = WEIGHTS_NAME ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : int = 0 os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) for expert in range(__lowerCamelCase ): UpperCAmelCase_ : str = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(__lowerCamelCase ): UpperCAmelCase_ : Tuple = torch.load(__lowerCamelCase )["model"] remove_ignore_keys_(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = rename_fairseq_keys(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = os.path.join( __lowerCamelCase, weights_name.replace(".bin", f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) ) torch.save(__lowerCamelCase, __lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowerCamelCase )[0]].dtype ) # Add the last block UpperCAmelCase_ : Optional[Any] = os.path.join(__lowerCamelCase, weights_name.replace(".bin", f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) ) UpperCAmelCase_ : Union[str, Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = rename_fairseq_keys(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowerCamelCase ) == 1: UpperCAmelCase_ : int = os.path.join(__lowerCamelCase, __lowerCamelCase ) torch.save(__lowerCamelCase, __lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowerCamelCase, __lowerCamelCase ) # Otherwise, let's build the index UpperCAmelCase_ : Tuple = {} for idx, shard in enumerate(__lowerCamelCase ): UpperCAmelCase_ : List[str] = weights_name.replace(".bin", f"""-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin""" ) UpperCAmelCase_ : Optional[Any] = os.path.join(__lowerCamelCase, weights_name.replace(".bin", f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__lowerCamelCase, os.path.join(__lowerCamelCase, __lowerCamelCase ) ) for key in shard: UpperCAmelCase_ : str = shard_file # Add the metadata UpperCAmelCase_ : int = {"total_size": total_size} UpperCAmelCase_ : Any = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), "w", encoding="utf-8" ) as f: UpperCAmelCase_ : int = json.dumps(__lowerCamelCase, indent=2, sort_keys=__lowerCamelCase ) + "\n" f.write(__lowerCamelCase ) return metadata, index if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) _a = parser.parse_args() _a , _a = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _a = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _a = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
369
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets _a = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' _a = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' _a = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=1 , lowercase_="binary" , lowercase_=None ): """simple docstring""" UpperCAmelCase_ : Tuple = fa_score( lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_ ) return {"f1": float(lowercase_ ) if score.size == 1 else score}
370
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __a ( __lowerCamelCase ) -> int: UpperCAmelCase_ : int = int(number**0.5 ) return number == sq * sq def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> Optional[int]: UpperCAmelCase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ : int = x_den * y_den * z_den UpperCAmelCase_ : int = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __a ( __lowerCamelCase = 35 ) -> int: UpperCAmelCase_ : set = set() UpperCAmelCase_ : int UpperCAmelCase_ : Fraction = Fraction(0 ) UpperCAmelCase_ : tuple[int, int] for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 UpperCAmelCase_ : Union[str, Any] = x_num * y_den + x_den * y_num UpperCAmelCase_ : List[str] = x_den * y_den UpperCAmelCase_ : Tuple = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Union[str, Any] = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 UpperCAmelCase_ : Union[str, Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ : int = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): UpperCAmelCase_ : List[Any] = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase_ : Tuple = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Tuple = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 UpperCAmelCase_ : Any = x_num * y_num UpperCAmelCase_ : Dict = x_den * y_num + x_num * y_den UpperCAmelCase_ : Any = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : List[Any] = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 UpperCAmelCase_ : Optional[Any] = x_num * x_num * y_num * y_num UpperCAmelCase_ : Union[str, Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): UpperCAmelCase_ : Tuple = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase_ : List[Any] = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase_ : List[Any] = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : List[str] = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=32 , lowercase_=3 , lowercase_=4 , lowercase_=[10, 20, 30, 40] , lowercase_=[2, 2, 3, 2] , lowercase_=True , lowercase_=True , lowercase_=37 , lowercase_="gelu" , lowercase_=10 , lowercase_=0.02 , lowercase_=["stage2", "stage3", "stage4"] , lowercase_=[2, 3, 4] , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Union[str, Any] = num_stages UpperCAmelCase_ : Optional[Any] = hidden_sizes UpperCAmelCase_ : List[str] = depths UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : Any = num_labels UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : str = out_features UpperCAmelCase_ : Optional[Any] = out_indices UpperCAmelCase_ : List[str] = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = ConvNextModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ConvNextForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Any = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = ConvNextBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = model(lowercase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = ConvNextBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Any = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : str = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ConvNextModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Any = model_class(lowercase_ ) UpperCAmelCase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase_ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : int = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = ConvNextModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __a ( ): UpperCAmelCase_ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(lowercase_ ) UpperCAmelCase_ : List[Any] = self.default_image_processor UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : int = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**lowercase_ ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase_ : str = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @require_torch class A_ (unittest.TestCase ,lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = (ConvNextBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Tuple = ConvNextConfig SCREAMING_SNAKE_CASE__ : Optional[Any] = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ConvNextModelTester(self )
350
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ): model.train() UpperCAmelCase_ : str = model(__lowerCamelCase ) UpperCAmelCase_ : List[str] = F.mse_loss(__lowerCamelCase, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase=False ): set_seed(42 ) UpperCAmelCase_ : Optional[Any] = RegressionModel() UpperCAmelCase_ : Tuple = deepcopy(__lowerCamelCase ) UpperCAmelCase_ : Tuple = RegressionDataset(length=80 ) UpperCAmelCase_ : Any = DataLoader(__lowerCamelCase, batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ : Union[str, Any] = AdamW(params=model.parameters(), lr=1E-3 ) UpperCAmelCase_ : str = AdamW(params=ddp_model.parameters(), lr=1E-3 ) UpperCAmelCase_ : Any = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 ) UpperCAmelCase_ : Optional[Any] = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ : int = accelerator.prepare(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: UpperCAmelCase_ : str = accelerator.prepare(__lowerCamelCase, __lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( __lowerCamelCase ): # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase_ : Optional[int] = get_training_setup(__lowerCamelCase ) # Use a single batch UpperCAmelCase_ : List[Any] = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ : str = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : int = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def __a ( __lowerCamelCase ): # Test on distributed setup that context manager behaves properly UpperCAmelCase_ : str = get_training_setup(__lowerCamelCase ) # Use a single batch UpperCAmelCase_ : Optional[Any] = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ : int = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : Tuple = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def __a ( __lowerCamelCase=False, __lowerCamelCase=False ): UpperCAmelCase_ : int = Accelerator( split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ : Optional[int] = get_training_setup(__lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): UpperCAmelCase_ : Dict = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ : List[str] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase_ : Optional[int] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] GradientState._reset_state() def __a ( __lowerCamelCase=False, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[Any] = Accelerator( split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ : Tuple = get_training_setup(__lowerCamelCase, __lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): UpperCAmelCase_ : Any = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ : Dict = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ : Dict = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __a ( ): UpperCAmelCase_ : int = Accelerator() UpperCAmelCase_ : Optional[Any] = RegressionDataset(length=80 ) UpperCAmelCase_ : Tuple = DataLoader(__lowerCamelCase, batch_size=16 ) UpperCAmelCase_ : int = RegressionDataset(length=96 ) UpperCAmelCase_ : int = DataLoader(__lowerCamelCase, batch_size=16 ) UpperCAmelCase_ : Any = accelerator.prepare(__lowerCamelCase, __lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if iteration < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if batch_num < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ): UpperCAmelCase_ : Union[str, Any] = Accelerator() UpperCAmelCase_ : Any = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", ) test_gradient_accumulation(__lowerCamelCase, __lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<", "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", "`split_batches=False`, `dispatch_batches=False`**", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
"""simple docstring""" def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = [], [] while len(__lowerCamelCase ) > 1: UpperCAmelCase_ : str = min(__lowerCamelCase ), max(__lowerCamelCase ) start.append(__lowerCamelCase ) end.append(__lowerCamelCase ) collection.remove(__lowerCamelCase ) collection.remove(__lowerCamelCase ) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
353
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = checkpoint UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : int = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ : Optional[int] = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ : Any = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ : Dict = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ : str = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ : Optional[Any] = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ : Dict = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ : Optional[Any] = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ : Tuple = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ : Tuple = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ : Union[str, Any] = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ : str = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ : List[str] = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ : int = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ : Dict = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ : List[Any] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ : Optional[int] = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ : str = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ : int = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ : Dict = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } for i in range(__lowerCamelCase ): UpperCAmelCase_ : str = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Dict = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ : List[Any] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ : str = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : List[Any] = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ : List[Any] = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : Optional[int] = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ : List[Any] = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Dict = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Any = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ : Any = renew_vae_attention_paths(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) for i in range(__lowerCamelCase ): UpperCAmelCase_ : str = num_up_blocks - 1 - i UpperCAmelCase_ : Optional[Any] = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Any = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ : Optional[Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ : List[str] = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Tuple = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Dict = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ : int = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : Optional[Any] = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ : Any = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Any = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Tuple = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ : Optional[Any] = renew_vae_attention_paths(__lowerCamelCase ) UpperCAmelCase_ : str = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) return new_checkpoint def __a ( __lowerCamelCase, __lowerCamelCase, ): # Only support V1 UpperCAmelCase_ : int = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ : Dict = io.BytesIO(r.content ) UpperCAmelCase_ : Tuple = OmegaConf.load(__lowerCamelCase ) UpperCAmelCase_ : int = 512 UpperCAmelCase_ : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ : Union[str, Any] = {} with safe_open(__lowerCamelCase, framework="pt", device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ : Union[str, Any] = f.get_tensor(__lowerCamelCase ) else: UpperCAmelCase_ : Union[str, Any] = torch.load(__lowerCamelCase, map_location=__lowerCamelCase )["state_dict"] # Convert the VAE model. UpperCAmelCase_ : Any = create_vae_diffusers_config(__lowerCamelCase, image_size=__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = custom_convert_ldm_vae_checkpoint(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : str = AutoencoderKL(**__lowerCamelCase ) vae.load_state_dict(__lowerCamelCase ) vae.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
354
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
0
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCAmelCase_ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase_ : List[str] = torch.load(__lowerCamelCase, map_location="cpu" ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase_ : Optional[int] = convert_pytorch_state_dict_to_flax(__lowerCamelCase, __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase_ : Optional[int] = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase, __lowerCamelCase ) return flax_state_dict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase_ : int = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase_ : Optional[Any] = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase_ : int = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): UpperCAmelCase_ : Any = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): UpperCAmelCase_ : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : List[str] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase_ : int = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase_ : Optional[Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase_ : str = pt_tuple_key[-2] + "_v" if name is not None: UpperCAmelCase_ : Dict = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __a ( __lowerCamelCase, __lowerCamelCase ): # convert pytorch tensor to numpy UpperCAmelCase_ : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase_ : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase_ : List[str] = flax_model.params["params"] else: UpperCAmelCase_ : List[str] = flax_model.params UpperCAmelCase_ : Tuple = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase_ : Optional[int] = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(__lowerCamelCase ) UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase_ : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : int = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCAmelCase_ : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ : int = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase_ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # add model prefix if necessary UpperCAmelCase_ : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase_ : Tuple = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase, __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase_ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase_ : Dict = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): import torch # Load the index UpperCAmelCase_ : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase_ : Tuple = torch.load(__lowerCamelCase ) UpperCAmelCase_ : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase_ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase_ : Optional[Any] = flax_model.params["params"] UpperCAmelCase_ : Union[str, Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCAmelCase_ : str = flax_model.params UpperCAmelCase_ : Any = flatten_dict(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase_ : str = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : List[Any] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCAmelCase_ : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ : List[Any] = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase_ : str = rename_key_and_reshape_tensor( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # add model prefix if necessary UpperCAmelCase_ : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ : Tuple = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase_ : List[Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: UpperCAmelCase_ : List[str] = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase, __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase_ : Optional[int] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase_ : List[str] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase_ : List[str] = getattr(__lowerCamelCase, "Flax" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase, "rb" ) as state_f: try: UpperCAmelCase_ : List[str] = from_bytes(__lowerCamelCase, state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCAmelCase_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa, __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCAmelCase_ : Any = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, __lowerCamelCase ) UpperCAmelCase_ : Tuple = flatten_dict(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = pt_model.state_dict() UpperCAmelCase_ : Tuple = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase_ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase_ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase_ : Optional[Any] = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ : List[str] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer UpperCAmelCase_ : Optional[int] = flax_key_tuple[:-1] + ("weight",) UpperCAmelCase_ : str = jnp.transpose(__lowerCamelCase, (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer UpperCAmelCase_ : Dict = flax_key_tuple[:-1] + ("weight",) UpperCAmelCase_ : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase_ : Optional[int] = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase_ : Tuple = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCAmelCase_ : Dict = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCAmelCase_ : Optional[Any] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase_ : Any = ".".join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase_ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase_ : Union[str, Any] = key.split("." ) UpperCAmelCase_ : int = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase_ : List[str] = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase_ : str = key_components[-2] + "_v" if name is not None: UpperCAmelCase_ : Optional[int] = key_components[:-3] + [name] UpperCAmelCase_ : Tuple = ".".join(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = key if flax_key in special_pt_names: UpperCAmelCase_ : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase_ : Any = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase, np.ndarray ) else flax_tensor UpperCAmelCase_ : str = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list UpperCAmelCase_ : List[str] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" "If your task is similar to the task the model of the checkpoint was trained on, " f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
355
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
356
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
0