code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import math
import sys
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Tuple = ""
try:
with open(__lowerCamelCase, "rb" ) as binary_file:
UpperCAmelCase_ : Union[str, Any] = binary_file.read()
for dat in data:
UpperCAmelCase_ : List[str] = f"""{dat:08b}"""
result += curr_byte
return result
except OSError:
print("File not accessible" )
sys.exit()
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : int = {"0": "0", "1": "1"}
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = "", ""
UpperCAmelCase_ : str = len(__lowerCamelCase )
for i in range(len(__lowerCamelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
UpperCAmelCase_ : Optional[Any] = lexicon[curr_string]
result += last_match_id
UpperCAmelCase_ : Union[str, Any] = last_match_id + "0"
if math.loga(__lowerCamelCase ).is_integer():
UpperCAmelCase_ : Optional[int] = {}
for curr_key in list(__lowerCamelCase ):
UpperCAmelCase_ : Dict = lexicon.pop(__lowerCamelCase )
UpperCAmelCase_ : int = new_lex
UpperCAmelCase_ : List[str] = last_match_id + "1"
index += 1
UpperCAmelCase_ : str = ""
return result
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[Any] = 8
try:
with open(__lowerCamelCase, "wb" ) as opened_file:
UpperCAmelCase_ : Optional[Any] = [
to_write[i : i + byte_length]
for i in range(0, len(__lowerCamelCase ), __lowerCamelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("10000000" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(__lowerCamelCase, 2 ).to_bytes(1, byteorder="big" ) )
except OSError:
print("File not accessible" )
sys.exit()
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Tuple = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
UpperCAmelCase_ : int = data_bits[counter:]
UpperCAmelCase_ : Optional[int] = data_bits[counter + 1 :]
return data_bits
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[Any] = read_file_binary(__lowerCamelCase )
UpperCAmelCase_ : str = remove_prefix(__lowerCamelCase )
UpperCAmelCase_ : Any = decompress_data(__lowerCamelCase )
write_file_binary(__lowerCamelCase, __lowerCamelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 23 |
"""simple docstring"""
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ )
UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )]
UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin" ) for f in files )
@slow
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ )
UpperCAmelCase_ : Tuple = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : List[str] = 4
UpperCAmelCase_ : Tuple = jax.device_count()
UpperCAmelCase_ : Optional[int] = num_samples * [prompt]
UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(lowercase_ ) == num_samples
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ )
UpperCAmelCase_ : Optional[int] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Union[str, Any] = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[str] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ )
UpperCAmelCase_ : Any = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : str = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Dict = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa )
UpperCAmelCase_ : List[Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Optional[int] = 50
UpperCAmelCase_ : Optional[int] = jax.device_count()
UpperCAmelCase_ : str = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , )
UpperCAmelCase_ : List[Any] = scheduler.create_state()
UpperCAmelCase_ : int = scheduler_state
UpperCAmelCase_ : Union[str, Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : int = 50
UpperCAmelCase_ : str = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , )
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , )
UpperCAmelCase_ : str = replicate(lowercase_ )
UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
_a = [
'good first issue',
'feature request',
'wip',
]
def __a ( ):
UpperCAmelCase_ : Optional[Any] = Github(os.environ["GITHUB_TOKEN"] )
UpperCAmelCase_ : List[Any] = g.get_repo("huggingface/accelerate" )
UpperCAmelCase_ : Union[str, Any] = repo.get_issues(state="open" )
for issue in open_issues:
UpperCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()], key=lambda __lowerCamelCase : i.created_at, reverse=__lowerCamelCase )
UpperCAmelCase_ : Any = comments[0] if len(__lowerCamelCase ) > 0 else None
UpperCAmelCase_ : Optional[Any] = dt.utcnow()
UpperCAmelCase_ : Optional[int] = (current_time - issue.updated_at).days
UpperCAmelCase_ : str = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state="closed" )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
if __name__ == "__main__":
main()
| 23 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
_a = 0
_a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
_a = tuple[int, int]
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : int = pos_x
UpperCAmelCase_ : List[Any] = pos_y
UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x)
UpperCAmelCase_ : Any = goal_x
UpperCAmelCase_ : Dict = goal_y
UpperCAmelCase_ : Any = g_cost
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : int = self.calculate_heuristic()
UpperCAmelCase_ : Any = self.g_cost + self.h_cost
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x
UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowercase_ ) + abs(lowercase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , lowercase_ ):
"""simple docstring"""
return self.f_cost < other.f_cost
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ )
UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ )
UpperCAmelCase_ : str = [self.start]
UpperCAmelCase_ : list[Node] = []
UpperCAmelCase_ : int = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowercase_ )
self.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : str = self.get_successors(lowercase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowercase_ )
else:
self.open_nodes.append(lowercase_ )
return [self.start.pos]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = []
for action in delta:
UpperCAmelCase_ : str = parent.pos_x + action[1]
UpperCAmelCase_ : int = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) )
return successors
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = node
UpperCAmelCase_ : int = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase_ : Optional[int] = current_node.parent
path.reverse()
return path
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowercase_ , lowercase_ )
self.fwd_astar.closed_nodes.append(lowercase_ )
self.bwd_astar.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : Tuple = current_bwd_node
UpperCAmelCase_ : str = current_fwd_node
UpperCAmelCase_ : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : List[Any] = astar.open_nodes.pop(
astar.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowercase_ )
else:
astar.open_nodes.append(lowercase_ )
return [self.fwd_astar.start.pos]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ )
UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase_ : Any = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
_a = (0, 0)
_a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_a = time.time()
_a = AStar(init, goal)
_a = a_star.search()
_a = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
_a = time.time()
_a = BidirectionalAStar(init, goal)
_a = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 23 | 1 |
"""simple docstring"""
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
_a = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n'
_a = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n'
_a = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n'
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" ),
"references": datasets.Value("string" ),
} ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = 0.0
for i, j in zip(lowercase_ , lowercase_ ):
n_correct += 1.0 if math_equivalence.is_equiv(lowercase_ , lowercase_ ) else 0.0
UpperCAmelCase_ : Optional[Any] = n_correct / len(lowercase_ )
return {
"accuracy": accuracy,
}
| 23 |
"""simple docstring"""
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,)
SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),)
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowercase_ )
return config
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.dummy_sample
UpperCAmelCase_ : Dict = 0.1 * sample
UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : int = dummy_past_residuals[:]
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Optional[int] = self.dummy_sample
UpperCAmelCase_ : List[str] = 0.1 * sample
UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:]
UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = self.scheduler_classes[0]
UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ )
UpperCAmelCase_ : Tuple = 10
UpperCAmelCase_ : List[str] = self.dummy_model()
UpperCAmelCase_ : str = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : Any = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
UpperCAmelCase_ : str = self.dummy_sample
UpperCAmelCase_ : List[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ):
scheduler.set_timesteps(lowercase_ )
elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ):
UpperCAmelCase_ : List[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase_ : List[str] = dummy_past_residuals[:]
UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
UpperCAmelCase_ : List[Any] = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.dummy_sample
UpperCAmelCase_ : Optional[int] = 0.1 * sample
UpperCAmelCase_ : List[str] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : List[str] = self.scheduler_classes[0]
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.full_loop()
UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2
assert abs(result_mean.item() - 0.25_80 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 67.39_86 ) < 1E-2
assert abs(result_mean.item() - 0.08_78 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2
assert abs(result_mean.item() - 0.29_95 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2
assert abs(result_mean.item() - 0.24_34 ) < 1E-3
| 23 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_a = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __a ( __lowerCamelCase ):
if isinstance(__lowerCamelCase, torch.Tensor ):
return image
elif isinstance(__lowerCamelCase, PIL.Image.Image ):
UpperCAmelCase_ : Union[str, Any] = [image]
UpperCAmelCase_ : List[Any] = [trans(img.convert("RGB" ) ) for img in image]
UpperCAmelCase_ : Union[str, Any] = torch.stack(__lowerCamelCase )
return image
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
UpperCAmelCase_ : str = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
if strength < 0 or strength > 1:
raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
# get the original timestep using init_timestep
UpperCAmelCase_ : Union[str, Any] = min(int(num_inference_steps * strength ) , lowercase_ )
UpperCAmelCase_ : List[str] = max(num_inference_steps - init_timestep , 0 )
UpperCAmelCase_ : int = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ):
"""simple docstring"""
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}""" )
UpperCAmelCase_ : Optional[int] = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
UpperCAmelCase_ : str = init_latents.shape
UpperCAmelCase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print("add noise to latents at timestep" , lowercase_ )
UpperCAmelCase_ : Optional[Any] = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 50 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ):
"""simple docstring"""
self.check_inputs(lowercase_ )
# 2. Preprocess image
UpperCAmelCase_ : List[str] = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.get_timesteps(lowercase_ , lowercase_ , self.device )
UpperCAmelCase_ : Any = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
UpperCAmelCase_ : Dict = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
UpperCAmelCase_ : List[str] = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
UpperCAmelCase_ : List[str] = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
UpperCAmelCase_ : List[str] = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
UpperCAmelCase_ : str = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase_ : List[str] = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 23 |
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_a = object()
# For specifying empty leaf dict `{}`
_a = object()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ):
UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )]
if matches and all(__lowerCamelCase ):
return True
return False
def __a ( __lowerCamelCase ):
def replace(__lowerCamelCase, __lowerCamelCase ):
for rule, replacement in rules:
if _match(__lowerCamelCase, __lowerCamelCase ):
return replacement
return val
return replace
def __a ( ):
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )),
(("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )),
(("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : List[str] = _get_partition_rules()
UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase )
UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )}
UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(__lowerCamelCase ) )
| 23 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """donut-swin"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.02 , lowercase_=1E-5 , **lowercase_ , ):
"""simple docstring"""
super().__init__(**lowercase_ )
UpperCAmelCase_ : List[Any] = image_size
UpperCAmelCase_ : Optional[Any] = patch_size
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : Optional[int] = embed_dim
UpperCAmelCase_ : Optional[int] = depths
UpperCAmelCase_ : List[str] = len(lowercase_ )
UpperCAmelCase_ : int = num_heads
UpperCAmelCase_ : Dict = window_size
UpperCAmelCase_ : Tuple = mlp_ratio
UpperCAmelCase_ : List[str] = qkv_bias
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Tuple = drop_path_rate
UpperCAmelCase_ : int = hidden_act
UpperCAmelCase_ : Tuple = use_absolute_embeddings
UpperCAmelCase_ : Optional[Any] = layer_norm_eps
UpperCAmelCase_ : Optional[Any] = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase_ : List[Any] = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
| 23 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_a = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )]
if identifier is not None:
UpperCAmelCase_ : Dict = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_ ):
for n_ in n_identifier:
UpperCAmelCase_ : str = [file for file in files if n_ not in file]
else:
UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file]
UpperCAmelCase_ : Union[str, Any] = ignore_files or []
ignore_files.append("__init__.py" )
UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , lowercase_ )
if only_modules:
UpperCAmelCase_ : str = file.split("." )[0]
try:
UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ )
UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = Path("src/transformers" )
UpperCAmelCase_ : str = "modeling"
UpperCAmelCase_ : Optional[Any] = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = Path("src/transformers" )
UpperCAmelCase_ : Any = "tokenization"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = "configuration"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"]
self.analyze_directory(lowercase_ , n_identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = Path("docs/source" )
UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"]
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
| 23 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
_a = logging.get_logger(__name__) # pylint: disable=invalid-name
def __a ( __lowerCamelCase ):
warnings.warn(
"The preprocess method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor.preprocess instead", __lowerCamelCase, )
if isinstance(__lowerCamelCase, torch.Tensor ):
return image
elif isinstance(__lowerCamelCase, PIL.Image.Image ):
UpperCAmelCase_ : int = [image]
if isinstance(image[0], PIL.Image.Image ):
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = image[0].size
UpperCAmelCase_ , UpperCAmelCase_ : str = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
UpperCAmelCase_ : Tuple = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image]
UpperCAmelCase_ : Dict = np.concatenate(__lowerCamelCase, axis=0 )
UpperCAmelCase_ : Union[str, Any] = np.array(__lowerCamelCase ).astype(np.floataa ) / 255.0
UpperCAmelCase_ : Optional[int] = image.transpose(0, 3, 1, 2 )
UpperCAmelCase_ : List[str] = 2.0 * image - 1.0
UpperCAmelCase_ : int = torch.from_numpy(__lowerCamelCase )
elif isinstance(image[0], torch.Tensor ):
UpperCAmelCase_ : List[Any] = torch.cat(__lowerCamelCase, dim=0 )
return image
def __a ( __lowerCamelCase ):
if isinstance(__lowerCamelCase, torch.Tensor ):
return mask
elif isinstance(__lowerCamelCase, PIL.Image.Image ):
UpperCAmelCase_ : Tuple = [mask]
if isinstance(mask[0], PIL.Image.Image ):
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = mask[0].size
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCAmelCase_ : List[Any] = [np.array(m.convert("L" ).resize((w, h), resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask]
UpperCAmelCase_ : Any = np.concatenate(__lowerCamelCase, axis=0 )
UpperCAmelCase_ : Union[str, Any] = mask.astype(np.floataa ) / 255.0
UpperCAmelCase_ : Optional[int] = 0
UpperCAmelCase_ : Union[str, Any] = 1
UpperCAmelCase_ : Any = torch.from_numpy(__lowerCamelCase )
elif isinstance(mask[0], torch.Tensor ):
UpperCAmelCase_ : List[str] = torch.cat(__lowerCamelCase, dim=0 )
return mask
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : UNetaDModel
SCREAMING_SNAKE_CASE__ : RePaintScheduler
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
@torch.no_grad()
def __call__( self , lowercase_ , lowercase_ , lowercase_ = 250 , lowercase_ = 0.0 , lowercase_ = 10 , lowercase_ = 10 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = image
UpperCAmelCase_ : Optional[Any] = _preprocess_image(lowercase_ )
UpperCAmelCase_ : Optional[int] = original_image.to(device=self.device , dtype=self.unet.dtype )
UpperCAmelCase_ : Optional[Any] = _preprocess_mask(lowercase_ )
UpperCAmelCase_ : str = mask_image.to(device=self.device , dtype=self.unet.dtype )
UpperCAmelCase_ : Union[str, Any] = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
UpperCAmelCase_ : Dict = original_image.shape
UpperCAmelCase_ : List[str] = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(lowercase_ , lowercase_ , lowercase_ , self.device )
UpperCAmelCase_ : Optional[Any] = eta
UpperCAmelCase_ : List[str] = self.scheduler.timesteps[0] + 1
UpperCAmelCase_ : Dict = generator[0] if isinstance(lowercase_ , lowercase_ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
UpperCAmelCase_ : int = self.unet(lowercase_ , lowercase_ ).sample
# compute previous image: x_t -> x_t-1
UpperCAmelCase_ : Dict = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
UpperCAmelCase_ : Optional[Any] = self.scheduler.undo_step(lowercase_ , lowercase_ , lowercase_ )
UpperCAmelCase_ : List[Any] = t
UpperCAmelCase_ : str = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase_ : List[str] = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 23 |
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
_a = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
return (preds == labels).mean()
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0]
UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}"""
if task_name == "cola":
return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mrpc":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "sts-b":
return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase )
elif task_name == "qqp":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" )
if task_name == "xnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
| 23 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json',
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """lxmert"""
SCREAMING_SNAKE_CASE__ : Tuple = {}
def __init__( self , lowercase_=3_0522 , lowercase_=768 , lowercase_=12 , lowercase_=9500 , lowercase_=1600 , lowercase_=400 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=9 , lowercase_=5 , lowercase_=5 , lowercase_=2048 , lowercase_=4 , lowercase_=6.67 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = vocab_size
UpperCAmelCase_ : List[Any] = hidden_size
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : Optional[int] = hidden_act
UpperCAmelCase_ : List[str] = intermediate_size
UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob
UpperCAmelCase_ : List[str] = attention_probs_dropout_prob
UpperCAmelCase_ : List[str] = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = type_vocab_size
UpperCAmelCase_ : Tuple = initializer_range
UpperCAmelCase_ : Optional[Any] = layer_norm_eps
UpperCAmelCase_ : Tuple = num_qa_labels
UpperCAmelCase_ : Optional[Any] = num_object_labels
UpperCAmelCase_ : List[Any] = num_attr_labels
UpperCAmelCase_ : Optional[Any] = l_layers
UpperCAmelCase_ : Tuple = x_layers
UpperCAmelCase_ : Tuple = r_layers
UpperCAmelCase_ : Union[str, Any] = visual_feat_dim
UpperCAmelCase_ : Optional[Any] = visual_pos_dim
UpperCAmelCase_ : Union[str, Any] = visual_loss_normalizer
UpperCAmelCase_ : Optional[Any] = task_matched
UpperCAmelCase_ : Tuple = task_mask_lm
UpperCAmelCase_ : int = task_obj_predict
UpperCAmelCase_ : str = task_qa
UpperCAmelCase_ : str = visual_obj_loss
UpperCAmelCase_ : Union[str, Any] = visual_attr_loss
UpperCAmelCase_ : Any = visual_feat_loss
UpperCAmelCase_ : Dict = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowercase_ )
| 23 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.json'}
_a = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
_a = {'mgp-str': 27}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ):
"""simple docstring"""
super().__init__(
unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , )
with open(lowercase_ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(lowercase_ )
UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = []
for s in text:
char_tokens.extend(lowercase_ )
return char_tokens
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.decoder.get(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) )
return
UpperCAmelCase_ : Optional[int] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowercase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" )
return (vocab_file,)
| 23 | 1 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
_a = logging.get_logger(__name__)
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = question_encoder
UpperCAmelCase_ : int = generator
UpperCAmelCase_ : List[Any] = self.question_encoder
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
if os.path.isfile(lowercase_ ):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
UpperCAmelCase_ : int = os.path.join(lowercase_ , "question_encoder_tokenizer" )
UpperCAmelCase_ : Any = os.path.join(lowercase_ , "generator_tokenizer" )
self.question_encoder.save_pretrained(lowercase_ )
self.generator.save_pretrained(lowercase_ )
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase_ : Optional[int] = kwargs.pop("config" , lowercase_ )
if config is None:
UpperCAmelCase_ : Dict = RagConfig.from_pretrained(lowercase_ )
UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(
lowercase_ , config=config.question_encoder , subfolder="question_encoder_tokenizer" )
UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(
lowercase_ , config=config.generator , subfolder="generator_tokenizer" )
return cls(question_encoder=lowercase_ , generator=lowercase_ )
def __call__( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
return self.current_tokenizer(*lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
return self.generator.batch_decode(*lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
return self.generator.decode(*lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.question_encoder
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.generator
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = "longest" , lowercase_ = None , lowercase_ = True , **lowercase_ , ):
"""simple docstring"""
warnings.warn(
"`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the "
"regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` "
"context manager to prepare your targets. See the documentation of your specific tokenizer for more "
"details" , lowercase_ , )
if max_length is None:
UpperCAmelCase_ : int = self.current_tokenizer.model_max_length
UpperCAmelCase_ : Union[str, Any] = self(
lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase_ : List[str] = self.current_tokenizer.model_max_length
UpperCAmelCase_ : Union[str, Any] = self(
text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , )
UpperCAmelCase_ : List[Any] = labels["input_ids"]
return model_inputs
| 23 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
_a = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
_a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
_a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __a ( __lowerCamelCase ):
return x[0]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase )
UpperCAmelCase_ : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase )
UpperCAmelCase_ : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase )
UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] )
UpperCAmelCase_ : str = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase )
UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__lowerCamelCase )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase )
UpperCAmelCase_ : int = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
_a = logging.get_logger(__name__)
# General docstring
_a = 'RegNetConfig'
# Base docstring
_a = 'facebook/regnet-y-040'
_a = [1, 1_088, 7, 7]
# Image classification docstring
_a = 'facebook/regnet-y-040'
_a = 'tabby, tabby cat'
_a = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ = 3 , lowercase_ = 1 , lowercase_ = 1 , lowercase_ = "relu" , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Optional[Any] = nn.Convad(
lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , groups=lowercase_ , bias=lowercase_ , )
UpperCAmelCase_ : List[Any] = nn.BatchNormad(lowercase_ )
UpperCAmelCase_ : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.convolution(lowercase_ )
UpperCAmelCase_ : Dict = self.normalization(lowercase_ )
UpperCAmelCase_ : Tuple = self.activation(lowercase_ )
return hidden_state
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : str = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
UpperCAmelCase_ : Dict = config.num_channels
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
UpperCAmelCase_ : Optional[Any] = self.embedder(lowercase_ )
return hidden_state
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ = 2 ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Tuple = nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ )
UpperCAmelCase_ : Optional[int] = nn.BatchNormad(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.convolution(lowercase_ )
UpperCAmelCase_ : Optional[int] = self.normalization(lowercase_ )
return hidden_state
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) )
UpperCAmelCase_ : List[Any] = nn.Sequential(
nn.Convad(lowercase_ , lowercase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowercase_ , lowercase_ , kernel_size=1 ) , nn.Sigmoid() , )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
# b c h w -> b c 1 1
UpperCAmelCase_ : List[str] = self.pooler(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.attention(lowercase_ )
UpperCAmelCase_ : Dict = hidden_state * attention
return hidden_state
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1 ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Optional[Any] = in_channels != out_channels or stride != 1
UpperCAmelCase_ : List[str] = max(1 , out_channels // config.groups_width )
UpperCAmelCase_ : Tuple = (
RegNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity()
)
UpperCAmelCase_ : Optional[int] = nn.Sequential(
RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ , groups=lowercase_ , activation=config.hidden_act ) , RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , )
UpperCAmelCase_ : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = hidden_state
UpperCAmelCase_ : int = self.layer(lowercase_ )
UpperCAmelCase_ : List[Any] = self.shortcut(lowercase_ )
hidden_state += residual
UpperCAmelCase_ : Tuple = self.activation(lowercase_ )
return hidden_state
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1 ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : int = in_channels != out_channels or stride != 1
UpperCAmelCase_ : Any = max(1 , out_channels // config.groups_width )
UpperCAmelCase_ : Dict = (
RegNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity()
)
UpperCAmelCase_ : Union[str, Any] = nn.Sequential(
RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ , groups=lowercase_ , activation=config.hidden_act ) , RegNetSELayer(lowercase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , )
UpperCAmelCase_ : int = ACTaFN[config.hidden_act]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = hidden_state
UpperCAmelCase_ : str = self.layer(lowercase_ )
UpperCAmelCase_ : List[str] = self.shortcut(lowercase_ )
hidden_state += residual
UpperCAmelCase_ : Optional[int] = self.activation(lowercase_ )
return hidden_state
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 2 , lowercase_ = 2 , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Optional[Any] = RegNetXLayer if config.layer_type == "x" else RegNetYLayer
UpperCAmelCase_ : Tuple = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
lowercase_ , lowercase_ , lowercase_ , stride=lowercase_ , ) , *[layer(lowercase_ , lowercase_ , lowercase_ ) for _ in range(depth - 1 )] , )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.layers(lowercase_ )
return hidden_state
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Dict = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
UpperCAmelCase_ : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ):
self.stages.append(RegNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = False , lowercase_ = True ):
"""simple docstring"""
UpperCAmelCase_ : int = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCAmelCase_ : Optional[Any] = hidden_states + (hidden_state,)
UpperCAmelCase_ : Union[str, Any] = stage_module(lowercase_ )
if output_hidden_states:
UpperCAmelCase_ : str = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=lowercase_ , hidden_states=lowercase_ )
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = RegNetConfig
SCREAMING_SNAKE_CASE__ : List[Any] = """regnet"""
SCREAMING_SNAKE_CASE__ : Any = """pixel_values"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
if isinstance(lowercase_ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" )
elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=False ):
"""simple docstring"""
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = value
_a = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
_a = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" ,lowercase__ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ ):
"""simple docstring"""
super().__init__(lowercase_ )
UpperCAmelCase_ : int = config
UpperCAmelCase_ : List[str] = RegNetEmbeddings(lowercase_ )
UpperCAmelCase_ : Tuple = RegNetEncoder(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_ : int = self.embedder(lowercase_ )
UpperCAmelCase_ : Dict = self.encoder(
lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ )
UpperCAmelCase_ : Optional[int] = encoder_outputs[0]
UpperCAmelCase_ : Optional[int] = self.pooler(lowercase_ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" ,lowercase__ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ ):
"""simple docstring"""
super().__init__(lowercase_ )
UpperCAmelCase_ : Optional[int] = config.num_labels
UpperCAmelCase_ : Optional[int] = RegNetModel(lowercase_ )
# classification head
UpperCAmelCase_ : Union[str, Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase__ ( self , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
UpperCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_ : List[str] = self.regnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ )
UpperCAmelCase_ : List[str] = outputs.pooler_output if return_dict else outputs[1]
UpperCAmelCase_ : Any = self.classifier(lowercase_ )
UpperCAmelCase_ : Optional[Any] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCAmelCase_ : str = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCAmelCase_ : int = "single_label_classification"
else:
UpperCAmelCase_ : int = "multi_label_classification"
if self.config.problem_type == "regression":
UpperCAmelCase_ : Tuple = MSELoss()
if self.num_labels == 1:
UpperCAmelCase_ : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
UpperCAmelCase_ : Any = loss_fct(lowercase_ , lowercase_ )
elif self.config.problem_type == "single_label_classification":
UpperCAmelCase_ : str = CrossEntropyLoss()
UpperCAmelCase_ : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
UpperCAmelCase_ : List[str] = BCEWithLogitsLoss()
UpperCAmelCase_ : List[Any] = loss_fct(lowercase_ , lowercase_ )
if not return_dict:
UpperCAmelCase_ : Optional[int] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states )
| 23 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_a = logging.getLogger()
def __a ( ):
UpperCAmelCase_ : Tuple = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase_ : Dict = parser.parse_args()
return args.f
class A_ (lowercase__ ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowercase_ , "argv" , lowercase_ ):
UpperCAmelCase_ : List[str] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase_ , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
| 23 | 1 |
"""simple docstring"""
import os
import numpy
import onnx
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[Any] = a.name
UpperCAmelCase_ : Any = b.name
UpperCAmelCase_ : List[str] = ""
UpperCAmelCase_ : Dict = ""
UpperCAmelCase_ : List[Any] = a == b
UpperCAmelCase_ : List[Any] = name_a
UpperCAmelCase_ : Any = name_b
return res
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(__lowerCamelCase, __lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, __lowerCamelCase, __lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g, __lowerCamelCase, __lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, __lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
for n in graph_proto.node:
_node_replace_input_with(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Tuple = list(model.graph.initializer )
UpperCAmelCase_ : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
UpperCAmelCase_ : List[str] = inits[i].name
UpperCAmelCase_ : Union[str, Any] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, __lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : str = os.path.dirname(__lowerCamelCase )
UpperCAmelCase_ : Dict = os.path.basename(__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = onnx.load(os.path.join(__lowerCamelCase, __lowerCamelCase ) )
UpperCAmelCase_ : Dict = list(model.graph.initializer )
UpperCAmelCase_ : Any = set()
UpperCAmelCase_ : List[Any] = {}
UpperCAmelCase_ : Union[str, Any] = []
UpperCAmelCase_ : str = 0
for i in range(len(__lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(__lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(__lowerCamelCase )
dup_set.add(__lowerCamelCase )
UpperCAmelCase_ : Optional[int] = inits[j].data_type
UpperCAmelCase_ : int = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("unexpected data type: ", __lowerCamelCase )
total_reduced_size += mem_size
UpperCAmelCase_ : Optional[Any] = inits[i].name
UpperCAmelCase_ : Dict = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(__lowerCamelCase )
else:
UpperCAmelCase_ : Optional[Any] = [name_j]
ind_to_replace.append((j, i) )
print("total reduced size: ", total_reduced_size / 1024 / 1024 / 1024, "GB" )
UpperCAmelCase_ : str = sorted(__lowerCamelCase )
_remove_dup_initializers_from_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : List[Any] = "optimized_" + model_file_name
UpperCAmelCase_ : int = os.path.join(__lowerCamelCase, __lowerCamelCase )
onnx.save(__lowerCamelCase, __lowerCamelCase )
return new_model
| 23 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 | 1 |
"""simple docstring"""
from itertools import product
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : str = sides_number
UpperCAmelCase_ : int = max_face_number * dice_number
UpperCAmelCase_ : Union[str, Any] = [0] * (max_total + 1)
UpperCAmelCase_ : str = 1
UpperCAmelCase_ : Union[str, Any] = range(__lowerCamelCase, max_face_number + 1 )
for dice_numbers in product(__lowerCamelCase, repeat=__lowerCamelCase ):
UpperCAmelCase_ : int = sum(__lowerCamelCase )
totals_frequencies[total] += 1
return totals_frequencies
def __a ( ):
UpperCAmelCase_ : str = total_frequency_distribution(
sides_number=4, dice_number=9 )
UpperCAmelCase_ : Dict = total_frequency_distribution(
sides_number=6, dice_number=6 )
UpperCAmelCase_ : List[str] = 0
UpperCAmelCase_ : Union[str, Any] = 9
UpperCAmelCase_ : Optional[int] = 4 * 9
UpperCAmelCase_ : int = 6
for peter_total in range(__lowerCamelCase, max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
UpperCAmelCase_ : Optional[int] = (4**9) * (6**6)
UpperCAmelCase_ : Dict = peter_wins_count / total_games_number
UpperCAmelCase_ : Tuple = round(__lowerCamelCase, ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(f"""{solution() = }""")
| 23 |
"""simple docstring"""
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_a = logging.get_logger(__name__) # pylint: disable=invalid-name
_a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n'
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ):
UpperCAmelCase_ : List[str] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCAmelCase_ : Tuple = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , )
UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
if latents is None:
UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
UpperCAmelCase_ : str = latents.to(lowercase_ )
UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma
return latents
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
UpperCAmelCase_ : int = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=lowercase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCAmelCase_ : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ )
# We'll offload the last model manually.
UpperCAmelCase_ : Tuple = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase_ , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase_ )
def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : str = self._execution_device
UpperCAmelCase_ : List[Any] = guidance_scale > 1.0
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 )
UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 )
if do_classifier_free_guidance:
UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ )
self.scheduler.set_timesteps(lowercase_ , device=lowercase_ )
UpperCAmelCase_ : List[Any] = self.scheduler.timesteps
UpperCAmelCase_ : List[str] = self.unet.config.in_channels
UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor )
# create initial latent
UpperCAmelCase_ : int = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase_ ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds}
UpperCAmelCase_ : Optional[Any] = self.unet(
sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0]
if do_classifier_free_guidance:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 )
UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , "variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ : List[str] = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0]
# post-processing
UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5
UpperCAmelCase_ : int = image.clamp(0 , 1 )
UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 23 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
_a = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = """tapas"""
def __init__( self , lowercase_=3_0522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1024 , lowercase_=[3, 256, 256, 2, 256, 256, 10] , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=0 , lowercase_=10.0 , lowercase_=0 , lowercase_=1.0 , lowercase_=None , lowercase_=1.0 , lowercase_=False , lowercase_=None , lowercase_=1.0 , lowercase_=1.0 , lowercase_=False , lowercase_=False , lowercase_="ratio" , lowercase_=None , lowercase_=None , lowercase_=64 , lowercase_=32 , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ):
"""simple docstring"""
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Union[str, Any] = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = intermediate_size
UpperCAmelCase_ : Tuple = hidden_dropout_prob
UpperCAmelCase_ : int = attention_probs_dropout_prob
UpperCAmelCase_ : Tuple = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_sizes
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : List[Any] = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase_ : Any = positive_label_weight
UpperCAmelCase_ : List[Any] = num_aggregation_labels
UpperCAmelCase_ : Any = aggregation_loss_weight
UpperCAmelCase_ : Optional[Any] = use_answer_as_supervision
UpperCAmelCase_ : Optional[int] = answer_loss_importance
UpperCAmelCase_ : str = use_normalized_answer_loss
UpperCAmelCase_ : Dict = huber_loss_delta
UpperCAmelCase_ : List[str] = temperature
UpperCAmelCase_ : Union[str, Any] = aggregation_temperature
UpperCAmelCase_ : List[Any] = use_gumbel_for_cells
UpperCAmelCase_ : Tuple = use_gumbel_for_aggregation
UpperCAmelCase_ : str = average_approximation_function
UpperCAmelCase_ : Dict = cell_selection_preference
UpperCAmelCase_ : Optional[Any] = answer_loss_cutoff
UpperCAmelCase_ : Optional[int] = max_num_rows
UpperCAmelCase_ : Optional[Any] = max_num_columns
UpperCAmelCase_ : Union[str, Any] = average_logits_per_cell
UpperCAmelCase_ : int = select_one_column
UpperCAmelCase_ : List[str] = allow_empty_column_selection
UpperCAmelCase_ : Tuple = init_cell_selection_weights_to_zero
UpperCAmelCase_ : int = reset_position_index_per_cell
UpperCAmelCase_ : Optional[int] = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase_ : int = aggregation_labels
UpperCAmelCase_ : List[Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , lowercase_ ):
UpperCAmelCase_ : str = {int(lowercase_ ): v for k, v in aggregation_labels.items()}
| 23 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a = logging.get_logger(__name__)
_a = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """detr"""
SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = backbone_config.get("model_type" )
UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None
UpperCAmelCase_ : int = use_timm_backbone
UpperCAmelCase_ : int = backbone_config
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Union[str, Any] = d_model
UpperCAmelCase_ : str = encoder_ffn_dim
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : List[Any] = encoder_attention_heads
UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : List[str] = attention_dropout
UpperCAmelCase_ : Any = activation_dropout
UpperCAmelCase_ : str = activation_function
UpperCAmelCase_ : Tuple = init_std
UpperCAmelCase_ : Optional[Any] = init_xavier_std
UpperCAmelCase_ : Optional[Any] = encoder_layerdrop
UpperCAmelCase_ : Optional[int] = decoder_layerdrop
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : int = auxiliary_loss
UpperCAmelCase_ : Optional[Any] = position_embedding_type
UpperCAmelCase_ : Tuple = backbone
UpperCAmelCase_ : Optional[int] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : Any = bbox_cost
UpperCAmelCase_ : int = giou_cost
# Loss coefficients
UpperCAmelCase_ : str = mask_loss_coefficient
UpperCAmelCase_ : Any = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : List[str] = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.d_model
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
return cls(backbone_config=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict()
UpperCAmelCase_ : str = self.__class__.model_type
return output
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-5
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 12
| 23 | 1 |
"""simple docstring"""
_a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
_a = [None] * 10_000_000
_a = True
_a = False
def __a ( __lowerCamelCase ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) )
UpperCAmelCase_ : List[str] = number_chain
while number < 1000_0000:
UpperCAmelCase_ : List[Any] = number_chain
number *= 10
return number_chain
def __a ( __lowerCamelCase = 1000_0000 ):
for i in range(1, __lowerCamelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 23 |
"""simple docstring"""
_a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
_a = [None] * 10_000_000
_a = True
_a = False
def __a ( __lowerCamelCase ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) )
UpperCAmelCase_ : List[str] = number_chain
while number < 1000_0000:
UpperCAmelCase_ : List[Any] = number_chain
number *= 10
return number_chain
def __a ( __lowerCamelCase = 1000_0000 ):
for i in range(1, __lowerCamelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 23 | 1 |
"""simple docstring"""
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
for param, grad_param in zip(model_a.parameters(), model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad, grad_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad, grad_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ):
model.train()
UpperCAmelCase_ : str = model(__lowerCamelCase )
UpperCAmelCase_ : List[str] = F.mse_loss(__lowerCamelCase, target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase=False ):
set_seed(42 )
UpperCAmelCase_ : Optional[Any] = RegressionModel()
UpperCAmelCase_ : Tuple = deepcopy(__lowerCamelCase )
UpperCAmelCase_ : Tuple = RegressionDataset(length=80 )
UpperCAmelCase_ : Any = DataLoader(__lowerCamelCase, batch_size=16 )
model.to(accelerator.device )
if sched:
UpperCAmelCase_ : Union[str, Any] = AdamW(params=model.parameters(), lr=1E-3 )
UpperCAmelCase_ : str = AdamW(params=ddp_model.parameters(), lr=1E-3 )
UpperCAmelCase_ : Any = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 )
UpperCAmelCase_ : Optional[Any] = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 )
# Make a copy of `model`
if sched:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = accelerator.prepare(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
else:
UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare(__lowerCamelCase, __lowerCamelCase )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def __a ( __lowerCamelCase ):
# Test when on a single CPU or GPU that the context manager does nothing
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = get_training_setup(__lowerCamelCase )
# Use a single batch
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = next(iter(__lowerCamelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__lowerCamelCase ):
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
else:
# Sync grads
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad, ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase_ : int = ddp_input[torch.randperm(len(__lowerCamelCase ) )]
def __a ( __lowerCamelCase ):
# Test on distributed setup that context manager behaves properly
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = get_training_setup(__lowerCamelCase )
# Use a single batch
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = next(iter(__lowerCamelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase_ , UpperCAmelCase_ : int = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase_ , UpperCAmelCase_ : Dict = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__lowerCamelCase ):
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
else:
# Sync grads
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is False
), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is True
), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase_ : Tuple = ddp_input[torch.randperm(len(__lowerCamelCase ) )]
def __a ( __lowerCamelCase=False, __lowerCamelCase=False ):
UpperCAmelCase_ : int = Accelerator(
split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = get_training_setup(__lowerCamelCase )
for iteration, batch in enumerate(__lowerCamelCase ):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase_ , UpperCAmelCase_ : int = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(__lowerCamelCase ):
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCamelCase ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase_ : Optional[int] = ddp_input[torch.randperm(len(__lowerCamelCase ) )]
GradientState._reset_state()
def __a ( __lowerCamelCase=False, __lowerCamelCase=False ):
UpperCAmelCase_ : Optional[Any] = Accelerator(
split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_training_setup(__lowerCamelCase, __lowerCamelCase )
for iteration, batch in enumerate(__lowerCamelCase ):
UpperCAmelCase_ , UpperCAmelCase_ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase_ , UpperCAmelCase_ : str = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCamelCase )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(__lowerCamelCase ):
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n"""
UpperCAmelCase_ : Dict = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCamelCase ))
if accelerator.num_processes > 1:
check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def __a ( ):
UpperCAmelCase_ : int = Accelerator()
UpperCAmelCase_ : Optional[Any] = RegressionDataset(length=80 )
UpperCAmelCase_ : Tuple = DataLoader(__lowerCamelCase, batch_size=16 )
UpperCAmelCase_ : int = RegressionDataset(length=96 )
UpperCAmelCase_ : int = DataLoader(__lowerCamelCase, batch_size=16 )
UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowerCamelCase, __lowerCamelCase )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(__lowerCamelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase )
if iteration < len(__lowerCamelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(__lowerCamelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase )
if batch_num < len(__lowerCamelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def __a ( ):
UpperCAmelCase_ : Union[str, Any] = Accelerator()
UpperCAmelCase_ : Any = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(__lowerCamelCase )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(__lowerCamelCase )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", )
test_gradient_accumulation(__lowerCamelCase, __lowerCamelCase )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<", "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ", "`split_batches=False`, `dispatch_batches=False`**", )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", )
test_gradient_accumulation_with_opt_and_scheduler(__lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 23 |
"""simple docstring"""
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# Return True if there is node that has not iterated.
UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase )
UpperCAmelCase_ : Any = []
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Tuple = True
while queue:
UpperCAmelCase_ : str = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Any = True
UpperCAmelCase_ : Union[str, Any] = u
return visited[t]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# This array is filled by BFS and to store path
UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase ))
UpperCAmelCase_ : Any = 0
while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = float("Inf" )
UpperCAmelCase_ : Tuple = sink
while s != source:
# Find the minimum value in select path
UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] )
UpperCAmelCase_ : Dict = parent[s]
max_flow += path_flow
UpperCAmelCase_ : Optional[Any] = sink
while v != source:
UpperCAmelCase_ : List[str] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
UpperCAmelCase_ : Optional[int] = parent[v]
return max_flow
_a = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
_a , _a = 0, 5
print(ford_fulkerson(graph, source, sink))
| 23 | 1 |
"""simple docstring"""
from math import factorial
_a = {str(digit): factorial(digit) for digit in range(10)}
def __a ( __lowerCamelCase ):
if not isinstance(__lowerCamelCase, __lowerCamelCase ):
raise TypeError("Parameter number must be int" )
if number < 0:
raise ValueError("Parameter number must be greater than or equal to 0" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCamelCase ) )
def __a ( __lowerCamelCase = 60, __lowerCamelCase = 100_0000 ):
if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not isinstance(__lowerCamelCase, __lowerCamelCase ):
raise TypeError("Parameters chain_length and number_limit must be int" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"Parameters chain_length and number_limit must be greater than 0" )
# the counter for the chains with the exact desired length
UpperCAmelCase_ : str = 0
# the cached sizes of the previous chains
UpperCAmelCase_ : dict[int, int] = {}
for start_chain_element in range(1, __lowerCamelCase ):
# The temporary set will contain the elements of the chain
UpperCAmelCase_ : Optional[Any] = set()
UpperCAmelCase_ : Optional[int] = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
UpperCAmelCase_ : Tuple = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__lowerCamelCase )
chain_set_length += 1
UpperCAmelCase_ : str = digit_factorial_sum(__lowerCamelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
UpperCAmelCase_ : str = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 23 |
"""simple docstring"""
import datasets
_a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n'
_a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n'
_a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n'
def __a ( __lowerCamelCase, __lowerCamelCase ):
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
"references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
} ) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
| 23 | 1 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
_a = 0
_a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
_a = tuple[int, int]
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : int = pos_x
UpperCAmelCase_ : List[Any] = pos_y
UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x)
UpperCAmelCase_ : Any = goal_x
UpperCAmelCase_ : Dict = goal_y
UpperCAmelCase_ : Any = g_cost
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : int = self.calculate_heuristic()
UpperCAmelCase_ : Any = self.g_cost + self.h_cost
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x
UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowercase_ ) + abs(lowercase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , lowercase_ ):
"""simple docstring"""
return self.f_cost < other.f_cost
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ )
UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ )
UpperCAmelCase_ : str = [self.start]
UpperCAmelCase_ : list[Node] = []
UpperCAmelCase_ : int = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowercase_ )
self.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : str = self.get_successors(lowercase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowercase_ )
else:
self.open_nodes.append(lowercase_ )
return [self.start.pos]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = []
for action in delta:
UpperCAmelCase_ : str = parent.pos_x + action[1]
UpperCAmelCase_ : int = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) )
return successors
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = node
UpperCAmelCase_ : int = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase_ : Optional[int] = current_node.parent
path.reverse()
return path
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowercase_ , lowercase_ )
self.fwd_astar.closed_nodes.append(lowercase_ )
self.bwd_astar.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : Tuple = current_bwd_node
UpperCAmelCase_ : str = current_fwd_node
UpperCAmelCase_ : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : List[Any] = astar.open_nodes.pop(
astar.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowercase_ )
else:
astar.open_nodes.append(lowercase_ )
return [self.fwd_astar.start.pos]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ )
UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase_ : Any = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
_a = (0, 0)
_a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_a = time.time()
_a = AStar(init, goal)
_a = a_star.search()
_a = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
_a = time.time()
_a = BidirectionalAStar(init, goal)
_a = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 23 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = feature_size
UpperCAmelCase_ : Any = sampling_rate
UpperCAmelCase_ : Any = padding_value
UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" )
UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ )
super().__init__(**lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCAmelCase_ : Dict = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : List[str] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(lowercase_ ) == 0:
if return_attention_mask:
UpperCAmelCase_ : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase_ : List[str] = required_input[0]
if isinstance(lowercase_ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase_ : Any = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(lowercase_ ):
UpperCAmelCase_ : Dict = "tf"
elif is_torch_tensor(lowercase_ ):
UpperCAmelCase_ : Any = "pt"
elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase_ : str = "np"
else:
raise ValueError(
F"""type of {first_element} unknown: {type(lowercase_ )}. """
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ )
else:
UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ )
UpperCAmelCase_ : str = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : int = len(lowercase_ )
if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
UpperCAmelCase_ : int = []
for i in range(lowercase_ ):
UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase_ : List[str] = self._truncate(
lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , )
truncated_inputs.append(lowercase_ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH
UpperCAmelCase_ : List[str] = {}
for i in range(lowercase_ ):
# padding
UpperCAmelCase_ : int = self._pad(
truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase_ : Any = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ : List[Any] = value.astype(np.floataa )
batch_outputs[key].append(lowercase_ )
return BatchFeature(lowercase_ , tensor_type=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase_ : Tuple = len(lowercase_ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = max_length - len(lowercase_ )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase_ : List[Any] = np.pad(
processed_features["attention_mask"] , (0, difference) )
UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase_ : Optional[Any] = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase_ : Optional[Any] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase_ : str = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length
if needs_to_be_truncated:
UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length]
return processed_features
def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ):
"""simple docstring"""
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = padding
else:
UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 23 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = StableUnCLIPImgaImgPipeline
SCREAMING_SNAKE_CASE__ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
SCREAMING_SNAKE_CASE__ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ : Tuple = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
SCREAMING_SNAKE_CASE__ : Optional[Any] = frozenset([] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = 32
UpperCAmelCase_ : Dict = embedder_hidden_size
# image encoding components
UpperCAmelCase_ : List[str] = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
UpperCAmelCase_ : str = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=lowercase_ , projection_dim=lowercase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase_ : Any = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
UpperCAmelCase_ : int = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase_ : Any = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
UpperCAmelCase_ : int = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = AutoencoderKL()
UpperCAmelCase_ : List[Any] = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 , lowercase_=True ):
"""simple docstring"""
if str(lowercase_ ).startswith("mps" ):
UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowercase_ )
else:
UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
UpperCAmelCase_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
if pil_image:
UpperCAmelCase_ : Any = input_image * 0.5 + 0.5
UpperCAmelCase_ : str = input_image.clamp(0 , 1 )
UpperCAmelCase_ : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase_ : Optional[Any] = DiffusionPipeline.numpy_to_pil(lowercase_ )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Optional[Any] = self.get_dummy_components()
UpperCAmelCase_ : Union[str, Any] = StableUnCLIPImgaImgPipeline(**lowercase_ )
UpperCAmelCase_ : Tuple = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
UpperCAmelCase_ : Dict = self.get_dummy_inputs(lowercase_ )
inputs.update({"image_embeds": None} )
UpperCAmelCase_ : List[str] = sd_pipe(**lowercase_ ).images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Optional[int] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
UpperCAmelCase_ : Union[str, Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" )
UpperCAmelCase_ : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase_ : Any = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe(lowercase_ , "anime turle" , generator=lowercase_ , output_type="np" )
UpperCAmelCase_ : int = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
UpperCAmelCase_ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" )
UpperCAmelCase_ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase_ : Any = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ : Tuple = pipe(lowercase_ , "anime turle" , generator=lowercase_ , output_type="np" )
UpperCAmelCase_ : Tuple = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase_ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
UpperCAmelCase_ : str = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase_ : List[str] = pipe(
lowercase_ , "anime turtle" , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase_ : Dict = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 23 |
"""simple docstring"""
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 )
UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 )
UpperCAmelCase_ : Optional[Any] = Accelerator()
UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ )
try:
pickle.loads(pickle.dumps(lowercase_ ) )
except Exception as e:
self.fail(F"""Accelerated optimizer pickling failed with {e}""" )
AcceleratorState._reset_state()
| 23 | 1 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
_a = 'examples/'
_a = {
'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'),
'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
_a = {
'init': 'src/diffusers/__init__.py',
'setup': 'setup.py',
}
_a = 'README.md'
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f:
UpperCAmelCase_ : List[Any] = f.read()
UpperCAmelCase_ , UpperCAmelCase_ : Dict = REPLACE_PATTERNS[pattern]
UpperCAmelCase_ : Optional[int] = replace.replace("VERSION", __lowerCamelCase )
UpperCAmelCase_ : Any = re_pattern.sub(__lowerCamelCase, __lowerCamelCase )
with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f:
f.write(__lowerCamelCase )
def __a ( __lowerCamelCase ):
for folder, directories, fnames in os.walk(__lowerCamelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("research_projects" )
if "legacy" in directories:
directories.remove("legacy" )
for fname in fnames:
if fname.endswith(".py" ):
update_version_in_file(os.path.join(__lowerCamelCase, __lowerCamelCase ), __lowerCamelCase, pattern="examples" )
def __a ( __lowerCamelCase, __lowerCamelCase=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
if not patch:
update_version_in_examples(__lowerCamelCase )
def __a ( ):
UpperCAmelCase_ : Any = "🤗 Transformers currently provides the following architectures"
UpperCAmelCase_ : Union[str, Any] = "1. Want to contribute a new model?"
with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f:
UpperCAmelCase_ : Union[str, Any] = f.readlines()
# Find the start of the list.
UpperCAmelCase_ : List[Any] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCAmelCase_ : Optional[int] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("1." ):
UpperCAmelCase_ : List[Any] = lines[index].replace(
"https://huggingface.co/docs/diffusers/main/model_doc", "https://huggingface.co/docs/diffusers/model_doc", )
index += 1
with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f:
f.writelines(__lowerCamelCase )
def __a ( ):
with open(REPLACE_FILES["init"], "r" ) as f:
UpperCAmelCase_ : Tuple = f.read()
UpperCAmelCase_ : Any = REPLACE_PATTERNS["init"][0].search(__lowerCamelCase ).groups()[0]
return packaging.version.parse(__lowerCamelCase )
def __a ( __lowerCamelCase=False ):
UpperCAmelCase_ : Tuple = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" )
if default_version.is_devrelease:
UpperCAmelCase_ : List[str] = default_version.base_version
elif patch:
UpperCAmelCase_ : Tuple = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
UpperCAmelCase_ : str = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
UpperCAmelCase_ : Dict = input(f"""Which version are you releasing? [{default_version}]""" )
if len(__lowerCamelCase ) == 0:
UpperCAmelCase_ : Dict = default_version
print(f"""Updating version to {version}.""" )
global_version_update(__lowerCamelCase, patch=__lowerCamelCase )
def __a ( ):
UpperCAmelCase_ : str = get_version()
UpperCAmelCase_ : Union[str, Any] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
UpperCAmelCase_ : str = current_version.base_version
# Check with the user we got that right.
UpperCAmelCase_ : Any = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(__lowerCamelCase ) == 0:
UpperCAmelCase_ : Optional[Any] = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(__lowerCamelCase )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
_a = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 23 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """ctrl"""
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : List[str] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = vocab_size
UpperCAmelCase_ : Union[str, Any] = n_positions
UpperCAmelCase_ : List[str] = n_embd
UpperCAmelCase_ : Dict = n_layer
UpperCAmelCase_ : Optional[int] = n_head
UpperCAmelCase_ : List[str] = dff
UpperCAmelCase_ : Tuple = resid_pdrop
UpperCAmelCase_ : Optional[Any] = embd_pdrop
UpperCAmelCase_ : str = layer_norm_epsilon
UpperCAmelCase_ : List[str] = initializer_range
UpperCAmelCase_ : List[str] = use_cache
super().__init__(**lowercase_ )
| 23 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_a = {
'vocab_file': {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt'
),
}
}
_a = {
'junnyu/roformer_chinese_small': 1_536,
'junnyu/roformer_chinese_base': 1_536,
'junnyu/roformer_chinese_char_small': 512,
'junnyu/roformer_chinese_char_base': 512,
'junnyu/roformer_small_discriminator': 128,
'junnyu/roformer_small_generator': 128,
}
_a = {
'junnyu/roformer_chinese_small': {'do_lower_case': True},
'junnyu/roformer_chinese_base': {'do_lower_case': True},
'junnyu/roformer_chinese_char_small': {'do_lower_case': True},
'junnyu/roformer_chinese_char_base': {'do_lower_case': True},
'junnyu/roformer_small_discriminator': {'do_lower_case': True},
'junnyu/roformer_small_generator': {'do_lower_case': True},
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE__ : List[str] = RoFormerTokenizer
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ):
"""simple docstring"""
super().__init__(
lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , )
UpperCAmelCase_ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("lowercase" , lowercase_ ) != do_lower_case
or pre_tok_state.get("strip_accents" , lowercase_ ) != strip_accents
):
UpperCAmelCase_ : List[str] = getattr(lowercase_ , pre_tok_state.pop("type" ) )
UpperCAmelCase_ : Union[str, Any] = do_lower_case
UpperCAmelCase_ : Union[str, Any] = strip_accents
UpperCAmelCase_ : int = pre_tok_class(**lowercase_ )
UpperCAmelCase_ : List[Any] = do_lower_case
def __getstate__( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = self.__dict__.copy()
UpperCAmelCase_ : Tuple = BertPreTokenizer()
return state
def __setstate__( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = d
UpperCAmelCase_ : Optional[Any] = self.__dict__["_tokenizer"].get_vocab()
UpperCAmelCase_ : Tuple = PreTokenizer.custom(JiebaPreTokenizer(lowercase_ ) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : int = [self.sep_token_id]
UpperCAmelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=False , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Dict = BertPreTokenizer()
return super().save_pretrained(lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
| 23 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(__lowerCamelCase )
else:
UpperCAmelCase_ : List[str] = sylvester(number - 1 )
UpperCAmelCase_ : List[str] = num - 1
UpperCAmelCase_ : List[str] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 23 | 1 |
"""simple docstring"""
import enum
import shutil
import sys
_a , _a = shutil.get_terminal_size()
_a = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class A_ (enum.Enum ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = 0
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1
def __a ( __lowerCamelCase, __lowerCamelCase="" ):
sys.stdout.write(str(__lowerCamelCase ) + end )
sys.stdout.flush()
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="" ):
forceWrite(f"""\u001b[{color}m{content}\u001b[0m""", __lowerCamelCase )
def __a ( ):
forceWrite("\r" )
def __a ( __lowerCamelCase, __lowerCamelCase ):
forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" )
def __a ( ):
forceWrite(" " * TERMINAL_WIDTH )
reset_cursor()
def __a ( ):
reset_cursor()
forceWrite("-" * TERMINAL_WIDTH )
| 23 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline
SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""}
SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} )
SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ):
"""simple docstring"""
if str(lowercase_ ).startswith("mps" ):
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ )
else:
UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : int = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 23 | 1 |
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
_a = random.Random()
def __a ( __lowerCamelCase, __lowerCamelCase=1.0, __lowerCamelCase=None, __lowerCamelCase=None ):
if rng is None:
UpperCAmelCase_ : Union[str, Any] = global_rng
UpperCAmelCase_ : Union[str, Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class A_ (unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=7 , lowercase_=400 , lowercase_=2000 , lowercase_=24 , lowercase_=24 , lowercase_=0.0 , lowercase_=1_6000 , lowercase_=True , lowercase_=True , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Any = batch_size
UpperCAmelCase_ : List[str] = min_seq_length
UpperCAmelCase_ : Dict = max_seq_length
UpperCAmelCase_ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCAmelCase_ : Tuple = feature_size
UpperCAmelCase_ : List[str] = num_mel_bins
UpperCAmelCase_ : Optional[int] = padding_value
UpperCAmelCase_ : Any = sampling_rate
UpperCAmelCase_ : Optional[Any] = return_attention_mask
UpperCAmelCase_ : List[Any] = do_normalize
def UpperCamelCase__ ( self ):
"""simple docstring"""
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def UpperCamelCase__ ( self , lowercase_=False , lowercase_=False ):
"""simple docstring"""
def _flatten(lowercase_ ):
return list(itertools.chain(*lowercase_ ) )
if equal_length:
UpperCAmelCase_ : str = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
UpperCAmelCase_ : Optional[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
UpperCAmelCase_ : Dict = [np.asarray(lowercase_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = SpeechaTextFeatureExtractor if is_speech_available() else None
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = SpeechaTextFeatureExtractionTester(self )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCAmelCase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCAmelCase_ : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase_ : List[str] = [np.asarray(lowercase_ ) for speech_input in speech_inputs]
# Test feature size
UpperCAmelCase_ : int = feature_extractor(lowercase_ , padding=lowercase_ , return_tensors="np" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
UpperCAmelCase_ : int = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features
UpperCAmelCase_ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) )
# Test batched
UpperCAmelCase_ : Dict = feature_extractor(lowercase_ , return_tensors="np" ).input_features
UpperCAmelCase_ : Tuple = feature_extractor(lowercase_ , return_tensors="np" ).input_features
for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ):
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
UpperCAmelCase_ : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCAmelCase_ : Tuple = np.asarray(lowercase_ )
UpperCAmelCase_ : int = feature_extractor(lowercase_ , return_tensors="np" ).input_features
UpperCAmelCase_ : str = feature_extractor(lowercase_ , return_tensors="np" ).input_features
for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ):
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase_ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase_ : int = ["longest", "max_length", "do_not_pad"]
UpperCAmelCase_ : Optional[Any] = [None, 16, None]
for max_length, padding in zip(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Dict = feature_extractor(
lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_attention_mask=lowercase_ )
UpperCAmelCase_ : Any = inputs.input_features
UpperCAmelCase_ : List[Any] = inputs.attention_mask
UpperCAmelCase_ : Dict = [np.sum(lowercase_ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase_ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase_ : Union[str, Any] = ["longest", "max_length", "do_not_pad"]
UpperCAmelCase_ : Optional[Any] = [None, 16, None]
for max_length, padding in zip(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = feature_extractor(
lowercase_ , max_length=lowercase_ , padding=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ )
UpperCAmelCase_ : Optional[int] = inputs.input_features
UpperCAmelCase_ : Union[str, Any] = inputs.attention_mask
UpperCAmelCase_ : Union[str, Any] = [np.sum(lowercase_ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase_ : List[Any] = feature_extractor(
lowercase_ , padding="max_length" , max_length=4 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , )
UpperCAmelCase_ : Dict = inputs.input_features
UpperCAmelCase_ : Optional[int] = inputs.attention_mask
UpperCAmelCase_ : int = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase_ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase_ : Dict = feature_extractor(
lowercase_ , padding="longest" , max_length=4 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , )
UpperCAmelCase_ : Tuple = inputs.input_features
UpperCAmelCase_ : int = inputs.attention_mask
UpperCAmelCase_ : List[Any] = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
UpperCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase_ : Dict = feature_extractor(
lowercase_ , padding="longest" , max_length=16 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , )
UpperCAmelCase_ : Dict = inputs.input_features
UpperCAmelCase_ : int = inputs.attention_mask
UpperCAmelCase_ : Any = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import torch
UpperCAmelCase_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase_ : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa )
UpperCAmelCase_ : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCAmelCase_ : Optional[int] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
UpperCAmelCase_ : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
from datasets import load_dataset
UpperCAmelCase_ : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" )
# automatic decoding with librispeech
UpperCAmelCase_ : int = ds.sort("id" ).select(range(lowercase_ ) )[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def UpperCamelCase__ ( self ):
"""simple docstring"""
# fmt: off
UpperCAmelCase_ : List[Any] = np.array([
-1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41,
-1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28,
-1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25,
] )
# fmt: on
UpperCAmelCase_ : List[Any] = self._load_datasamples(1 )
UpperCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase_ : Optional[int] = feature_extractor(lowercase_ , return_tensors="pt" ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , lowercase_ , atol=1E-4 ) )
| 23 |
"""simple docstring"""
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small"
UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp()
UpperCAmelCase_ : List[str] = "en_speaker_1"
UpperCAmelCase_ : Tuple = "This is a test string"
UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json"
UpperCAmelCase_ : Any = "speaker_embeddings"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.get_tokenizer()
UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
UpperCAmelCase_ : int = 35
UpperCAmelCase_ : Optional[Any] = 2
UpperCAmelCase_ : List[Any] = 8
UpperCAmelCase_ : Optional[Any] = {
"semantic_prompt": np.ones(lowercase_ ),
"coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ),
"fine_prompt": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ )
UpperCAmelCase_ : List[str] = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" )
np.savez(lowercase_ , **lowercase_ )
UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ )
UpperCAmelCase_ : List[str] = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_tokenizer()
UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ )
UpperCAmelCase_ : Tuple = processor(text=self.input_string )
UpperCAmelCase_ : Union[str, Any] = tokenizer(
self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 23 | 1 |
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Any = value_function
UpperCAmelCase_ : Union[str, Any] = unet
UpperCAmelCase_ : Tuple = scheduler
UpperCAmelCase_ : Dict = env
UpperCAmelCase_ : Tuple = env.get_dataset()
UpperCAmelCase_ : Optional[Any] = {}
for key in self.data.keys():
try:
UpperCAmelCase_ : Dict = self.data[key].mean()
except: # noqa: E722
pass
UpperCAmelCase_ : Tuple = {}
for key in self.data.keys():
try:
UpperCAmelCase_ : Union[str, Any] = self.data[key].std()
except: # noqa: E722
pass
UpperCAmelCase_ : List[str] = env.observation_space.shape[0]
UpperCAmelCase_ : List[Any] = env.action_space.shape[0]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
if type(lowercase_ ) is dict:
return {k: self.to_torch(lowercase_ ) for k, v in x_in.items()}
elif torch.is_tensor(lowercase_ ):
return x_in.to(self.unet.device )
return torch.tensor(lowercase_ , device=self.unet.device )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
for key, val in cond.items():
UpperCAmelCase_ : Any = val.clone()
return x_in
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = x.shape[0]
UpperCAmelCase_ : Any = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
UpperCAmelCase_ : Union[str, Any] = torch.full((batch_size,) , lowercase_ , device=self.unet.device , dtype=torch.long )
for _ in range(lowercase_ ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
UpperCAmelCase_ : Tuple = self.value_function(x.permute(0 , 2 , 1 ) , lowercase_ ).sample
UpperCAmelCase_ : Union[str, Any] = torch.autograd.grad([y.sum()] , [x] )[0]
UpperCAmelCase_ : Optional[Any] = self.scheduler._get_variance(lowercase_ )
UpperCAmelCase_ : str = torch.exp(0.5 * posterior_variance )
UpperCAmelCase_ : Optional[Any] = model_std * grad
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : Optional[Any] = x.detach()
UpperCAmelCase_ : Any = x + scale * grad
UpperCAmelCase_ : List[str] = self.reset_xa(lowercase_ , lowercase_ , self.action_dim )
UpperCAmelCase_ : Dict = self.unet(x.permute(0 , 2 , 1 ) , lowercase_ ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
UpperCAmelCase_ : Optional[int] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , predict_epsilon=lowercase_ )["prev_sample"]
# apply conditions to the trajectory (set the initial state)
UpperCAmelCase_ : int = self.reset_xa(lowercase_ , lowercase_ , self.action_dim )
UpperCAmelCase_ : int = self.to_torch(lowercase_ )
return x, y
def __call__( self , lowercase_ , lowercase_=64 , lowercase_=32 , lowercase_=2 , lowercase_=0.1 ):
"""simple docstring"""
# normalize the observations and create batch dimension
UpperCAmelCase_ : Union[str, Any] = self.normalize(lowercase_ , "observations" )
UpperCAmelCase_ : Optional[Any] = obs[None].repeat(lowercase_ , axis=0 )
UpperCAmelCase_ : Union[str, Any] = {0: self.to_torch(lowercase_ )}
UpperCAmelCase_ : Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
UpperCAmelCase_ : Tuple = randn_tensor(lowercase_ , device=self.unet.device )
UpperCAmelCase_ : Tuple = self.reset_xa(lowercase_ , lowercase_ , self.action_dim )
UpperCAmelCase_ : List[str] = self.to_torch(lowercase_ )
# run the diffusion process
UpperCAmelCase_ , UpperCAmelCase_ : str = self.run_diffusion(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# sort output trajectories by value
UpperCAmelCase_ : str = y.argsort(0 , descending=lowercase_ ).squeeze()
UpperCAmelCase_ : Any = x[sorted_idx]
UpperCAmelCase_ : Optional[Any] = sorted_values[:, :, : self.action_dim]
UpperCAmelCase_ : Union[str, Any] = actions.detach().cpu().numpy()
UpperCAmelCase_ : Tuple = self.de_normalize(lowercase_ , key="actions" )
# select the action with the highest value
if y is not None:
UpperCAmelCase_ : Union[str, Any] = 0
else:
# if we didn't run value guiding, select a random action
UpperCAmelCase_ : Union[str, Any] = np.random.randint(0 , lowercase_ )
UpperCAmelCase_ : int = denorm_actions[selected_index, 0]
return denorm_actions
| 23 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase, __lowerCamelCase=False ):
UpperCAmelCase_ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "deit.embeddings.cls_token"),
("dist_token", "deit.embeddings.distillation_token"),
("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "deit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("norm.weight", "deit.layernorm.weight"),
("norm.bias", "deit.layernorm.bias"),
("head.weight", "cls_classifier.weight"),
("head.bias", "cls_classifier.bias"),
("head_dist.weight", "distillation_classifier.weight"),
("head_dist.bias", "distillation_classifier.bias"),
] )
return rename_keys
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ):
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase_ : int = ""
else:
UpperCAmelCase_ : Union[str, Any] = "deit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase )
UpperCAmelCase_ : Tuple = val
def __a ( ):
UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = DeiTConfig()
# all deit models have fine-tuned heads
UpperCAmelCase_ : Optional[int] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
UpperCAmelCase_ : Tuple = 1000
UpperCAmelCase_ : str = "huggingface/label-files"
UpperCAmelCase_ : str = "imagenet-1k-id2label.json"
UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) )
UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Any = idalabel
UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ : Any = int(deit_name[-6:-4] )
UpperCAmelCase_ : Dict = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("tiny" ):
UpperCAmelCase_ : Any = 192
UpperCAmelCase_ : Union[str, Any] = 768
UpperCAmelCase_ : Union[str, Any] = 12
UpperCAmelCase_ : int = 3
elif deit_name[9:].startswith("small" ):
UpperCAmelCase_ : List[str] = 384
UpperCAmelCase_ : List[str] = 1536
UpperCAmelCase_ : Dict = 12
UpperCAmelCase_ : Any = 6
if deit_name[9:].startswith("base" ):
pass
elif deit_name[4:].startswith("large" ):
UpperCAmelCase_ : int = 1024
UpperCAmelCase_ : List[Any] = 4096
UpperCAmelCase_ : Optional[int] = 24
UpperCAmelCase_ : int = 16
# load original model from timm
UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase_ : Optional[Any] = timm_model.state_dict()
UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# load HuggingFace model
UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval()
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by DeiTImageProcessor
UpperCAmelCase_ : Union[str, Any] = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size )
UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" )
UpperCAmelCase_ : int = encoding["pixel_values"]
UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase )
UpperCAmelCase_ : Any = timm_model(__lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--deit_name',
default='vit_deit_base_distilled_patch16_224',
type=str,
help='Name of the DeiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_a = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 23 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase, __lowerCamelCase=False ):
UpperCAmelCase_ : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
UpperCAmelCase_ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ):
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase_ : str = ""
else:
UpperCAmelCase_ : str = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ : List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
UpperCAmelCase_ : List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Tuple = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase_ : Dict = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ : Any = in_proj_bias[-config.hidden_size :]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : str = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = dct.pop(__lowerCamelCase )
UpperCAmelCase_ : Optional[int] = val
def __a ( ):
UpperCAmelCase_ : int = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : Optional[int] = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ):
UpperCAmelCase_ : Union[str, Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
UpperCAmelCase_ : List[Any] = 8
# set labels if required
if not base_model:
UpperCAmelCase_ : Any = 1000
UpperCAmelCase_ : int = "huggingface/label-files"
UpperCAmelCase_ : Dict = "imagenet-1k-id2label.json"
UpperCAmelCase_ : Union[str, Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) )
UpperCAmelCase_ : Dict = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase_ : List[str] = idalabel
UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
UpperCAmelCase_ : List[Any] = 384
UpperCAmelCase_ : int = 1536
UpperCAmelCase_ : int = 12
UpperCAmelCase_ : Tuple = 6
# load original model from torch hub
UpperCAmelCase_ : Union[str, Any] = torch.hub.load("facebookresearch/dino:main", __lowerCamelCase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase_ : Tuple = original_model.state_dict()
if base_model:
remove_classification_head_(__lowerCamelCase )
UpperCAmelCase_ : str = create_rename_keys(__lowerCamelCase, base_model=__lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# load HuggingFace model
if base_model:
UpperCAmelCase_ : Union[str, Any] = ViTModel(__lowerCamelCase, add_pooling_layer=__lowerCamelCase ).eval()
else:
UpperCAmelCase_ : int = ViTForImageClassification(__lowerCamelCase ).eval()
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor
UpperCAmelCase_ : Union[str, Any] = ViTImageProcessor()
UpperCAmelCase_ : int = image_processor(images=prepare_img(), return_tensors="pt" )
UpperCAmelCase_ : Any = encoding["pixel_values"]
UpperCAmelCase_ : int = model(__lowerCamelCase )
if base_model:
UpperCAmelCase_ : Dict = original_model(__lowerCamelCase )
assert torch.allclose(__lowerCamelCase, outputs.last_hidden_state[:, 0, :], atol=1E-1 )
else:
UpperCAmelCase_ : List[str] = original_model(__lowerCamelCase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
_a = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 23 |
"""simple docstring"""
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ )
UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )]
UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin" ) for f in files )
@slow
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ )
UpperCAmelCase_ : Tuple = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : List[str] = 4
UpperCAmelCase_ : Tuple = jax.device_count()
UpperCAmelCase_ : Optional[int] = num_samples * [prompt]
UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(lowercase_ ) == num_samples
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ )
UpperCAmelCase_ : Optional[int] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Union[str, Any] = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[str] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ )
UpperCAmelCase_ : Any = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : str = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Dict = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa )
UpperCAmelCase_ : List[Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Optional[int] = 50
UpperCAmelCase_ : Optional[int] = jax.device_count()
UpperCAmelCase_ : str = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , )
UpperCAmelCase_ : List[Any] = scheduler.create_state()
UpperCAmelCase_ : int = scheduler_state
UpperCAmelCase_ : Union[str, Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : int = 50
UpperCAmelCase_ : str = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , )
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , )
UpperCAmelCase_ : str = replicate(lowercase_ )
UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
"""simple docstring"""
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = '▁'
_a = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
_a = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
_a = {
'facebook/s2t-small-librispeech-asr': 1_024,
}
_a = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
_a = {'mustc': MUSTC_LANGS}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : List[Any] = MAX_MODEL_INPUT_SIZES
SCREAMING_SNAKE_CASE__ : Dict = ["""input_ids""", """attention_mask"""]
SCREAMING_SNAKE_CASE__ : List[int] = []
def __init__( self , lowercase_ , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<pad>" , lowercase_="<unk>" , lowercase_=False , lowercase_=False , lowercase_=None , lowercase_=None , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , do_upper_case=lowercase_ , do_lower_case=lowercase_ , tgt_lang=lowercase_ , lang_codes=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
UpperCAmelCase_ : Optional[int] = do_upper_case
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : Optional[int] = load_json(lowercase_ )
UpperCAmelCase_ : Any = {v: k for k, v in self.encoder.items()}
UpperCAmelCase_ : Dict = spm_file
UpperCAmelCase_ : Dict = load_spm(lowercase_ , self.sp_model_kwargs )
if lang_codes is not None:
UpperCAmelCase_ : str = lang_codes
UpperCAmelCase_ : str = LANGUAGES[lang_codes]
UpperCAmelCase_ : List[Any] = [F"""<lang:{lang}>""" for lang in self.langs]
UpperCAmelCase_ : int = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs}
UpperCAmelCase_ : Dict = self.lang_tokens
UpperCAmelCase_ : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
UpperCAmelCase_ : Optional[int] = {}
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.encoder )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = new_tgt_lang
self.set_tgt_lang_special_tokens(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = self.lang_code_to_id[tgt_lang]
UpperCAmelCase_ : List[Any] = [lang_code_id]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.sp_model.encode(lowercase_ , out_type=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.encoder.get(lowercase_ , self.encoder[self.unk_token] )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.decoder.get(lowercase_ , self.unk_token )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : List[str] = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
UpperCAmelCase_ : Any = self.sp_model.decode(lowercase_ )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
UpperCAmelCase_ : str = []
else:
current_sub_tokens.append(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.sp_model.decode(lowercase_ )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
UpperCAmelCase_ : Optional[int] = [1] * len(self.prefix_tokens )
UpperCAmelCase_ : Any = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones
return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
UpperCAmelCase_ : str = self.__dict__.copy()
UpperCAmelCase_ : Dict = None
return state
def __setstate__( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : int = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : int = Path(lowercase_ )
assert save_dir.is_dir(), F"""{save_directory} should be a directory"""
UpperCAmelCase_ : Optional[int] = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
UpperCAmelCase_ : List[Any] = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , lowercase_ )
if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , lowercase_ )
elif not os.path.isfile(self.spm_file ):
with open(lowercase_ , "wb" ) as fi:
UpperCAmelCase_ : Any = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (str(lowercase_ ), str(lowercase_ ))
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = sentencepiece.SentencePieceProcessor(**__lowerCamelCase )
spm.Load(str(__lowerCamelCase ) )
return spm
def __a ( __lowerCamelCase ):
with open(__lowerCamelCase, "r" ) as f:
return json.load(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase ):
with open(__lowerCamelCase, "w" ) as f:
json.dump(__lowerCamelCase, __lowerCamelCase, indent=2 )
| 23 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
_a = 0
_a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
_a = tuple[int, int]
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : int = pos_x
UpperCAmelCase_ : List[Any] = pos_y
UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x)
UpperCAmelCase_ : Any = goal_x
UpperCAmelCase_ : Dict = goal_y
UpperCAmelCase_ : Any = g_cost
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : int = self.calculate_heuristic()
UpperCAmelCase_ : Any = self.g_cost + self.h_cost
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x
UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowercase_ ) + abs(lowercase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , lowercase_ ):
"""simple docstring"""
return self.f_cost < other.f_cost
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ )
UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ )
UpperCAmelCase_ : str = [self.start]
UpperCAmelCase_ : list[Node] = []
UpperCAmelCase_ : int = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowercase_ )
self.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : str = self.get_successors(lowercase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowercase_ )
else:
self.open_nodes.append(lowercase_ )
return [self.start.pos]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = []
for action in delta:
UpperCAmelCase_ : str = parent.pos_x + action[1]
UpperCAmelCase_ : int = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) )
return successors
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = node
UpperCAmelCase_ : int = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase_ : Optional[int] = current_node.parent
path.reverse()
return path
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowercase_ , lowercase_ )
self.fwd_astar.closed_nodes.append(lowercase_ )
self.bwd_astar.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : Tuple = current_bwd_node
UpperCAmelCase_ : str = current_fwd_node
UpperCAmelCase_ : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : List[Any] = astar.open_nodes.pop(
astar.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowercase_ )
else:
astar.open_nodes.append(lowercase_ )
return [self.fwd_astar.start.pos]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ )
UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase_ : Any = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
_a = (0, 0)
_a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_a = time.time()
_a = AStar(init, goal)
_a = a_star.search()
_a = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
_a = time.time()
_a = BidirectionalAStar(init, goal)
_a = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 23 | 1 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a = logging.get_logger(__name__)
_a = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """detr"""
SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = backbone_config.get("model_type" )
UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None
UpperCAmelCase_ : int = use_timm_backbone
UpperCAmelCase_ : int = backbone_config
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Union[str, Any] = d_model
UpperCAmelCase_ : str = encoder_ffn_dim
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : List[Any] = encoder_attention_heads
UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : List[str] = attention_dropout
UpperCAmelCase_ : Any = activation_dropout
UpperCAmelCase_ : str = activation_function
UpperCAmelCase_ : Tuple = init_std
UpperCAmelCase_ : Optional[Any] = init_xavier_std
UpperCAmelCase_ : Optional[Any] = encoder_layerdrop
UpperCAmelCase_ : Optional[int] = decoder_layerdrop
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : int = auxiliary_loss
UpperCAmelCase_ : Optional[Any] = position_embedding_type
UpperCAmelCase_ : Tuple = backbone
UpperCAmelCase_ : Optional[int] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : Any = bbox_cost
UpperCAmelCase_ : int = giou_cost
# Loss coefficients
UpperCAmelCase_ : str = mask_loss_coefficient
UpperCAmelCase_ : Any = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : List[str] = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.d_model
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
return cls(backbone_config=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict()
UpperCAmelCase_ : str = self.__class__.model_type
return output
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-5
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 12
| 23 |
"""simple docstring"""
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,)
SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),)
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowercase_ )
return config
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.dummy_sample
UpperCAmelCase_ : Dict = 0.1 * sample
UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : int = dummy_past_residuals[:]
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Optional[int] = self.dummy_sample
UpperCAmelCase_ : List[str] = 0.1 * sample
UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:]
UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = self.scheduler_classes[0]
UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ )
UpperCAmelCase_ : Tuple = 10
UpperCAmelCase_ : List[str] = self.dummy_model()
UpperCAmelCase_ : str = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : Any = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
UpperCAmelCase_ : str = self.dummy_sample
UpperCAmelCase_ : List[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ):
scheduler.set_timesteps(lowercase_ )
elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ):
UpperCAmelCase_ : List[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase_ : List[str] = dummy_past_residuals[:]
UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
UpperCAmelCase_ : List[Any] = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.dummy_sample
UpperCAmelCase_ : Optional[int] = 0.1 * sample
UpperCAmelCase_ : List[str] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : List[str] = self.scheduler_classes[0]
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.full_loop()
UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2
assert abs(result_mean.item() - 0.25_80 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 67.39_86 ) < 1E-2
assert abs(result_mean.item() - 0.08_78 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2
assert abs(result_mean.item() - 0.29_95 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2
assert abs(result_mean.item() - 0.24_34 ) < 1E-3
| 23 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase ):
if isinstance(__lowerCamelCase, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(__lowerCamelCase, (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(__lowerCamelCase ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = ["""pixel_values"""]
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
super().__init__(**lowercase_ )
UpperCAmelCase_ : str = size if size is not None else {"shortest_edge": 256}
UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ )
UpperCAmelCase_ : str = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ : List[str] = get_size_dict(lowercase_ , param_name="crop_size" )
UpperCAmelCase_ : Any = do_resize
UpperCAmelCase_ : Union[str, Any] = size
UpperCAmelCase_ : Any = do_center_crop
UpperCAmelCase_ : Optional[Any] = crop_size
UpperCAmelCase_ : Any = resample
UpperCAmelCase_ : int = do_rescale
UpperCAmelCase_ : List[Any] = rescale_factor
UpperCAmelCase_ : Optional[int] = offset
UpperCAmelCase_ : Optional[Any] = do_normalize
UpperCAmelCase_ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ )
if "shortest_edge" in size:
UpperCAmelCase_ : Tuple = get_resize_output_image_size(lowercase_ , size["shortest_edge"] , default_to_square=lowercase_ )
elif "height" in size and "width" in size:
UpperCAmelCase_ : Any = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = True , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = image.astype(np.floataa )
if offset:
UpperCAmelCase_ : Any = image - (scale / 2)
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , ):
"""simple docstring"""
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
if offset and not do_rescale:
raise ValueError("For offset, do_rescale must also be set to True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ : str = to_numpy_array(lowercase_ )
if do_resize:
UpperCAmelCase_ : Any = self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ )
if do_center_crop:
UpperCAmelCase_ : Any = self.center_crop(lowercase_ , size=lowercase_ )
if do_rescale:
UpperCAmelCase_ : str = self.rescale(image=lowercase_ , scale=lowercase_ , offset=lowercase_ )
if do_normalize:
UpperCAmelCase_ : List[str] = self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ )
UpperCAmelCase_ : Any = to_channel_dimension_format(lowercase_ , lowercase_ )
return image
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : int = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : Tuple = resample if resample is not None else self.resample
UpperCAmelCase_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ : Any = offset if offset is not None else self.offset
UpperCAmelCase_ : int = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ : Tuple = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else self.image_std
UpperCAmelCase_ : Dict = size if size is not None else self.size
UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ )
UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ : str = get_size_dict(lowercase_ , param_name="crop_size" )
if not valid_images(lowercase_ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
UpperCAmelCase_ : Optional[Any] = make_batched(lowercase_ )
UpperCAmelCase_ : List[Any] = [
[
self._preprocess_image(
image=lowercase_ , do_resize=lowercase_ , size=lowercase_ , resample=lowercase_ , do_center_crop=lowercase_ , crop_size=lowercase_ , do_rescale=lowercase_ , rescale_factor=lowercase_ , offset=lowercase_ , do_normalize=lowercase_ , image_mean=lowercase_ , image_std=lowercase_ , data_format=lowercase_ , )
for img in video
]
for video in videos
]
UpperCAmelCase_ : Tuple = {"pixel_values": videos}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
| 23 |
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_a = object()
# For specifying empty leaf dict `{}`
_a = object()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ):
UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )]
if matches and all(__lowerCamelCase ):
return True
return False
def __a ( __lowerCamelCase ):
def replace(__lowerCamelCase, __lowerCamelCase ):
for rule, replacement in rules:
if _match(__lowerCamelCase, __lowerCamelCase ):
return replacement
return val
return replace
def __a ( ):
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )),
(("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )),
(("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : List[str] = _get_partition_rules()
UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase )
UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )}
UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(__lowerCamelCase ) )
| 23 | 1 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def __a ( __lowerCamelCase ):
def wrapper(*__lowerCamelCase, **__lowerCamelCase ):
UpperCAmelCase_ : Dict = timeit.default_timer()
UpperCAmelCase_ : Any = func(*__lowerCamelCase, **__lowerCamelCase )
UpperCAmelCase_ : Dict = timeit.default_timer() - starttime
return delta
UpperCAmelCase_ : Dict = func.__name__
return wrapper
def __a ( __lowerCamelCase, __lowerCamelCase=100, __lowerCamelCase=None ):
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : List[str] = seq_shapes or {}
for i in range(__lowerCamelCase ):
UpperCAmelCase_ : List[str] = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(__lowerCamelCase, _ArrayXD ):
UpperCAmelCase_ : int = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(__lowerCamelCase, datasets.Value ):
if v.dtype == "string":
UpperCAmelCase_ : Union[str, Any] = "The small grey turtle was surprisingly fast when challenged."
else:
UpperCAmelCase_ : Dict = np.random.randint(10, size=1 ).astype(v.dtype ).item()
elif isinstance(__lowerCamelCase, datasets.Sequence ):
while isinstance(__lowerCamelCase, datasets.Sequence ):
UpperCAmelCase_ : Dict = v.feature
UpperCAmelCase_ : str = seq_shapes[k]
UpperCAmelCase_ : List[Any] = np.random.rand(*__lowerCamelCase ).astype(v.dtype )
UpperCAmelCase_ : Optional[Any] = data
dummy_data.append((i, example) )
return dummy_data
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=100, __lowerCamelCase=None ):
UpperCAmelCase_ : List[Any] = generate_examples(__lowerCamelCase, num_examples=__lowerCamelCase, seq_shapes=__lowerCamelCase )
with ArrowWriter(features=__lowerCamelCase, path=__lowerCamelCase ) as writer:
for key, record in dummy_data:
UpperCAmelCase_ : Optional[int] = features.encode_example(__lowerCamelCase )
writer.write(__lowerCamelCase )
UpperCAmelCase_ , UpperCAmelCase_ : Dict = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" )
UpperCAmelCase_ : Union[str, Any] = datasets.Dataset.from_file(filename=__lowerCamelCase, info=datasets.DatasetInfo(features=__lowerCamelCase ) )
return dataset
| 23 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_a = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )]
if identifier is not None:
UpperCAmelCase_ : Dict = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_ ):
for n_ in n_identifier:
UpperCAmelCase_ : str = [file for file in files if n_ not in file]
else:
UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file]
UpperCAmelCase_ : Union[str, Any] = ignore_files or []
ignore_files.append("__init__.py" )
UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , lowercase_ )
if only_modules:
UpperCAmelCase_ : str = file.split("." )[0]
try:
UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ )
UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = Path("src/transformers" )
UpperCAmelCase_ : str = "modeling"
UpperCAmelCase_ : Optional[Any] = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = Path("src/transformers" )
UpperCAmelCase_ : Any = "tokenization"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = "configuration"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"]
self.analyze_directory(lowercase_ , n_identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = Path("docs/source" )
UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"]
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
| 23 | 1 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline
SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""}
SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} )
SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ):
"""simple docstring"""
if str(lowercase_ ).startswith("mps" ):
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ )
else:
UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : int = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 23 |
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
_a = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
return (preds == labels).mean()
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0]
UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}"""
if task_name == "cola":
return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mrpc":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "sts-b":
return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase )
elif task_name == "qqp":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" )
if task_name == "xnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
| 23 | 1 |
"""simple docstring"""
from __future__ import annotations
from cmath import sqrt
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
UpperCAmelCase_ : Tuple = b * b - 4 * a * c
UpperCAmelCase_ : List[Any] = (-b + sqrt(__lowerCamelCase )) / (2 * a)
UpperCAmelCase_ : Tuple = (-b - sqrt(__lowerCamelCase )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = quadratic_roots(a=5, b=6, c=1 )
print(f"""The solutions are: {solutiona} and {solutiona}""" )
if __name__ == "__main__":
main()
| 23 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.json'}
_a = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
_a = {'mgp-str': 27}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ):
"""simple docstring"""
super().__init__(
unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , )
with open(lowercase_ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(lowercase_ )
UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = []
for s in text:
char_tokens.extend(lowercase_ )
return char_tokens
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.decoder.get(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) )
return
UpperCAmelCase_ : Optional[int] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowercase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" )
return (vocab_file,)
| 23 | 1 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.json'}
_a = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
_a = {'mgp-str': 27}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ):
"""simple docstring"""
super().__init__(
unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , )
with open(lowercase_ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(lowercase_ )
UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = []
for s in text:
char_tokens.extend(lowercase_ )
return char_tokens
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.decoder.get(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) )
return
UpperCAmelCase_ : Optional[int] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowercase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" )
return (vocab_file,)
| 23 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
_a = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
_a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
_a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __a ( __lowerCamelCase ):
return x[0]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase )
UpperCAmelCase_ : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase )
UpperCAmelCase_ : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase )
UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] )
UpperCAmelCase_ : str = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase )
UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__lowerCamelCase )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase )
UpperCAmelCase_ : int = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class A_ (datasets.BeamBasedBuilder ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.DatasetInfo(
features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=lowercase_ , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(lowercase_ )
class A_ (datasets.BeamBasedBuilder ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.DatasetInfo(
features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=lowercase_ , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} )
]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(lowercase_ )
def __a ( ):
return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )]
def __a ( ):
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )]
class A_ (lowercase__ ):
'''simple docstring'''
@require_beam
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase_ : str = DummyBeamDataset(cache_dir=lowercase_ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase_ : Union[str, Any] = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , lowercase_ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , lowercase_ )
self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def UpperCamelCase__ ( self ):
"""simple docstring"""
import apache_beam as beam
UpperCAmelCase_ : Any = beam.io.parquetio.WriteToParquet
UpperCAmelCase_ : Dict = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase_ : List[str] = DummyBeamDataset(cache_dir=lowercase_ , beam_runner="DirectRunner" )
with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock:
UpperCAmelCase_ : Optional[int] = partial(lowercase_ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
lowercase_ , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
lowercase_ , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase_ : Optional[Any] = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , lowercase_ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , lowercase_ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) )
self.assertTrue(
os.path.exists(os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase_ : str = DummyBeamDataset(cache_dir=lowercase_ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase_ : Tuple = NestedBeamDataset(cache_dir=lowercase_ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) )
UpperCAmelCase_ : List[str] = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , lowercase_ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , lowercase_ )
self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(lowercase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
| 23 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_a = logging.getLogger()
def __a ( ):
UpperCAmelCase_ : Tuple = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase_ : Dict = parser.parse_args()
return args.f
class A_ (lowercase__ ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowercase_ , "argv" , lowercase_ ):
UpperCAmelCase_ : List[str] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase_ , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
| 23 | 1 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Dict = SwinConfig(image_size=192 )
if "base" in model_name:
UpperCAmelCase_ : str = 6
UpperCAmelCase_ : List[Any] = 128
UpperCAmelCase_ : int = (2, 2, 18, 2)
UpperCAmelCase_ : Optional[Any] = (4, 8, 16, 32)
elif "large" in model_name:
UpperCAmelCase_ : Any = 12
UpperCAmelCase_ : Tuple = 192
UpperCAmelCase_ : Dict = (2, 2, 18, 2)
UpperCAmelCase_ : int = (6, 12, 24, 48)
else:
raise ValueError("Model not supported, only supports base and large variants" )
UpperCAmelCase_ : Tuple = window_size
UpperCAmelCase_ : Optional[int] = embed_dim
UpperCAmelCase_ : str = depths
UpperCAmelCase_ : Dict = num_heads
return config
def __a ( __lowerCamelCase ):
if "encoder.mask_token" in name:
UpperCAmelCase_ : Optional[int] = name.replace("encoder.mask_token", "embeddings.mask_token" )
if "encoder.patch_embed.proj" in name:
UpperCAmelCase_ : List[str] = name.replace("encoder.patch_embed.proj", "embeddings.patch_embeddings.projection" )
if "encoder.patch_embed.norm" in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("encoder.patch_embed.norm", "embeddings.norm" )
if "attn.proj" in name:
UpperCAmelCase_ : Any = name.replace("attn.proj", "attention.output.dense" )
if "attn" in name:
UpperCAmelCase_ : int = name.replace("attn", "attention.self" )
if "norm1" in name:
UpperCAmelCase_ : List[Any] = name.replace("norm1", "layernorm_before" )
if "norm2" in name:
UpperCAmelCase_ : str = name.replace("norm2", "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase_ : List[str] = name.replace("mlp.fc1", "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase_ : Optional[int] = name.replace("mlp.fc2", "output.dense" )
if name == "encoder.norm.weight":
UpperCAmelCase_ : List[Any] = "layernorm.weight"
if name == "encoder.norm.bias":
UpperCAmelCase_ : Optional[int] = "layernorm.bias"
if "decoder" in name:
pass
else:
UpperCAmelCase_ : str = "swin." + name
return name
def __a ( __lowerCamelCase, __lowerCamelCase ):
for key in orig_state_dict.copy().keys():
UpperCAmelCase_ : List[str] = orig_state_dict.pop(__lowerCamelCase )
if "attn_mask" in key:
pass
elif "qkv" in key:
UpperCAmelCase_ : Optional[Any] = key.split("." )
UpperCAmelCase_ : List[str] = int(key_split[2] )
UpperCAmelCase_ : Dict = int(key_split[4] )
UpperCAmelCase_ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCAmelCase_ : List[str] = val[:dim, :]
UpperCAmelCase_ : List[Any] = val[
dim : dim * 2, :
]
UpperCAmelCase_ : Optional[int] = val[-dim:, :]
else:
UpperCAmelCase_ : Tuple = val[
:dim
]
UpperCAmelCase_ : List[str] = val[
dim : dim * 2
]
UpperCAmelCase_ : Any = val[
-dim:
]
else:
UpperCAmelCase_ : List[str] = val
return orig_state_dict
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = torch.load(__lowerCamelCase, map_location="cpu" )["model"]
UpperCAmelCase_ : List[Any] = get_swin_config(__lowerCamelCase )
UpperCAmelCase_ : Dict = SwinForMaskedImageModeling(__lowerCamelCase )
model.eval()
UpperCAmelCase_ : int = convert_state_dict(__lowerCamelCase, __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : str = ViTImageProcessor(size={"height": 192, "width": 192} )
UpperCAmelCase_ : Dict = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
UpperCAmelCase_ : Any = image_processor(images=__lowerCamelCase, return_tensors="pt" )
with torch.no_grad():
UpperCAmelCase_ : List[Any] = model(**__lowerCamelCase ).logits
print(outputs.keys() )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f"""Pushing model and image processor for {model_name} to hub""" )
model.push_to_hub(f"""microsoft/{model_name}""" )
image_processor.push_to_hub(f"""microsoft/{model_name}""" )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='swin-base-simmim-window6-192',
type=str,
choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'],
help='Name of the Swin SimMIM model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth',
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_a = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 23 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 |
"""simple docstring"""
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_a = logging.get_logger(__name__) # pylint: disable=invalid-name
_a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n'
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ):
UpperCAmelCase_ : List[str] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCAmelCase_ : Tuple = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , )
UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
if latents is None:
UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
UpperCAmelCase_ : str = latents.to(lowercase_ )
UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma
return latents
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
UpperCAmelCase_ : int = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=lowercase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCAmelCase_ : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ )
# We'll offload the last model manually.
UpperCAmelCase_ : Tuple = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase_ , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase_ )
def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : str = self._execution_device
UpperCAmelCase_ : List[Any] = guidance_scale > 1.0
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 )
UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 )
if do_classifier_free_guidance:
UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ )
self.scheduler.set_timesteps(lowercase_ , device=lowercase_ )
UpperCAmelCase_ : List[Any] = self.scheduler.timesteps
UpperCAmelCase_ : List[str] = self.unet.config.in_channels
UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor )
# create initial latent
UpperCAmelCase_ : int = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase_ ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds}
UpperCAmelCase_ : Optional[Any] = self.unet(
sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0]
if do_classifier_free_guidance:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 )
UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , "variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ : List[str] = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0]
# post-processing
UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5
UpperCAmelCase_ : int = image.clamp(0 , 1 )
UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 23 | 1 |
"""simple docstring"""
from __future__ import annotations
import typing
from collections import Counter
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : typing.Counter[int] = Counter()
for base in range(1, max_perimeter + 1 ):
for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ):
UpperCAmelCase_ : Optional[Any] = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(__lowerCamelCase ):
UpperCAmelCase_ : Any = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def __a ( __lowerCamelCase = 1000 ):
UpperCAmelCase_ : int = pythagorean_triple(__lowerCamelCase )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(f"""Perimeter {solution()} has maximum solutions""")
| 23 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a = logging.get_logger(__name__)
_a = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """detr"""
SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = backbone_config.get("model_type" )
UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None
UpperCAmelCase_ : int = use_timm_backbone
UpperCAmelCase_ : int = backbone_config
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Union[str, Any] = d_model
UpperCAmelCase_ : str = encoder_ffn_dim
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : List[Any] = encoder_attention_heads
UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : List[str] = attention_dropout
UpperCAmelCase_ : Any = activation_dropout
UpperCAmelCase_ : str = activation_function
UpperCAmelCase_ : Tuple = init_std
UpperCAmelCase_ : Optional[Any] = init_xavier_std
UpperCAmelCase_ : Optional[Any] = encoder_layerdrop
UpperCAmelCase_ : Optional[int] = decoder_layerdrop
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : int = auxiliary_loss
UpperCAmelCase_ : Optional[Any] = position_embedding_type
UpperCAmelCase_ : Tuple = backbone
UpperCAmelCase_ : Optional[int] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : Any = bbox_cost
UpperCAmelCase_ : int = giou_cost
# Loss coefficients
UpperCAmelCase_ : str = mask_loss_coefficient
UpperCAmelCase_ : Any = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : List[str] = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.d_model
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
return cls(backbone_config=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict()
UpperCAmelCase_ : str = self.__class__.model_type
return output
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-5
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 12
| 23 | 1 |
"""simple docstring"""
import random
from .binary_exp_mod import bin_exp_mod
def __a ( __lowerCamelCase, __lowerCamelCase=1000 ):
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase_ : int = n - 1
UpperCAmelCase_ : Union[str, Any] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase_ : List[str] = 0
while count < prec:
UpperCAmelCase_ : Dict = random.randint(2, n - 1 )
UpperCAmelCase_ : int = bin_exp_mod(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
if b != 1:
UpperCAmelCase_ : Optional[int] = True
for _ in range(__lowerCamelCase ):
if b == n - 1:
UpperCAmelCase_ : Any = False
break
UpperCAmelCase_ : List[str] = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
_a = abs(int(input('Enter bound : ').strip()))
print('Here\'s the list of primes:')
print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 23 |
"""simple docstring"""
_a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
_a = [None] * 10_000_000
_a = True
_a = False
def __a ( __lowerCamelCase ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) )
UpperCAmelCase_ : List[str] = number_chain
while number < 1000_0000:
UpperCAmelCase_ : List[Any] = number_chain
number *= 10
return number_chain
def __a ( __lowerCamelCase = 1000_0000 ):
for i in range(1, __lowerCamelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 23 | 1 |
"""simple docstring"""
class A_ :
'''simple docstring'''
def __init__( self ):
"""simple docstring"""
UpperCAmelCase_ : dict[str, TrieNode] = {} # Mapping from char to TrieNode
UpperCAmelCase_ : str = False
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
for word in words:
self.insert(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self
for char in word:
if char not in curr.nodes:
UpperCAmelCase_ : Any = TrieNode()
UpperCAmelCase_ : str = curr.nodes[char]
UpperCAmelCase_ : str = True
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self
for char in word:
if char not in curr.nodes:
return False
UpperCAmelCase_ : Optional[Any] = curr.nodes[char]
return curr.is_leaf
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
def _delete(lowercase_ , lowercase_ , lowercase_ ) -> bool:
if index == len(lowercase_ ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCAmelCase_ : Tuple = False
return len(curr.nodes ) == 0
UpperCAmelCase_ : str = word[index]
UpperCAmelCase_ : Optional[Any] = curr.nodes.get(lowercase_ )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCAmelCase_ : Dict = _delete(lowercase_ , lowercase_ , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , lowercase_ , 0 )
def __a ( __lowerCamelCase, __lowerCamelCase ):
if node.is_leaf:
print(__lowerCamelCase, end=" " )
for key, value in node.nodes.items():
print_words(__lowerCamelCase, word + key )
def __a ( ):
UpperCAmelCase_ : Tuple = "banana bananas bandana band apple all beast".split()
UpperCAmelCase_ : List[Any] = TrieNode()
root.insert_many(__lowerCamelCase )
# print_words(root, "")
assert all(root.find(__lowerCamelCase ) for word in words )
assert root.find("banana" )
assert not root.find("bandanas" )
assert not root.find("apps" )
assert root.find("apple" )
assert root.find("all" )
root.delete("all" )
assert not root.find("all" )
root.delete("banana" )
assert not root.find("banana" )
assert root.find("bananas" )
return True
def __a ( __lowerCamelCase, __lowerCamelCase ):
print(str(__lowerCamelCase ), "works!" if passes else "doesn't work :(" )
def __a ( ):
assert test_trie()
def __a ( ):
print_results("Testing trie functionality", test_trie() )
if __name__ == "__main__":
main()
| 23 |
"""simple docstring"""
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# Return True if there is node that has not iterated.
UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase )
UpperCAmelCase_ : Any = []
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Tuple = True
while queue:
UpperCAmelCase_ : str = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Any = True
UpperCAmelCase_ : Union[str, Any] = u
return visited[t]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# This array is filled by BFS and to store path
UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase ))
UpperCAmelCase_ : Any = 0
while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = float("Inf" )
UpperCAmelCase_ : Tuple = sink
while s != source:
# Find the minimum value in select path
UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] )
UpperCAmelCase_ : Dict = parent[s]
max_flow += path_flow
UpperCAmelCase_ : Optional[Any] = sink
while v != source:
UpperCAmelCase_ : List[str] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
UpperCAmelCase_ : Optional[int] = parent[v]
return max_flow
_a = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
_a , _a = 0, 5
print(ford_fulkerson(graph, source, sink))
| 23 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_a = {
'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'],
'tokenization_luke': ['LukeTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST',
'LukeForEntityClassification',
'LukeForEntityPairClassification',
'LukeForEntitySpanClassification',
'LukeForMultipleChoice',
'LukeForQuestionAnswering',
'LukeForSequenceClassification',
'LukeForTokenClassification',
'LukeForMaskedLM',
'LukeModel',
'LukePreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 |
"""simple docstring"""
import datasets
_a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n'
_a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n'
_a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n'
def __a ( __lowerCamelCase, __lowerCamelCase ):
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
"references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
} ) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
| 23 | 1 |
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
_a = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
return (preds == labels).mean()
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0]
UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}"""
if task_name == "cola":
return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mrpc":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "sts-b":
return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase )
elif task_name == "qqp":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" )
if task_name == "xnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
| 23 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = feature_size
UpperCAmelCase_ : Any = sampling_rate
UpperCAmelCase_ : Any = padding_value
UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" )
UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ )
super().__init__(**lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCAmelCase_ : Dict = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : List[str] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(lowercase_ ) == 0:
if return_attention_mask:
UpperCAmelCase_ : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase_ : List[str] = required_input[0]
if isinstance(lowercase_ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase_ : Any = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(lowercase_ ):
UpperCAmelCase_ : Dict = "tf"
elif is_torch_tensor(lowercase_ ):
UpperCAmelCase_ : Any = "pt"
elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase_ : str = "np"
else:
raise ValueError(
F"""type of {first_element} unknown: {type(lowercase_ )}. """
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ )
else:
UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ )
UpperCAmelCase_ : str = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : int = len(lowercase_ )
if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
UpperCAmelCase_ : int = []
for i in range(lowercase_ ):
UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase_ : List[str] = self._truncate(
lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , )
truncated_inputs.append(lowercase_ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH
UpperCAmelCase_ : List[str] = {}
for i in range(lowercase_ ):
# padding
UpperCAmelCase_ : int = self._pad(
truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase_ : Any = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ : List[Any] = value.astype(np.floataa )
batch_outputs[key].append(lowercase_ )
return BatchFeature(lowercase_ , tensor_type=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase_ : Tuple = len(lowercase_ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = max_length - len(lowercase_ )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase_ : List[Any] = np.pad(
processed_features["attention_mask"] , (0, difference) )
UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase_ : Optional[Any] = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase_ : Optional[Any] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase_ : str = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length
if needs_to_be_truncated:
UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length]
return processed_features
def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ):
"""simple docstring"""
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = padding
else:
UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 23 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
_a = logging.get_logger(__name__)
if is_vision_available():
import PIL
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = ["""pixel_values"""]
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = True , **lowercase_ , ):
"""simple docstring"""
super().__init__(**lowercase_ )
UpperCAmelCase_ : List[str] = size if size is not None else {"shortest_edge": 224}
UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ )
UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ : int = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size" )
UpperCAmelCase_ : Any = do_resize
UpperCAmelCase_ : List[Any] = size
UpperCAmelCase_ : Union[str, Any] = resample
UpperCAmelCase_ : int = do_center_crop
UpperCAmelCase_ : str = crop_size
UpperCAmelCase_ : Optional[Any] = do_rescale
UpperCAmelCase_ : Tuple = rescale_factor
UpperCAmelCase_ : Union[str, Any] = do_normalize
UpperCAmelCase_ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCAmelCase_ : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCAmelCase_ : List[Any] = do_convert_rgb
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
UpperCAmelCase_ : str = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : List[str] = size if size is not None else self.size
UpperCAmelCase_ : str = get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_ )
UpperCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample
UpperCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_ )
UpperCAmelCase_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ : List[Any] = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ : Optional[Any] = image_std if image_std is not None else self.image_std
UpperCAmelCase_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCAmelCase_ : Tuple = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCAmelCase_ : List[str] = [convert_to_rgb(lowercase_ ) for image in images]
# All transformations expect numpy arrays.
UpperCAmelCase_ : Dict = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
UpperCAmelCase_ : List[str] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_center_crop:
UpperCAmelCase_ : List[str] = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Optional[Any] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
UpperCAmelCase_ : List[Any] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
UpperCAmelCase_ : str = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
UpperCAmelCase_ : Tuple = {"pixel_values": images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
| 23 |
"""simple docstring"""
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 )
UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 )
UpperCAmelCase_ : Optional[Any] = Accelerator()
UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ )
try:
pickle.loads(pickle.dumps(lowercase_ ) )
except Exception as e:
self.fail(F"""Accelerated optimizer pickling failed with {e}""" )
AcceleratorState._reset_state()
| 23 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'microsoft/trocr-base-handwritten': (
'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """trocr"""
SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : str = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self , lowercase_=5_0265 , lowercase_=1024 , lowercase_=12 , lowercase_=16 , lowercase_=4096 , lowercase_="gelu" , lowercase_=512 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=2 , lowercase_=0.02 , lowercase_=0.0 , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = vocab_size
UpperCAmelCase_ : Optional[Any] = d_model
UpperCAmelCase_ : Optional[int] = decoder_layers
UpperCAmelCase_ : Any = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = decoder_ffn_dim
UpperCAmelCase_ : Any = activation_function
UpperCAmelCase_ : int = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = dropout
UpperCAmelCase_ : List[Any] = attention_dropout
UpperCAmelCase_ : List[Any] = activation_dropout
UpperCAmelCase_ : List[str] = init_std
UpperCAmelCase_ : Tuple = decoder_layerdrop
UpperCAmelCase_ : Any = use_cache
UpperCAmelCase_ : Union[str, Any] = scale_embedding
UpperCAmelCase_ : Dict = use_learned_position_embeddings
UpperCAmelCase_ : List[str] = layernorm_embedding
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
| 23 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """ctrl"""
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : List[str] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = vocab_size
UpperCAmelCase_ : Union[str, Any] = n_positions
UpperCAmelCase_ : List[str] = n_embd
UpperCAmelCase_ : Dict = n_layer
UpperCAmelCase_ : Optional[int] = n_head
UpperCAmelCase_ : List[str] = dff
UpperCAmelCase_ : Tuple = resid_pdrop
UpperCAmelCase_ : Optional[Any] = embd_pdrop
UpperCAmelCase_ : str = layer_norm_epsilon
UpperCAmelCase_ : List[str] = initializer_range
UpperCAmelCase_ : List[str] = use_cache
super().__init__(**lowercase_ )
| 23 | 1 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_a = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )]
if identifier is not None:
UpperCAmelCase_ : Dict = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_ ):
for n_ in n_identifier:
UpperCAmelCase_ : str = [file for file in files if n_ not in file]
else:
UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file]
UpperCAmelCase_ : Union[str, Any] = ignore_files or []
ignore_files.append("__init__.py" )
UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , lowercase_ )
if only_modules:
UpperCAmelCase_ : str = file.split("." )[0]
try:
UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ )
UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = Path("src/transformers" )
UpperCAmelCase_ : str = "modeling"
UpperCAmelCase_ : Optional[Any] = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = Path("src/transformers" )
UpperCAmelCase_ : Any = "tokenization"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = "configuration"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"]
self.analyze_directory(lowercase_ , n_identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = Path("docs/source" )
UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"]
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
| 23 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(__lowerCamelCase )
else:
UpperCAmelCase_ : List[str] = sylvester(number - 1 )
UpperCAmelCase_ : List[str] = num - 1
UpperCAmelCase_ : List[str] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 23 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : int = DPTConfig(embedding_type="hybrid" )
if "large" in checkpoint_url:
UpperCAmelCase_ : Dict = 1024
UpperCAmelCase_ : List[str] = 4096
UpperCAmelCase_ : Union[str, Any] = 24
UpperCAmelCase_ : str = 16
UpperCAmelCase_ : Tuple = [5, 11, 17, 23]
UpperCAmelCase_ : int = [256, 512, 1024, 1024]
UpperCAmelCase_ : Any = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase_ : Optional[int] = 768
UpperCAmelCase_ : List[str] = [1, 1, 1, 0.5]
UpperCAmelCase_ : str = [256, 512, 768, 768]
UpperCAmelCase_ : str = 150
UpperCAmelCase_ : List[Any] = 16
UpperCAmelCase_ : Optional[Any] = (1, 384, 384)
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : List[str] = "project"
if "ade" in checkpoint_url:
UpperCAmelCase_ : Any = True
UpperCAmelCase_ : Dict = 768
UpperCAmelCase_ : Any = [1, 1, 1, 0.5]
UpperCAmelCase_ : Dict = 150
UpperCAmelCase_ : str = 16
UpperCAmelCase_ : Optional[int] = "huggingface/label-files"
UpperCAmelCase_ : Dict = "ade20k-id2label.json"
UpperCAmelCase_ : List[Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ) ), "r" ) )
UpperCAmelCase_ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase_ : List[Any] = idalabel
UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ : List[Any] = [1, 150, 480, 480]
return config, expected_shape
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Dict = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase_ : int = name.replace("pretrained.model", "dpt.encoder" )
if "pretrained.model" in name:
UpperCAmelCase_ : int = name.replace("pretrained.model", "dpt.embeddings" )
if "patch_embed" in name:
UpperCAmelCase_ : List[Any] = name.replace("patch_embed", "" )
if "pos_embed" in name:
UpperCAmelCase_ : int = name.replace("pos_embed", "position_embeddings" )
if "attn.proj" in name:
UpperCAmelCase_ : Optional[int] = name.replace("attn.proj", "attention.output.dense" )
if "proj" in name and "project" not in name:
UpperCAmelCase_ : Tuple = name.replace("proj", "projection" )
if "blocks" in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("blocks", "layer" )
if "mlp.fc1" in name:
UpperCAmelCase_ : Any = name.replace("mlp.fc1", "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase_ : Optional[int] = name.replace("mlp.fc2", "output.dense" )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("norm1", "layernorm_before" )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase_ : Tuple = name.replace("norm2", "layernorm_after" )
if "scratch.output_conv" in name:
UpperCAmelCase_ : List[Any] = name.replace("scratch.output_conv", "head" )
if "scratch" in name:
UpperCAmelCase_ : int = name.replace("scratch", "neck" )
if "layer1_rn" in name:
UpperCAmelCase_ : Dict = name.replace("layer1_rn", "convs.0" )
if "layer2_rn" in name:
UpperCAmelCase_ : Dict = name.replace("layer2_rn", "convs.1" )
if "layer3_rn" in name:
UpperCAmelCase_ : List[Any] = name.replace("layer3_rn", "convs.2" )
if "layer4_rn" in name:
UpperCAmelCase_ : Tuple = name.replace("layer4_rn", "convs.3" )
if "refinenet" in name:
UpperCAmelCase_ : Optional[Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase_ : List[Any] = name.replace(f"""refinenet{layer_idx}""", f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase_ : List[str] = name.replace("out_conv", "projection" )
if "resConfUnit1" in name:
UpperCAmelCase_ : Optional[int] = name.replace("resConfUnit1", "residual_layer1" )
if "resConfUnit2" in name:
UpperCAmelCase_ : int = name.replace("resConfUnit2", "residual_layer2" )
if "conv1" in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("conv1", "convolution1" )
if "conv2" in name:
UpperCAmelCase_ : int = name.replace("conv2", "convolution2" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase_ : List[Any] = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase_ : List[Any] = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase_ : Any = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase_ : str = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase_ : Any = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase_ : Dict = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" )
if "pretrained" in name:
UpperCAmelCase_ : Any = name.replace("pretrained", "dpt" )
if "bn" in name:
UpperCAmelCase_ : List[str] = name.replace("bn", "batch_norm" )
if "head" in name:
UpperCAmelCase_ : List[str] = name.replace("head", "head.head" )
if "encoder.norm" in name:
UpperCAmelCase_ : int = name.replace("encoder.norm", "layernorm" )
if "auxlayer" in name:
UpperCAmelCase_ : Any = name.replace("auxlayer", "auxiliary_head.head" )
if "backbone" in name:
UpperCAmelCase_ : List[Any] = name.replace("backbone", "backbone.bit.encoder" )
if ".." in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("..", "." )
if "stem.conv" in name:
UpperCAmelCase_ : str = name.replace("stem.conv", "bit.embedder.convolution" )
if "blocks" in name:
UpperCAmelCase_ : Dict = name.replace("blocks", "layers" )
if "convolution" in name and "backbone" in name:
UpperCAmelCase_ : str = name.replace("convolution", "conv" )
if "layer" in name and "backbone" in name:
UpperCAmelCase_ : Dict = name.replace("layer", "layers" )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase_ : List[str] = name.replace("backbone.bit.encoder.bit", "backbone.bit" )
if "embedder.conv" in name:
UpperCAmelCase_ : str = name.replace("embedder.conv", "embedder.convolution" )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase_ : Union[str, Any] = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm" )
return name
def __a ( __lowerCamelCase, __lowerCamelCase ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase_ : List[Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : List[str] = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase_ : Optional[Any] = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ : List[Any] = in_proj_bias[-config.hidden_size :]
def __a ( ):
UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : Union[str, Any] = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ , UpperCAmelCase_ : int = get_dpt_config(__lowerCamelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase_ : Union[str, Any] = torch.load(__lowerCamelCase, map_location="cpu" )
# remove certain keys
remove_ignore_keys_(__lowerCamelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase_ : Optional[Any] = state_dict.pop(__lowerCamelCase )
UpperCAmelCase_ : Optional[Any] = val
# read in qkv matrices
read_in_q_k_v(__lowerCamelCase, __lowerCamelCase )
# load HuggingFace model
UpperCAmelCase_ : str = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase_ : List[Any] = 480 if "ade" in checkpoint_url else 384
UpperCAmelCase_ : List[str] = DPTImageProcessor(size=__lowerCamelCase )
UpperCAmelCase_ : Any = prepare_img()
UpperCAmelCase_ : int = image_processor(__lowerCamelCase, return_tensors="pt" )
# forward pass
UpperCAmelCase_ : int = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth
if show_prediction:
UpperCAmelCase_ : Any = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=__lowerCamelCase, )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
model.push_to_hub("ybelkada/dpt-hybrid-midas" )
image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
_a = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline
SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""}
SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} )
SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ):
"""simple docstring"""
if str(lowercase_ ).startswith("mps" ):
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ )
else:
UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : int = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 23 | 1 |
"""simple docstring"""
import sys
from collections import defaultdict
class A_ :
'''simple docstring'''
def __init__( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = []
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.node_position[vertex]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = pos
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
UpperCAmelCase_ : List[Any] = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
UpperCAmelCase_ : Dict = 2 * start + 1
else:
UpperCAmelCase_ : List[str] = 2 * start + 2
if heap[smallest_child] < heap[start]:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = heap[smallest_child], positions[smallest_child]
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = (
heap[start],
positions[start],
)
UpperCAmelCase_ , UpperCAmelCase_ : int = temp, tempa
UpperCAmelCase_ : Any = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , lowercase_ )
self.top_to_bottom(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = position[index]
while index != 0:
UpperCAmelCase_ : str = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
UpperCAmelCase_ : Any = heap[parent]
UpperCAmelCase_ : Tuple = position[parent]
self.set_position(position[parent] , lowercase_ )
else:
UpperCAmelCase_ : Optional[int] = val
UpperCAmelCase_ : Tuple = temp
self.set_position(lowercase_ , lowercase_ )
break
UpperCAmelCase_ : Dict = parent
else:
UpperCAmelCase_ : Optional[Any] = val
UpperCAmelCase_ : Tuple = temp
self.set_position(lowercase_ , 0 )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = len(lowercase_ ) // 2 - 1
for i in range(lowercase_ , -1 , -1 ):
self.top_to_bottom(lowercase_ , lowercase_ , len(lowercase_ ) , lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = positions[0]
UpperCAmelCase_ : Dict = sys.maxsize
self.top_to_bottom(lowercase_ , 0 , len(lowercase_ ) , lowercase_ )
return temp
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = Heap()
UpperCAmelCase_ : List[str] = [0] * len(__lowerCamelCase )
UpperCAmelCase_ : Any = [-1] * len(__lowerCamelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
UpperCAmelCase_ : Any = [] # Heap of Distance of vertices from their neighboring vertex
UpperCAmelCase_ : Optional[Any] = []
for vertex in range(len(__lowerCamelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(__lowerCamelCase )
heap.node_position.append(__lowerCamelCase )
UpperCAmelCase_ : Tuple = []
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : Tuple = sys.maxsize
for neighbor, distance in adjacency_list[0]:
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : List[Any] = distance
heap.heapify(__lowerCamelCase, __lowerCamelCase )
for _ in range(1, len(__lowerCamelCase ) ):
UpperCAmelCase_ : List[str] = heap.delete_minimum(__lowerCamelCase, __lowerCamelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
UpperCAmelCase_ : Optional[Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__lowerCamelCase )]
):
UpperCAmelCase_ : Any = distance
heap.bottom_to_top(
__lowerCamelCase, heap.get_position(__lowerCamelCase ), __lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : Tuple = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
_a = int(input('Enter number of edges: ').strip())
_a = defaultdict(list)
for _ in range(edges_number):
_a = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 23 |
"""simple docstring"""
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small"
UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp()
UpperCAmelCase_ : List[str] = "en_speaker_1"
UpperCAmelCase_ : Tuple = "This is a test string"
UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json"
UpperCAmelCase_ : Any = "speaker_embeddings"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.get_tokenizer()
UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
UpperCAmelCase_ : int = 35
UpperCAmelCase_ : Optional[Any] = 2
UpperCAmelCase_ : List[Any] = 8
UpperCAmelCase_ : Optional[Any] = {
"semantic_prompt": np.ones(lowercase_ ),
"coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ),
"fine_prompt": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ )
UpperCAmelCase_ : List[str] = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" )
np.savez(lowercase_ , **lowercase_ )
UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ )
UpperCAmelCase_ : List[str] = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_tokenizer()
UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ )
UpperCAmelCase_ : Tuple = processor(text=self.input_string )
UpperCAmelCase_ : Union[str, Any] = tokenizer(
self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 23 | 1 |
"""simple docstring"""
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
_a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif']
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=1 ):
"""simple docstring"""
UpperCAmelCase_ : Any = tokenizer
UpperCAmelCase_ : int = dataset
UpperCAmelCase_ : Tuple = len(lowercase_ ) if n_tasks is None else n_tasks
UpperCAmelCase_ : str = n_copies
def __iter__( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
UpperCAmelCase_ : Dict = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = start_length
UpperCAmelCase_ : int = eof_strings
UpperCAmelCase_ : Optional[int] = tokenizer
def __call__( self , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
UpperCAmelCase_ : List[str] = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(lowercase_ )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Union[str, Any] = re.split("(%s)" % "|".join(__lowerCamelCase ), __lowerCamelCase )
# last string should be ""
return "".join(string_list[:-2] )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=20, **__lowerCamelCase ):
UpperCAmelCase_ : Optional[Any] = defaultdict(__lowerCamelCase ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(__lowerCamelCase ) ):
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = batch["ids"].shape[-1]
UpperCAmelCase_ : Optional[Any] = accelerator.unwrap_model(__lowerCamelCase ).generate(
input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=__lowerCamelCase, **__lowerCamelCase )
# each task is generated batch_size times
UpperCAmelCase_ : Tuple = batch["task_id"].repeat(__lowerCamelCase )
UpperCAmelCase_ : Tuple = accelerator.pad_across_processes(
__lowerCamelCase, dim=1, pad_index=tokenizer.pad_token_id )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather((generated_tokens, generated_tasks) )
UpperCAmelCase_ : List[Any] = generated_tokens.cpu().numpy()
UpperCAmelCase_ : Tuple = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(__lowerCamelCase, __lowerCamelCase ):
gen_token_dict[task].append(__lowerCamelCase )
UpperCAmelCase_ : str = [[] for _ in range(__lowerCamelCase )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
UpperCAmelCase_ : Any = tokenizer.decode(__lowerCamelCase, skip_special_tokens=__lowerCamelCase, clean_up_tokenization_spaces=__lowerCamelCase )
code_gens[task].append(remove_last_block(__lowerCamelCase ) )
return code_gens
def __a ( ):
# Setup configuration
UpperCAmelCase_ : List[Any] = HfArgumentParser(__lowerCamelCase )
UpperCAmelCase_ : Any = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
UpperCAmelCase_ : Tuple = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
UpperCAmelCase_ : Dict = "false"
if args.num_workers is None:
UpperCAmelCase_ : List[Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
UpperCAmelCase_ : List[str] = Accelerator()
set_seed(args.seed, device_specific=__lowerCamelCase )
# Load model and tokenizer
UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt )
UpperCAmelCase_ : Union[str, Any] = tokenizer.eos_token
UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
UpperCAmelCase_ : Optional[Any] = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, __lowerCamelCase, __lowerCamelCase )] ),
}
# Load evaluation dataset and metric
UpperCAmelCase_ : Union[str, Any] = load_dataset("openai_humaneval" )
UpperCAmelCase_ : Any = load_metric("code_eval" )
UpperCAmelCase_ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] )
UpperCAmelCase_ : str = args.n_samples // args.batch_size
UpperCAmelCase_ : Union[str, Any] = TokenizedDataset(__lowerCamelCase, human_eval["test"], n_copies=__lowerCamelCase, n_tasks=__lowerCamelCase )
# do not confuse args.batch_size, which is actually the num_return_sequences
UpperCAmelCase_ : List[Any] = DataLoader(__lowerCamelCase, batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
UpperCAmelCase_ : Dict = code_eval_metric.compute(references=[""], predictions=[[""]] )
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation." )
raise exception
UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : Tuple = complete_code(
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, n_tasks=__lowerCamelCase, batch_size=args.batch_size, **__lowerCamelCase, )
if accelerator.is_main_process:
UpperCAmelCase_ : List[str] = []
for task in tqdm(range(__lowerCamelCase ) ):
UpperCAmelCase_ : Union[str, Any] = human_eval["test"][task]["test"]
UpperCAmelCase_ : Tuple = f"""check({human_eval["test"][task]["entry_point"]})"""
references.append("\n" + test_func + "\n" + entry_point )
# Evaluate completions with "code_eval" metric
UpperCAmelCase_ , UpperCAmelCase_ : Dict = code_eval_metric.compute(
references=__lowerCamelCase, predictions=__lowerCamelCase, num_workers=args.num_workers )
print(f"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file, "w" ) as fp:
json.dump(__lowerCamelCase, __lowerCamelCase )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 23 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase, __lowerCamelCase=False ):
UpperCAmelCase_ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "deit.embeddings.cls_token"),
("dist_token", "deit.embeddings.distillation_token"),
("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "deit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("norm.weight", "deit.layernorm.weight"),
("norm.bias", "deit.layernorm.bias"),
("head.weight", "cls_classifier.weight"),
("head.bias", "cls_classifier.bias"),
("head_dist.weight", "distillation_classifier.weight"),
("head_dist.bias", "distillation_classifier.bias"),
] )
return rename_keys
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ):
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase_ : int = ""
else:
UpperCAmelCase_ : Union[str, Any] = "deit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase )
UpperCAmelCase_ : Tuple = val
def __a ( ):
UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = DeiTConfig()
# all deit models have fine-tuned heads
UpperCAmelCase_ : Optional[int] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
UpperCAmelCase_ : Tuple = 1000
UpperCAmelCase_ : str = "huggingface/label-files"
UpperCAmelCase_ : str = "imagenet-1k-id2label.json"
UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) )
UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Any = idalabel
UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ : Any = int(deit_name[-6:-4] )
UpperCAmelCase_ : Dict = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("tiny" ):
UpperCAmelCase_ : Any = 192
UpperCAmelCase_ : Union[str, Any] = 768
UpperCAmelCase_ : Union[str, Any] = 12
UpperCAmelCase_ : int = 3
elif deit_name[9:].startswith("small" ):
UpperCAmelCase_ : List[str] = 384
UpperCAmelCase_ : List[str] = 1536
UpperCAmelCase_ : Dict = 12
UpperCAmelCase_ : Any = 6
if deit_name[9:].startswith("base" ):
pass
elif deit_name[4:].startswith("large" ):
UpperCAmelCase_ : int = 1024
UpperCAmelCase_ : List[Any] = 4096
UpperCAmelCase_ : Optional[int] = 24
UpperCAmelCase_ : int = 16
# load original model from timm
UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase_ : Optional[Any] = timm_model.state_dict()
UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# load HuggingFace model
UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval()
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by DeiTImageProcessor
UpperCAmelCase_ : Union[str, Any] = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size )
UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" )
UpperCAmelCase_ : int = encoding["pixel_values"]
UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase )
UpperCAmelCase_ : Any = timm_model(__lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--deit_name',
default='vit_deit_base_distilled_patch16_224',
type=str,
help='Name of the DeiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_a = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 23 | 1 |
"""simple docstring"""
from pathlib import Path
import numpy as np
from PIL import Image
def __a ( __lowerCamelCase ):
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2989 * r + 0.5870 * g + 0.1140 * b
def __a ( __lowerCamelCase ):
return (gray > 127) & (gray <= 255)
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = np.zeros_like(__lowerCamelCase )
UpperCAmelCase_ : Any = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
UpperCAmelCase_ : Any = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
UpperCAmelCase_ : Union[str, Any] = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
UpperCAmelCase_ : Tuple = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
_a = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg'
_a = np.array(Image.open(lena_path))
# kernel to be applied
_a = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
_a = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
_a = Image.fromarray(output).convert('RGB')
pil_img.save('result_dilation.png')
| 23 |
"""simple docstring"""
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ )
UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )]
UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin" ) for f in files )
@slow
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ )
UpperCAmelCase_ : Tuple = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : List[str] = 4
UpperCAmelCase_ : Tuple = jax.device_count()
UpperCAmelCase_ : Optional[int] = num_samples * [prompt]
UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(lowercase_ ) == num_samples
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ )
UpperCAmelCase_ : Optional[int] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Union[str, Any] = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[str] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ )
UpperCAmelCase_ : Any = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : str = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Dict = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa )
UpperCAmelCase_ : List[Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Optional[int] = 50
UpperCAmelCase_ : Optional[int] = jax.device_count()
UpperCAmelCase_ : str = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , )
UpperCAmelCase_ : List[Any] = scheduler.create_state()
UpperCAmelCase_ : int = scheduler_state
UpperCAmelCase_ : Union[str, Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : int = 50
UpperCAmelCase_ : str = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , )
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , )
UpperCAmelCase_ : str = replicate(lowercase_ )
UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'spiece.model'}
_a = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<sep>" , lowercase_="<pad>" , lowercase_="<cls>" , lowercase_="<mask>" , lowercase_=["<eop>", "<eod>"] , lowercase_ = None , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
UpperCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
UpperCAmelCase_ : Union[str, Any] = 3
UpperCAmelCase_ : Any = do_lower_case
UpperCAmelCase_ : List[Any] = remove_space
UpperCAmelCase_ : Optional[int] = keep_accents
UpperCAmelCase_ : List[str] = vocab_file
UpperCAmelCase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase_ )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
UpperCAmelCase_ : int = jieba
UpperCAmelCase_ : List[Any] = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.sp_model )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.__dict__.copy()
UpperCAmelCase_ : List[Any] = None
return state
def __setstate__( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCAmelCase_ : Any = {}
UpperCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase_ : Any = " ".join(inputs.strip().split() )
else:
UpperCAmelCase_ : Union[str, Any] = inputs
UpperCAmelCase_ : str = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
UpperCAmelCase_ : int = unicodedata.normalize("NFKD" , lowercase_ )
UpperCAmelCase_ : int = "".join([c for c in outputs if not unicodedata.combining(lowercase_ )] )
if self.do_lower_case:
UpperCAmelCase_ : List[Any] = outputs.lower()
return outputs
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.preprocess_text(lowercase_ )
UpperCAmelCase_ : List[str] = self.sp_model.encode(lowercase_ , out_type=lowercase_ )
UpperCAmelCase_ : Optional[Any] = []
for piece in pieces:
if len(lowercase_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase_ : List[str] = cur_pieces[1:]
else:
UpperCAmelCase_ : Dict = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(lowercase_ )
else:
new_pieces.append(lowercase_ )
return new_pieces
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.sp_model.PieceToId(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.sp_model.IdToPiece(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = "".join(lowercase_ ).replace(lowercase_ , " " ).strip()
return out_string
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id]
UpperCAmelCase_ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
if token_ids_a is not None:
return ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1, 1]
return ([0] * len(lowercase_ )) + [1, 1]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : List[Any] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ , "wb" ) as fi:
UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = super()._decode(*lowercase_ , **lowercase_ )
UpperCAmelCase_ : Dict = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 23 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
_a = 0
_a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
_a = tuple[int, int]
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : int = pos_x
UpperCAmelCase_ : List[Any] = pos_y
UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x)
UpperCAmelCase_ : Any = goal_x
UpperCAmelCase_ : Dict = goal_y
UpperCAmelCase_ : Any = g_cost
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : int = self.calculate_heuristic()
UpperCAmelCase_ : Any = self.g_cost + self.h_cost
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x
UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowercase_ ) + abs(lowercase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , lowercase_ ):
"""simple docstring"""
return self.f_cost < other.f_cost
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ )
UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ )
UpperCAmelCase_ : str = [self.start]
UpperCAmelCase_ : list[Node] = []
UpperCAmelCase_ : int = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowercase_ )
self.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : str = self.get_successors(lowercase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowercase_ )
else:
self.open_nodes.append(lowercase_ )
return [self.start.pos]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = []
for action in delta:
UpperCAmelCase_ : str = parent.pos_x + action[1]
UpperCAmelCase_ : int = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) )
return successors
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = node
UpperCAmelCase_ : int = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase_ : Optional[int] = current_node.parent
path.reverse()
return path
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowercase_ , lowercase_ )
self.fwd_astar.closed_nodes.append(lowercase_ )
self.bwd_astar.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : Tuple = current_bwd_node
UpperCAmelCase_ : str = current_fwd_node
UpperCAmelCase_ : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : List[Any] = astar.open_nodes.pop(
astar.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowercase_ )
else:
astar.open_nodes.append(lowercase_ )
return [self.fwd_astar.start.pos]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ )
UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase_ : Any = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
_a = (0, 0)
_a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_a = time.time()
_a = AStar(init, goal)
_a = a_star.search()
_a = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
_a = time.time()
_a = BidirectionalAStar(init, goal)
_a = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 23 | 1 |
"""simple docstring"""
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_a = logging.get_logger(__name__)
class A_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str
SCREAMING_SNAKE_CASE__ : str = None
@staticmethod
def UpperCamelCase__ ( ):
"""simple docstring"""
raise NotImplementedError
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
raise NotImplementedError
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
raise NotImplementedError
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCamelCase__ ( cls ):
"""simple docstring"""
return F"""`pip install {cls.pip_package or cls.name}`"""
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = """optuna"""
@staticmethod
def UpperCamelCase__ ( ):
"""simple docstring"""
return is_optuna_available()
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
return run_hp_search_optuna(lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return default_hp_space_optuna(lowercase_ )
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = """ray"""
SCREAMING_SNAKE_CASE__ : List[Any] = """'ray[tune]'"""
@staticmethod
def UpperCamelCase__ ( ):
"""simple docstring"""
return is_ray_available()
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
return run_hp_search_ray(lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return default_hp_space_ray(lowercase_ )
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """sigopt"""
@staticmethod
def UpperCamelCase__ ( ):
"""simple docstring"""
return is_sigopt_available()
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
return run_hp_search_sigopt(lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return default_hp_space_sigopt(lowercase_ )
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = """wandb"""
@staticmethod
def UpperCamelCase__ ( ):
"""simple docstring"""
return is_wandb_available()
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
return run_hp_search_wandb(lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return default_hp_space_wandb(lowercase_ )
_a = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def __a ( ):
UpperCAmelCase_ : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(__lowerCamelCase ) > 0:
UpperCAmelCase_ : Tuple = available_backends[0].name
if len(__lowerCamelCase ) > 1:
logger.info(
f"""{len(__lowerCamelCase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 23 |
"""simple docstring"""
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,)
SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),)
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowercase_ )
return config
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.dummy_sample
UpperCAmelCase_ : Dict = 0.1 * sample
UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : int = dummy_past_residuals[:]
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Optional[int] = self.dummy_sample
UpperCAmelCase_ : List[str] = 0.1 * sample
UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:]
UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = self.scheduler_classes[0]
UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ )
UpperCAmelCase_ : Tuple = 10
UpperCAmelCase_ : List[str] = self.dummy_model()
UpperCAmelCase_ : str = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : Any = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
UpperCAmelCase_ : str = self.dummy_sample
UpperCAmelCase_ : List[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ):
scheduler.set_timesteps(lowercase_ )
elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ):
UpperCAmelCase_ : List[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase_ : List[str] = dummy_past_residuals[:]
UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
UpperCAmelCase_ : List[Any] = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.dummy_sample
UpperCAmelCase_ : Optional[int] = 0.1 * sample
UpperCAmelCase_ : List[str] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : List[str] = self.scheduler_classes[0]
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.full_loop()
UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2
assert abs(result_mean.item() - 0.25_80 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 67.39_86 ) < 1E-2
assert abs(result_mean.item() - 0.08_78 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2
assert abs(result_mean.item() - 0.29_95 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2
assert abs(result_mean.item() - 0.24_34 ) < 1E-3
| 23 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class A_ (unittest.TestCase ):
'''simple docstring'''
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , )
return model
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.dummy_uncond_unet
UpperCAmelCase_ : Union[str, Any] = PNDMScheduler()
UpperCAmelCase_ : Any = PNDMPipeline(unet=lowercase_ , scheduler=lowercase_ )
pndm.to(lowercase_ )
pndm.set_progress_bar_config(disable=lowercase_ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pndm(generator=lowercase_ , num_inference_steps=20 , output_type="numpy" ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pndm(generator=lowercase_ , num_inference_steps=20 , output_type="numpy" , return_dict=lowercase_ )[0]
UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Tuple = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = "google/ddpm-cifar10-32"
UpperCAmelCase_ : Optional[Any] = UNetaDModel.from_pretrained(lowercase_ )
UpperCAmelCase_ : List[str] = PNDMScheduler()
UpperCAmelCase_ : Optional[int] = PNDMPipeline(unet=lowercase_ , scheduler=lowercase_ )
pndm.to(lowercase_ )
pndm.set_progress_bar_config(disable=lowercase_ )
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pndm(generator=lowercase_ , output_type="numpy" ).images
UpperCAmelCase_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 23 |
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_a = object()
# For specifying empty leaf dict `{}`
_a = object()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ):
UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )]
if matches and all(__lowerCamelCase ):
return True
return False
def __a ( __lowerCamelCase ):
def replace(__lowerCamelCase, __lowerCamelCase ):
for rule, replacement in rules:
if _match(__lowerCamelCase, __lowerCamelCase ):
return replacement
return val
return replace
def __a ( ):
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )),
(("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )),
(("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : List[str] = _get_partition_rules()
UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase )
UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )}
UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(__lowerCamelCase ) )
| 23 | 1 |
"""simple docstring"""
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = DownBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : List[Any] = """down"""
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = ResnetDownsampleBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : int = """down"""
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = AttnDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : List[str] = """down"""
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = CrossAttnDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : List[str] = """down"""
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Dict = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 32
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = SimpleCrossAttnDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Dict = """down"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_encoder_hidden_states=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Any = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ : Dict = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = SkipDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Optional[Any] = """down"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_skip_sample=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AttnSkipDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : int = """down"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_skip_sample=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = DownEncoderBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Any = """down"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_temb=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = {
"in_channels": 32,
"out_channels": 32,
}
UpperCAmelCase_ : Tuple = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = AttnDownEncoderBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Tuple = """down"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_temb=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = {
"in_channels": 32,
"out_channels": 32,
}
UpperCAmelCase_ : Union[str, Any] = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = UNetMidBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : str = """mid"""
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = {
"in_channels": 32,
"temb_channels": 128,
}
UpperCAmelCase_ : Optional[int] = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = UNetMidBlockaDCrossAttn # noqa F405
SCREAMING_SNAKE_CASE__ : Dict = """mid"""
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ : Optional[Any] = 32
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = UNetMidBlockaDSimpleCrossAttn # noqa F405
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """mid"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_encoder_hidden_states=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ : Any = 32
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = UpBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Optional[int] = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = ResnetUpsampleBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : List[str] = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = CrossAttnUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Tuple = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ : int = 32
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = SimpleCrossAttnUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Optional[int] = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ , include_encoder_hidden_states=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ : Optional[int] = 32
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = AttnUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Dict = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ )
@unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = SkipUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : str = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = AttnSkipUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Optional[Any] = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = UpDecoderBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : Tuple = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_temb=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = {"in_channels": 32, "out_channels": 32}
UpperCAmelCase_ : List[Any] = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37]
super().test_output(lowercase_ )
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = AttnUpDecoderBlockaD # noqa F405
SCREAMING_SNAKE_CASE__ : str = """up"""
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().get_dummy_input(include_temb=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = {"in_channels": 32, "out_channels": 32}
UpperCAmelCase_ : Optional[Any] = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68]
super().test_output(lowercase_ )
| 23 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_a = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )]
if identifier is not None:
UpperCAmelCase_ : Dict = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_ ):
for n_ in n_identifier:
UpperCAmelCase_ : str = [file for file in files if n_ not in file]
else:
UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file]
UpperCAmelCase_ : Union[str, Any] = ignore_files or []
ignore_files.append("__init__.py" )
UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , lowercase_ )
if only_modules:
UpperCAmelCase_ : str = file.split("." )[0]
try:
UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ )
UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = Path("src/transformers" )
UpperCAmelCase_ : str = "modeling"
UpperCAmelCase_ : Optional[Any] = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = Path("src/transformers" )
UpperCAmelCase_ : Any = "tokenization"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = "configuration"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"]
self.analyze_directory(lowercase_ , n_identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = Path("docs/source" )
UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"]
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
| 23 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = feature_size
UpperCAmelCase_ : Any = sampling_rate
UpperCAmelCase_ : Any = padding_value
UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" )
UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ )
super().__init__(**lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCAmelCase_ : Dict = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : List[str] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(lowercase_ ) == 0:
if return_attention_mask:
UpperCAmelCase_ : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase_ : List[str] = required_input[0]
if isinstance(lowercase_ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase_ : Any = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(lowercase_ ):
UpperCAmelCase_ : Dict = "tf"
elif is_torch_tensor(lowercase_ ):
UpperCAmelCase_ : Any = "pt"
elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase_ : str = "np"
else:
raise ValueError(
F"""type of {first_element} unknown: {type(lowercase_ )}. """
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ )
else:
UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ )
UpperCAmelCase_ : str = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : int = len(lowercase_ )
if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
UpperCAmelCase_ : int = []
for i in range(lowercase_ ):
UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase_ : List[str] = self._truncate(
lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , )
truncated_inputs.append(lowercase_ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH
UpperCAmelCase_ : List[str] = {}
for i in range(lowercase_ ):
# padding
UpperCAmelCase_ : int = self._pad(
truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase_ : Any = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ : List[Any] = value.astype(np.floataa )
batch_outputs[key].append(lowercase_ )
return BatchFeature(lowercase_ , tensor_type=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase_ : Tuple = len(lowercase_ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = max_length - len(lowercase_ )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase_ : List[Any] = np.pad(
processed_features["attention_mask"] , (0, difference) )
UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase_ : Optional[Any] = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase_ : Optional[Any] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase_ : str = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length
if needs_to_be_truncated:
UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length]
return processed_features
def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ):
"""simple docstring"""
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = padding
else:
UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 23 |
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
_a = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
return (preds == labels).mean()
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0]
UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}"""
if task_name == "cola":
return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mrpc":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "sts-b":
return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase )
elif task_name == "qqp":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" )
if task_name == "xnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
| 23 | 1 |
"""simple docstring"""
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class A_ (lowercase__ ,lowercase__ ,lowercase__ ):
'''simple docstring'''
@register_to_config
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = False , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : int = nn.Embedding(lowercase_ , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = nn.Embedding(lowercase_ , lowercase_ )
UpperCAmelCase_ : Any = False
UpperCAmelCase_ : Tuple = nn.Dropout(p=lowercase_ )
UpperCAmelCase_ : Optional[int] = TaConfig(
vocab_size=lowercase_ , d_model=lowercase_ , num_heads=lowercase_ , d_kv=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ , feed_forward_proj=lowercase_ , is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , )
UpperCAmelCase_ : int = nn.ModuleList()
for lyr_num in range(lowercase_ ):
UpperCAmelCase_ : int = TaBlock(lowercase_ )
self.encoders.append(lowercase_ )
UpperCAmelCase_ : Optional[int] = TaLayerNorm(lowercase_ )
UpperCAmelCase_ : Optional[int] = nn.Dropout(p=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.token_embedder(lowercase_ )
UpperCAmelCase_ : List[Any] = encoder_input_tokens.shape[1]
UpperCAmelCase_ : str = torch.arange(lowercase_ , device=encoder_input_tokens.device )
x += self.position_encoding(lowercase_ )
UpperCAmelCase_ : Optional[Any] = self.dropout_pre(lowercase_ )
# inverted the attention mask
UpperCAmelCase_ : str = encoder_input_tokens.size()
UpperCAmelCase_ : Optional[int] = self.get_extended_attention_mask(lowercase_ , lowercase_ )
for lyr in self.encoders:
UpperCAmelCase_ : Any = lyr(lowercase_ , lowercase_ )[0]
UpperCAmelCase_ : List[str] = self.layer_norm(lowercase_ )
return self.dropout_post(lowercase_ ), encoder_inputs_mask
| 23 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.json'}
_a = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
_a = {'mgp-str': 27}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ):
"""simple docstring"""
super().__init__(
unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , )
with open(lowercase_ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(lowercase_ )
UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = []
for s in text:
char_tokens.extend(lowercase_ )
return char_tokens
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.decoder.get(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) )
return
UpperCAmelCase_ : Optional[int] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowercase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" )
return (vocab_file,)
| 23 | 1 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
_a = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n'
_a = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n'
_a = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
] , )
def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None , lowercase_=False ):
"""simple docstring"""
if concatenate_texts:
return compute_measures(lowercase_ , lowercase_ )["wer"]
else:
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : int = 0
for prediction, reference in zip(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Union[str, Any] = compute_measures(lowercase_ , lowercase_ )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 23 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
_a = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
_a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
_a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __a ( __lowerCamelCase ):
return x[0]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase )
UpperCAmelCase_ : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase )
UpperCAmelCase_ : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase )
UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] )
UpperCAmelCase_ : str = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase )
UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__lowerCamelCase )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase )
UpperCAmelCase_ : int = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json',
# See all ViT models at https://huggingface.co/models?filter=vit
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = """vit"""
def __init__( self , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=224 , lowercase_=16 , lowercase_=3 , lowercase_=True , lowercase_=16 , **lowercase_ , ):
"""simple docstring"""
super().__init__(**lowercase_ )
UpperCAmelCase_ : Optional[int] = hidden_size
UpperCAmelCase_ : str = num_hidden_layers
UpperCAmelCase_ : Optional[int] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : List[Any] = hidden_dropout_prob
UpperCAmelCase_ : Any = attention_probs_dropout_prob
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : List[Any] = layer_norm_eps
UpperCAmelCase_ : List[Any] = image_size
UpperCAmelCase_ : List[str] = patch_size
UpperCAmelCase_ : int = num_channels
UpperCAmelCase_ : Optional[int] = qkv_bias
UpperCAmelCase_ : List[str] = encoder_stride
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = version.parse("""1.11""" )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-4
| 23 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_a = logging.getLogger()
def __a ( ):
UpperCAmelCase_ : Tuple = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase_ : Dict = parser.parse_args()
return args.f
class A_ (lowercase__ ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowercase_ , "argv" , lowercase_ ):
UpperCAmelCase_ : List[str] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase_ , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
| 23 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class A_ (unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=4 , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = parent
UpperCAmelCase_ : Tuple = batch_size
UpperCAmelCase_ : Any = seq_length
UpperCAmelCase_ : Union[str, Any] = is_training
UpperCAmelCase_ : str = use_attention_mask
UpperCAmelCase_ : List[Any] = use_token_type_ids
UpperCAmelCase_ : List[Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : int = hidden_size
UpperCAmelCase_ : List[Any] = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : List[str] = intermediate_size
UpperCAmelCase_ : str = hidden_act
UpperCAmelCase_ : int = hidden_dropout_prob
UpperCAmelCase_ : str = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : Optional[int] = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : str = initializer_range
UpperCAmelCase_ : str = num_choices
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = None
if self.use_attention_mask:
UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : List[str] = None
if self.use_token_type_ids:
UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : List[Any] = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = config_and_inputs
UpperCAmelCase_ : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = config_and_inputs
UpperCAmelCase_ : int = True
UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = True
SCREAMING_SNAKE_CASE__ : Dict = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase_ : str = model_class_name.from_pretrained("roberta-base" , from_pt=lowercase_ )
UpperCAmelCase_ : Union[str, Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowercase_ )
| 23 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_a = {
'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'],
'tokenization_lxmert': ['LxmertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = ['LxmertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'LxmertEncoder',
'LxmertForPreTraining',
'LxmertForQuestionAnswering',
'LxmertModel',
'LxmertPreTrainedModel',
'LxmertVisualFeatureEncoder',
'LxmertXLayer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLxmertForPreTraining',
'TFLxmertMainLayer',
'TFLxmertModel',
'TFLxmertPreTrainedModel',
'TFLxmertVisualFeatureEncoder',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 |
"""simple docstring"""
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_a = logging.get_logger(__name__) # pylint: disable=invalid-name
_a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n'
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ):
UpperCAmelCase_ : List[str] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCAmelCase_ : Tuple = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , )
UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
if latents is None:
UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
UpperCAmelCase_ : str = latents.to(lowercase_ )
UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma
return latents
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
UpperCAmelCase_ : int = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=lowercase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCAmelCase_ : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ )
# We'll offload the last model manually.
UpperCAmelCase_ : Tuple = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase_ , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase_ )
def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : str = self._execution_device
UpperCAmelCase_ : List[Any] = guidance_scale > 1.0
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 )
UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 )
if do_classifier_free_guidance:
UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ )
self.scheduler.set_timesteps(lowercase_ , device=lowercase_ )
UpperCAmelCase_ : List[Any] = self.scheduler.timesteps
UpperCAmelCase_ : List[str] = self.unet.config.in_channels
UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor )
# create initial latent
UpperCAmelCase_ : int = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase_ ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds}
UpperCAmelCase_ : Optional[Any] = self.unet(
sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0]
if do_classifier_free_guidance:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 )
UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , "variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ : List[str] = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0]
# post-processing
UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5
UpperCAmelCase_ : int = image.clamp(0 , 1 )
UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 23 | 1 |
"""simple docstring"""
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
_a = 'http://www.mocksite.com/file1.txt'
_a = '"text": ["foo", "foo"]'
_a = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8'
class A_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = 200
SCREAMING_SNAKE_CASE__ : Dict = {"""Content-Length""": """100"""}
SCREAMING_SNAKE_CASE__ : Dict = {}
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
return [bytes(lowercase_ , "utf-8" )]
def __a ( *__lowerCamelCase, **__lowerCamelCase ):
return MockResponse()
@pytest.mark.parametrize("urls_type", [str, list, dict] )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
import requests
monkeypatch.setattr(__lowerCamelCase, "request", __lowerCamelCase )
UpperCAmelCase_ : Tuple = URL
if issubclass(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Union[str, Any] = url
elif issubclass(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Tuple = [url]
elif issubclass(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = {"train": url}
UpperCAmelCase_ : Union[str, Any] = "dummy"
UpperCAmelCase_ : Optional[Any] = "downloads"
UpperCAmelCase_ : Optional[int] = tmp_path
UpperCAmelCase_ : List[str] = DownloadConfig(
cache_dir=os.path.join(__lowerCamelCase, __lowerCamelCase ), use_etag=__lowerCamelCase, )
UpperCAmelCase_ : List[Any] = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase )
UpperCAmelCase_ : List[Any] = dl_manager.download(__lowerCamelCase )
UpperCAmelCase_ : List[Any] = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : str = [downloaded_paths]
UpperCAmelCase_ : int = [urls]
elif isinstance(__lowerCamelCase, __lowerCamelCase ):
assert "train" in downloaded_paths.keys()
UpperCAmelCase_ : Tuple = downloaded_paths.values()
UpperCAmelCase_ : str = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(__lowerCamelCase, __lowerCamelCase ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
UpperCAmelCase_ : List[str] = Path(__lowerCamelCase )
UpperCAmelCase_ : List[str] = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
UpperCAmelCase_ : Union[str, Any] = downloaded_path.read_text()
assert content == CONTENT
UpperCAmelCase_ : str = downloaded_path.with_suffix(".json" )
assert metadata_downloaded_path.exists()
UpperCAmelCase_ : Dict = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize("paths_type", [str, list, dict] )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Dict = str(__lowerCamelCase )
if issubclass(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = filename
elif issubclass(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = [filename]
elif issubclass(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[Any] = {"train": filename}
UpperCAmelCase_ : Optional[int] = "dummy"
UpperCAmelCase_ : List[Any] = xz_file.parent
UpperCAmelCase_ : List[Any] = "extracted"
UpperCAmelCase_ : Tuple = DownloadConfig(
cache_dir=__lowerCamelCase, use_etag=__lowerCamelCase, )
UpperCAmelCase_ : Any = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase )
UpperCAmelCase_ : List[str] = dl_manager.extract(__lowerCamelCase )
UpperCAmelCase_ : Dict = paths
for extracted_paths in [extracted_paths]:
if isinstance(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = [extracted_paths]
UpperCAmelCase_ : str = [paths]
elif isinstance(__lowerCamelCase, __lowerCamelCase ):
assert "train" in extracted_paths.keys()
UpperCAmelCase_ : str = extracted_paths.values()
UpperCAmelCase_ : Tuple = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(__lowerCamelCase, __lowerCamelCase ):
assert extracted_path == dl_manager.extracted_paths[input_path]
UpperCAmelCase_ : Union[str, Any] = Path(__lowerCamelCase )
UpperCAmelCase_ : List[str] = extracted_path.parts
assert parts[-1] == hash_url_to_filename(__lowerCamelCase, etag=__lowerCamelCase )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
UpperCAmelCase_ : List[str] = extracted_path.read_text()
UpperCAmelCase_ : str = text_file.read_text()
assert extracted_file_content == expected_file_content
def __a ( __lowerCamelCase, __lowerCamelCase ):
assert path.endswith(".jsonl" )
for num_items, line in enumerate(__lowerCamelCase, start=1 ):
UpperCAmelCase_ : Any = json.loads(line.decode("utf-8" ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"] )
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = request.getfixturevalue(__lowerCamelCase )
UpperCAmelCase_ : Dict = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ):
_test_jsonl(__lowerCamelCase, __lowerCamelCase )
assert num_jsonl == 2
@pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] )
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = request.getfixturevalue(__lowerCamelCase )
UpperCAmelCase_ : int = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ):
_test_jsonl(__lowerCamelCase, __lowerCamelCase )
assert num_tar == 1
assert num_jsonl == 2
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : List[Any] = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ), start=1 ):
assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 23 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a = logging.get_logger(__name__)
_a = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """detr"""
SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = backbone_config.get("model_type" )
UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None
UpperCAmelCase_ : int = use_timm_backbone
UpperCAmelCase_ : int = backbone_config
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Union[str, Any] = d_model
UpperCAmelCase_ : str = encoder_ffn_dim
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : List[Any] = encoder_attention_heads
UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : List[str] = attention_dropout
UpperCAmelCase_ : Any = activation_dropout
UpperCAmelCase_ : str = activation_function
UpperCAmelCase_ : Tuple = init_std
UpperCAmelCase_ : Optional[Any] = init_xavier_std
UpperCAmelCase_ : Optional[Any] = encoder_layerdrop
UpperCAmelCase_ : Optional[int] = decoder_layerdrop
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : int = auxiliary_loss
UpperCAmelCase_ : Optional[Any] = position_embedding_type
UpperCAmelCase_ : Tuple = backbone
UpperCAmelCase_ : Optional[int] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : Any = bbox_cost
UpperCAmelCase_ : int = giou_cost
# Loss coefficients
UpperCAmelCase_ : str = mask_loss_coefficient
UpperCAmelCase_ : Any = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : List[str] = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.d_model
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
return cls(backbone_config=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict()
UpperCAmelCase_ : str = self.__class__.model_type
return output
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-5
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 12
| 23 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'sentencepiece.model'}
_a = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
_a = {
'google/rembert': 256,
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="[CLS]" , lowercase_="[SEP]" , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ):
"""simple docstring"""
super().__init__(
do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , )
UpperCAmelCase_ : int = do_lower_case
UpperCAmelCase_ : Tuple = remove_space
UpperCAmelCase_ : str = keep_accents
UpperCAmelCase_ : Any = vocab_file
UpperCAmelCase_ : Any = spm.SentencePieceProcessor()
self.sp_model.Load(lowercase_ )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.sp_model )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Union[str, Any] = None
return state
def __setstate__( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = d
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=False ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.sp_model.EncodeAsPieces(lowercase_ )
return pieces
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.sp_model.PieceToId(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.sp_model.IdToPiece(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.sp_model.decode_pieces(lowercase_ )
return out_string
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
UpperCAmelCase_ : int = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1]
return [1] + ([0] * len(lowercase_ )) + [1]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id]
UpperCAmelCase_ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) )
return
UpperCAmelCase_ : Optional[Any] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ):
copyfile(self.vocab_file , lowercase_ )
return (out_vocab_file,)
| 23 |
"""simple docstring"""
_a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
_a = [None] * 10_000_000
_a = True
_a = False
def __a ( __lowerCamelCase ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) )
UpperCAmelCase_ : List[str] = number_chain
while number < 1000_0000:
UpperCAmelCase_ : List[Any] = number_chain
number *= 10
return number_chain
def __a ( __lowerCamelCase = 1000_0000 ):
for i in range(1, __lowerCamelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 23 | 1 |
"""simple docstring"""
from __future__ import annotations
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = get_failure_array(__lowerCamelCase )
# 2) Step through text searching for pattern
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 0, 0 # index into text, pattern
while i < len(__lowerCamelCase ):
if pattern[j] == text[i]:
if j == (len(__lowerCamelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
UpperCAmelCase_ : str = failure[j - 1]
continue
i += 1
return False
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Optional[Any] = [0]
UpperCAmelCase_ : Optional[Any] = 0
UpperCAmelCase_ : Dict = 1
while j < len(__lowerCamelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
UpperCAmelCase_ : Any = failure[i - 1]
continue
j += 1
failure.append(__lowerCamelCase )
return failure
if __name__ == "__main__":
# Test 1)
_a = 'abc1abc12'
_a = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
_a = 'alskfjaldsk23adsfabcabc'
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
_a = 'ABABX'
_a = 'ABABZABABYABABX'
assert kmp(pattern, text)
# Test 3)
_a = 'AAAB'
_a = 'ABAAAAAB'
assert kmp(pattern, text)
# Test 4)
_a = 'abcdabcy'
_a = 'abcxabcdabxabcdabcdabcy'
assert kmp(pattern, text)
# Test 5)
_a = 'aabaabaaa'
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 23 |
"""simple docstring"""
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# Return True if there is node that has not iterated.
UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase )
UpperCAmelCase_ : Any = []
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Tuple = True
while queue:
UpperCAmelCase_ : str = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Any = True
UpperCAmelCase_ : Union[str, Any] = u
return visited[t]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# This array is filled by BFS and to store path
UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase ))
UpperCAmelCase_ : Any = 0
while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = float("Inf" )
UpperCAmelCase_ : Tuple = sink
while s != source:
# Find the minimum value in select path
UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] )
UpperCAmelCase_ : Dict = parent[s]
max_flow += path_flow
UpperCAmelCase_ : Optional[Any] = sink
while v != source:
UpperCAmelCase_ : List[str] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
UpperCAmelCase_ : Optional[int] = parent[v]
return max_flow
_a = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
_a , _a = 0, 5
print(ford_fulkerson(graph, source, sink))
| 23 | 1 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List
from unittest.mock import Mock
import torch
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from accelerate.accelerator import Accelerator
from accelerate.utils.dataclasses import DistributedType
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = data
def __iter__( self ):
"""simple docstring"""
for element in self.data:
yield element
def __a ( __lowerCamelCase=True ):
UpperCAmelCase_ : List[str] = Accelerator(even_batches=__lowerCamelCase )
assert accelerator.num_processes == 2, "this script expects that two GPUs are available"
return accelerator
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ):
if iterable:
UpperCAmelCase_ : Any = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) )
else:
UpperCAmelCase_ : Dict = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) )
UpperCAmelCase_ : Union[str, Any] = DataLoader(__lowerCamelCase, batch_size=__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(__lowerCamelCase )
return dl
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ):
UpperCAmelCase_ : int = create_dataloader(accelerator=__lowerCamelCase, dataset_size=__lowerCamelCase, batch_size=__lowerCamelCase )
UpperCAmelCase_ : List[Any] = [len(batch[0] ) for batch in dl]
if accelerator.process_index == 0:
assert batch_sizes == process_0_expected_batch_sizes
elif accelerator.process_index == 1:
assert batch_sizes == process_1_expected_batch_sizes
def __a ( ):
UpperCAmelCase_ : str = create_accelerator()
# without padding, we would expect a different number of batches
verify_dataloader_batch_sizes(
__lowerCamelCase, dataset_size=3, batch_size=1, process_0_expected_batch_sizes=[1, 1], process_1_expected_batch_sizes=[1, 1], )
# without padding, we would expect the same number of batches, but different sizes
verify_dataloader_batch_sizes(
__lowerCamelCase, dataset_size=7, batch_size=2, process_0_expected_batch_sizes=[2, 2], process_1_expected_batch_sizes=[2, 2], )
def __a ( ):
UpperCAmelCase_ : str = create_accelerator(even_batches=__lowerCamelCase )
verify_dataloader_batch_sizes(
__lowerCamelCase, dataset_size=3, batch_size=1, process_0_expected_batch_sizes=[1, 1], process_1_expected_batch_sizes=[1], )
verify_dataloader_batch_sizes(
__lowerCamelCase, dataset_size=7, batch_size=2, process_0_expected_batch_sizes=[2, 2], process_1_expected_batch_sizes=[2, 1], )
def __a ( ):
UpperCAmelCase_ : Optional[Any] = create_accelerator(even_batches=__lowerCamelCase )
UpperCAmelCase_ : str = torch.nn.Linear(1, 1 )
UpperCAmelCase_ : Any = accelerator.prepare(__lowerCamelCase )
UpperCAmelCase_ : List[Any] = create_dataloader(__lowerCamelCase, dataset_size=3, batch_size=1 )
UpperCAmelCase_ : Tuple = []
with accelerator.join_uneven_inputs([ddp_model] ):
for batch_idx, batch in enumerate(__lowerCamelCase ):
UpperCAmelCase_ : Any = ddp_model(batch[0].float() )
UpperCAmelCase_ : Any = output.sum()
loss.backward()
batch_idxs.append(__lowerCamelCase )
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
assert batch_idxs == [0, 1]
elif accelerator.process_index == 1:
assert batch_idxs == [0]
def __a ( __lowerCamelCase ):
with warnings.catch_warnings(record=__lowerCamelCase ) as w:
with accelerator.join_uneven_inputs([Mock()] ):
pass
assert issubclass(w[-1].category, __lowerCamelCase )
assert "only supported for multi-GPU" in str(w[-1].message )
def __a ( ):
UpperCAmelCase_ : Tuple = True
UpperCAmelCase_ : Optional[int] = False
UpperCAmelCase_ : Tuple = create_accelerator(even_batches=__lowerCamelCase )
UpperCAmelCase_ : str = torch.nn.Linear(1, 1 )
UpperCAmelCase_ : List[Any] = accelerator.prepare(__lowerCamelCase )
UpperCAmelCase_ : Optional[Any] = create_dataloader(__lowerCamelCase, dataset_size=3, batch_size=1 )
UpperCAmelCase_ : int = create_dataloader(__lowerCamelCase, dataset_size=3, batch_size=1 )
with accelerator.join_uneven_inputs([ddp_model], even_batches=__lowerCamelCase ):
UpperCAmelCase_ : Optional[Any] = train_dl.batch_sampler.even_batches
UpperCAmelCase_ : Union[str, Any] = valid_dl.batch_sampler.even_batches
assert train_dl_overridden_value == overridden_even_batches
assert valid_dl_overridden_value == overridden_even_batches
assert train_dl.batch_sampler.even_batches == default_even_batches
assert valid_dl.batch_sampler.even_batches == default_even_batches
def __a ( ):
UpperCAmelCase_ : Tuple = True
UpperCAmelCase_ : Dict = False
UpperCAmelCase_ : Tuple = create_accelerator(even_batches=__lowerCamelCase )
UpperCAmelCase_ : List[Any] = torch.nn.Linear(1, 1 )
UpperCAmelCase_ : List[str] = accelerator.prepare(__lowerCamelCase )
create_dataloader(__lowerCamelCase, dataset_size=3, batch_size=1, iterable=__lowerCamelCase )
UpperCAmelCase_ : Tuple = create_dataloader(__lowerCamelCase, dataset_size=3, batch_size=1 )
with warnings.catch_warnings():
warnings.filterwarnings("ignore" )
try:
with accelerator.join_uneven_inputs([ddp_model], even_batches=__lowerCamelCase ):
UpperCAmelCase_ : List[str] = batch_dl.batch_sampler.even_batches
except AttributeError:
# ensure attribute error is not raised when processing iterable dl
raise AssertionError
assert batch_dl_overridden_value == overridden_even_batches
assert batch_dl.batch_sampler.even_batches == default_even_batches
def __a ( ):
UpperCAmelCase_ : int = create_accelerator()
UpperCAmelCase_ : Union[str, Any] = torch.nn.Linear(1, 1 )
UpperCAmelCase_ : Tuple = accelerator.prepare(__lowerCamelCase )
create_dataloader(__lowerCamelCase, dataset_size=3, batch_size=1, iterable=__lowerCamelCase )
with warnings.catch_warnings(record=__lowerCamelCase ) as w:
with accelerator.join_uneven_inputs([ddp_model], even_batches=__lowerCamelCase ):
pass
assert issubclass(w[-1].category, __lowerCamelCase )
assert "only supported for map-style datasets" in str(w[-1].message )
def __a ( ):
UpperCAmelCase_ : List[Any] = create_accelerator()
accelerator.print("Test that even_batches variable ensures uniform batches across processes" )
test_default_ensures_even_batch_sizes()
accelerator.print("Run tests with even_batches disabled" )
test_can_disable_even_batches()
accelerator.print("Test joining uneven inputs" )
test_can_join_uneven_inputs()
accelerator.print("Test overriding even_batches when joining uneven inputs" )
test_join_can_override_even_batches()
accelerator.print("Test overriding even_batches for mixed dataloader types" )
test_join_can_override_for_mixed_type_dataloaders()
accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" )
test_join_raises_warning_for_iterable_when_overriding_even_batches()
accelerator.print("Test join with non DDP distributed raises warning" )
UpperCAmelCase_ : str = accelerator.state.distributed_type
UpperCAmelCase_ : Dict = DistributedType.FSDP
test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase )
UpperCAmelCase_ : str = original_state
if __name__ == "__main__":
main()
| 23 |
"""simple docstring"""
import datasets
_a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n'
_a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n'
_a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n'
def __a ( __lowerCamelCase, __lowerCamelCase ):
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
"references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
} ) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
| 23 | 1 |
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class A_ (lowercase__ ,lowercase__ ):
'''simple docstring'''
@register_to_config
def __init__( self , lowercase_ = 128 , lowercase_ = 256 , lowercase_ = 20_00.0 , lowercase_ = 768 , lowercase_ = 12 , lowercase_ = 12 , lowercase_ = 64 , lowercase_ = 2048 , lowercase_ = 0.1 , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Dict = nn.Sequential(
nn.Linear(lowercase_ , d_model * 4 , bias=lowercase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowercase_ ) , nn.SiLU() , )
UpperCAmelCase_ : Tuple = nn.Embedding(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[Any] = False
UpperCAmelCase_ : Tuple = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ )
UpperCAmelCase_ : List[Any] = nn.Dropout(p=lowercase_ )
UpperCAmelCase_ : Optional[Any] = nn.ModuleList()
for lyr_num in range(lowercase_ ):
# FiLM conditional T5 decoder
UpperCAmelCase_ : List[Any] = DecoderLayer(d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ )
self.decoders.append(lowercase_ )
UpperCAmelCase_ : Optional[int] = TaLayerNorm(lowercase_ )
UpperCAmelCase_ : Optional[int] = nn.Dropout(p=lowercase_ )
UpperCAmelCase_ : str = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
UpperCAmelCase_ : str = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
UpperCAmelCase_ : List[Any] = self.conditioning_emb(lowercase_ ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
UpperCAmelCase_ : Tuple = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
UpperCAmelCase_ : Tuple = torch.broadcast_to(
torch.arange(lowercase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , )
UpperCAmelCase_ : Union[str, Any] = self.position_encoding(lowercase_ )
UpperCAmelCase_ : str = self.continuous_inputs_projection(lowercase_ )
inputs += position_encodings
UpperCAmelCase_ : Union[str, Any] = self.dropout(lowercase_ )
# decoder: No padding present.
UpperCAmelCase_ : int = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
UpperCAmelCase_ : Union[str, Any] = [(x, self.encoder_decoder_mask(lowercase_ , lowercase_ )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
UpperCAmelCase_ : List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
UpperCAmelCase_ : Optional[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
UpperCAmelCase_ : List[str] = lyr(
lowercase_ , conditioning_emb=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )[0]
UpperCAmelCase_ : str = self.decoder_norm(lowercase_ )
UpperCAmelCase_ : str = self.post_dropout(lowercase_ )
UpperCAmelCase_ : int = self.spec_out(lowercase_ )
return spec_out
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=1E-6 ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : List[Any] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , dropout_rate=lowercase_ ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , dropout_rate=lowercase_ , layer_norm_epsilon=lowercase_ , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ , layer_norm_epsilon=lowercase_ ) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.layer[0](
lowercase_ , conditioning_emb=lowercase_ , attention_mask=lowercase_ , )
if encoder_hidden_states is not None:
UpperCAmelCase_ : Union[str, Any] = torch.where(encoder_attention_mask > 0 , 0 , -1E1_0 ).to(
encoder_hidden_states.dtype )
UpperCAmelCase_ : Any = self.layer[1](
lowercase_ , key_value_states=lowercase_ , attention_mask=lowercase_ , )
# Apply Film Conditional Feed Forward layer
UpperCAmelCase_ : Union[str, Any] = self.layer[-1](lowercase_ , lowercase_ )
return (hidden_states,)
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Union[str, Any] = TaLayerNorm(lowercase_ )
UpperCAmelCase_ : Dict = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase_ )
UpperCAmelCase_ : int = Attention(query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , out_bias=lowercase_ , scale_qk=lowercase_ )
UpperCAmelCase_ : str = nn.Dropout(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , ):
"""simple docstring"""
# pre_self_attention_layer_norm
UpperCAmelCase_ : List[Any] = self.layer_norm(lowercase_ )
if conditioning_emb is not None:
UpperCAmelCase_ : List[Any] = self.FiLMLayer(lowercase_ , lowercase_ )
# Self-attention block
UpperCAmelCase_ : List[Any] = self.attention(lowercase_ )
UpperCAmelCase_ : Tuple = hidden_states + self.dropout(lowercase_ )
return hidden_states
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Dict = Attention(query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , out_bias=lowercase_ , scale_qk=lowercase_ )
UpperCAmelCase_ : Union[str, Any] = TaLayerNorm(lowercase_ , eps=lowercase_ )
UpperCAmelCase_ : Any = nn.Dropout(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.layer_norm(lowercase_ )
UpperCAmelCase_ : List[Any] = self.attention(
lowercase_ , encoder_hidden_states=lowercase_ , attention_mask=attention_mask.squeeze(1 ) , )
UpperCAmelCase_ : int = hidden_states + self.dropout(lowercase_ )
return layer_output
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Optional[Any] = TaDenseGatedActDense(d_model=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ )
UpperCAmelCase_ : int = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase_ )
UpperCAmelCase_ : List[str] = TaLayerNorm(lowercase_ , eps=lowercase_ )
UpperCAmelCase_ : int = nn.Dropout(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.layer_norm(lowercase_ )
if conditioning_emb is not None:
UpperCAmelCase_ : Optional[int] = self.film(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = self.DenseReluDense(lowercase_ )
UpperCAmelCase_ : int = hidden_states + self.dropout(lowercase_ )
return hidden_states
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : str = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ )
UpperCAmelCase_ : List[str] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ )
UpperCAmelCase_ : List[Any] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ )
UpperCAmelCase_ : Tuple = nn.Dropout(lowercase_ )
UpperCAmelCase_ : str = NewGELUActivation()
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.act(self.wi_a(lowercase_ ) )
UpperCAmelCase_ : Tuple = self.wi_a(lowercase_ )
UpperCAmelCase_ : Optional[int] = hidden_gelu * hidden_linear
UpperCAmelCase_ : Optional[int] = self.dropout(lowercase_ )
UpperCAmelCase_ : Optional[int] = self.wo(lowercase_ )
return hidden_states
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=1E-6 ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.ones(lowercase_ ) )
UpperCAmelCase_ : Optional[int] = eps
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
UpperCAmelCase_ : Any = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowercase_ )
UpperCAmelCase_ : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
UpperCAmelCase_ : List[str] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class A_ (nn.Module ):
'''simple docstring'''
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowercase_ , 3.0 )) ))
class A_ (nn.Module ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : str = nn.Linear(lowercase_ , out_features * 2 , bias=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.scale_bias(lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.chunk(lowercase_ , 2 , -1 )
UpperCAmelCase_ : Tuple = x * (1 + scale) + shift
return x
| 23 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = feature_size
UpperCAmelCase_ : Any = sampling_rate
UpperCAmelCase_ : Any = padding_value
UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" )
UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ )
super().__init__(**lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCAmelCase_ : Dict = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : List[str] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(lowercase_ ) == 0:
if return_attention_mask:
UpperCAmelCase_ : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase_ : List[str] = required_input[0]
if isinstance(lowercase_ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase_ : Any = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(lowercase_ ):
UpperCAmelCase_ : Dict = "tf"
elif is_torch_tensor(lowercase_ ):
UpperCAmelCase_ : Any = "pt"
elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase_ : str = "np"
else:
raise ValueError(
F"""type of {first_element} unknown: {type(lowercase_ )}. """
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ )
else:
UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ )
UpperCAmelCase_ : str = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : int = len(lowercase_ )
if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
UpperCAmelCase_ : int = []
for i in range(lowercase_ ):
UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase_ : List[str] = self._truncate(
lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , )
truncated_inputs.append(lowercase_ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH
UpperCAmelCase_ : List[str] = {}
for i in range(lowercase_ ):
# padding
UpperCAmelCase_ : int = self._pad(
truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase_ : Any = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ : List[Any] = value.astype(np.floataa )
batch_outputs[key].append(lowercase_ )
return BatchFeature(lowercase_ , tensor_type=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase_ : Tuple = len(lowercase_ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = max_length - len(lowercase_ )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase_ : List[Any] = np.pad(
processed_features["attention_mask"] , (0, difference) )
UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase_ : Optional[Any] = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase_ : Optional[Any] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase_ : str = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length
if needs_to_be_truncated:
UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length]
return processed_features
def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ):
"""simple docstring"""
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = padding
else:
UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 23 | 1 |
"""simple docstring"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
_a = logging.getLogger(__name__)
_a = 50 # max width of layer names
_a = 70 # max width of quantizer names
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Tuple = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec", type=__lowerCamelCase, default=8, help="weight precision" )
group.add_argument("--aprec", type=__lowerCamelCase, default=8, help="activation precision" )
group.add_argument("--quant-per-tensor", action="store_true", help="per tensor weight scaling" )
group.add_argument("--quant-disable", action="store_true", help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings", action="store_true", help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword", type=__lowerCamelCase, nargs="+", help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module", type=__lowerCamelCase, help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module", type=__lowerCamelCase, help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator", default="max", help="which quantization range calibrator to use" )
group.add_argument("--percentile", default=__lowerCamelCase, type=__lowerCamelCase, help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv", action="store_true", help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu", metavar="N", type=__lowerCamelCase, help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights", action="store_true", help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
), )
def __a ( __lowerCamelCase ):
if args.calibrator == "max":
UpperCAmelCase_ : Union[str, Any] = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase_ : Optional[int] = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase_ : Union[str, Any] = "histogram"
else:
raise ValueError(f"""Invalid calibrator {args.calibrator}""" )
UpperCAmelCase_ : str = QuantDescriptor(num_bits=args.aprec, calib_method=__lowerCamelCase )
UpperCAmelCase_ : str = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCamelCase )
quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase=False ):
logger.info("Configuring Model for Quantization" )
logger.info(f"""using quantization package {pytorch_quantization.__file__}""" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__lowerCamelCase, ["embeddings"], which="weight", _disabled=__lowerCamelCase )
if args.quant_disable:
set_quantizer_by_name(__lowerCamelCase, [""], _disabled=__lowerCamelCase )
if args.quant_disable_keyword:
set_quantizer_by_name(__lowerCamelCase, args.quant_disable_keyword, _disabled=__lowerCamelCase )
if args.quant_disable_layer_module:
set_quantizer_by_name(__lowerCamelCase, [r"layer.\d+." + args.quant_disable_layer_module], _disabled=__lowerCamelCase )
if args.quant_enable_layer_module:
set_quantizer_by_name(__lowerCamelCase, [r"layer.\d+." + args.quant_enable_layer_module], _disabled=__lowerCamelCase )
if args.recalibrate_weights:
recalibrate_weights(__lowerCamelCase )
if args.fuse_qkv:
fuse_qkv(__lowerCamelCase, __lowerCamelCase )
if args.clip_gelu:
clip_gelu(__lowerCamelCase, args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__lowerCamelCase )
def __a ( __lowerCamelCase ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"""{name:80}: {module}""" )
def __a ( __lowerCamelCase, __lowerCamelCase ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator, calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile", percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase ):
def fusea(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
for mod in [qq, qk, qv]:
if not hasattr(__lowerCamelCase, "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase_ : Tuple = qq._amax.detach().item()
UpperCAmelCase_ : List[Any] = qk._amax.detach().item()
UpperCAmelCase_ : Dict = qv._amax.detach().item()
UpperCAmelCase_ : Dict = max(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
qq._amax.fill_(__lowerCamelCase )
qk._amax.fill_(__lowerCamelCase )
qv._amax.fill_(__lowerCamelCase )
logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(f"""FUSE_QKV: {name:{name_width}}""" )
fusea(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer )
def __a ( __lowerCamelCase, __lowerCamelCase ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase_ : Dict = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = mod._input_quantizer._amax.data.detach().item()
logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" )
def __a ( __lowerCamelCase ):
for name, mod in model.named_modules():
if hasattr(__lowerCamelCase, "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase_ : Optional[Any] = mod.weight.shape[0]
UpperCAmelCase_ : int = mod._weight_quantizer._amax.detach()
UpperCAmelCase_ : List[Any] = torch.ones(__lowerCamelCase, dtype=amax.dtype, device=amax.device ) * amax
print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" )
def __a ( __lowerCamelCase ):
for name, mod in model.named_modules():
if hasattr(__lowerCamelCase, "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer, "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase_ : Optional[int] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase_ : int = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase_ : Any = pytorch_quantization.utils.reduce_amax(mod.weight, axis=__lowerCamelCase, keepdims=__lowerCamelCase ).detach()
logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" )
UpperCAmelCase_ : int = amax
def __a ( __lowerCamelCase, __lowerCamelCase=25, __lowerCamelCase=180, __lowerCamelCase=None ):
if ignore is None:
UpperCAmelCase_ : List[Any] = []
elif not isinstance(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = [ignore]
UpperCAmelCase_ : Dict = 0
for name, mod in model.named_modules():
if not hasattr(__lowerCamelCase, "weight" ):
continue
UpperCAmelCase_ : List[Any] = max(__lowerCamelCase, len(__lowerCamelCase ) )
for name, mod in model.named_modules():
UpperCAmelCase_ : List[Any] = getattr(__lowerCamelCase, "_input_quantizer", __lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = getattr(__lowerCamelCase, "_weight_quantizer", __lowerCamelCase )
if not hasattr(__lowerCamelCase, "weight" ):
continue
if type(__lowerCamelCase ) in ignore:
continue
if [True for s in ignore if type(__lowerCamelCase ) is str and s in name]:
continue
UpperCAmelCase_ : Optional[int] = f"""Act:{input_q.extra_repr()}"""
UpperCAmelCase_ : Optional[int] = f"""Wgt:{weight_q.extra_repr()}"""
UpperCAmelCase_ : List[str] = f"""{name:{name_width}} {act_str} {wgt_str}"""
if len(__lowerCamelCase ) <= line_width:
logger.info(__lowerCamelCase )
else:
logger.info(f"""{name:{name_width}} {act_str}""" )
logger.info(f"""{" ":{name_width}} {wgt_str}""" )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Dict = 0
for name, mod in model.named_modules():
if isinstance(__lowerCamelCase, pytorch_quantization.nn.TensorQuantizer ):
print(f"""{name:80} {mod}""" )
count += 1
print(f"""{count} TensorQuantizers found in model""" )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Tuple = getattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
if quantizer_mod is not None:
assert hasattr(__lowerCamelCase, __lowerCamelCase )
setattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
else:
logger.warning(f"""{name} has no {quantizer}""" )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="both", **__lowerCamelCase ):
UpperCAmelCase_ : List[Any] = f"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(__lowerCamelCase, __lowerCamelCase, "_input_quantizer", __lowerCamelCase, __lowerCamelCase )
if which in ["weight", "both"]:
set_quantizer(__lowerCamelCase, __lowerCamelCase, "_weight_quantizer", __lowerCamelCase, __lowerCamelCase )
logger.info(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ):
for name, mod in model.named_modules():
if hasattr(__lowerCamelCase, "_input_quantizer" ) or hasattr(__lowerCamelCase, "_weight_quantizer" ):
for n in names:
if re.search(__lowerCamelCase, __lowerCamelCase ):
set_quantizers(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Union[str, Any] = f"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
setattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
logger.info(__lowerCamelCase )
| 23 |
"""simple docstring"""
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 )
UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 )
UpperCAmelCase_ : Optional[Any] = Accelerator()
UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ )
try:
pickle.loads(pickle.dumps(lowercase_ ) )
except Exception as e:
self.fail(F"""Accelerated optimizer pickling failed with {e}""" )
AcceleratorState._reset_state()
| 23 | 1 |
"""simple docstring"""
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# Return True if there is node that has not iterated.
UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase )
UpperCAmelCase_ : Any = []
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Tuple = True
while queue:
UpperCAmelCase_ : str = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Any = True
UpperCAmelCase_ : Union[str, Any] = u
return visited[t]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# This array is filled by BFS and to store path
UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase ))
UpperCAmelCase_ : Any = 0
while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = float("Inf" )
UpperCAmelCase_ : Tuple = sink
while s != source:
# Find the minimum value in select path
UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] )
UpperCAmelCase_ : Dict = parent[s]
max_flow += path_flow
UpperCAmelCase_ : Optional[Any] = sink
while v != source:
UpperCAmelCase_ : List[str] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
UpperCAmelCase_ : Optional[int] = parent[v]
return max_flow
_a = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
_a , _a = 0, 5
print(ford_fulkerson(graph, source, sink))
| 23 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """ctrl"""
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : List[str] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = vocab_size
UpperCAmelCase_ : Union[str, Any] = n_positions
UpperCAmelCase_ : List[str] = n_embd
UpperCAmelCase_ : Dict = n_layer
UpperCAmelCase_ : Optional[int] = n_head
UpperCAmelCase_ : List[str] = dff
UpperCAmelCase_ : Tuple = resid_pdrop
UpperCAmelCase_ : Optional[Any] = embd_pdrop
UpperCAmelCase_ : str = layer_norm_epsilon
UpperCAmelCase_ : List[str] = initializer_range
UpperCAmelCase_ : List[str] = use_cache
super().__init__(**lowercase_ )
| 23 | 1 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
_a = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
_a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
_a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __a ( __lowerCamelCase ):
return x[0]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase )
UpperCAmelCase_ : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase )
UpperCAmelCase_ : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase )
UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] )
UpperCAmelCase_ : str = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase )
UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__lowerCamelCase )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase )
UpperCAmelCase_ : int = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(__lowerCamelCase )
else:
UpperCAmelCase_ : List[str] = sylvester(number - 1 )
UpperCAmelCase_ : List[str] = num - 1
UpperCAmelCase_ : List[str] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 23 | 1 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,)
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """pytorch""",
"""script""": """run_ddp.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """tensorflow""",
"""script""": """run_tf_dist.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7},
},
] )
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=lowercase_ , )
assert hasattr(self , "env" )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}"""
# distributed data settings
UpperCAmelCase_ : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowercase_ , instance_count=lowercase_ , instance_type=self.instance_type , debugger_hook_config=lowercase_ , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowercase_ , py_version="py36" , )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
TrainingJobAnalytics(lowercase_ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(2,)] )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
# create estimator
UpperCAmelCase_ : Optional[Any] = self.create_estimator(lowercase_ )
# run training
estimator.fit()
# result dataframe
UpperCAmelCase_ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCAmelCase_ : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
UpperCAmelCase_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCAmelCase_ : Optional[int] = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , lowercase_ )
| 23 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline
SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""}
SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} )
SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ):
"""simple docstring"""
if str(lowercase_ ).startswith("mps" ):
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ )
else:
UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : int = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 23 | 1 |
"""simple docstring"""
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class A_ (lowercase__ ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = tempfile.mkdtemp()
UpperCAmelCase_ : str = 8
# DPR tok
UpperCAmelCase_ : Dict = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
UpperCAmelCase_ : int = os.path.join(self.tmpdirname , "dpr_tokenizer" )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
UpperCAmelCase_ : Dict = os.path.join(lowercase_ , DPR_VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
# BART tok
UpperCAmelCase_ : Any = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase_ : Any = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
UpperCAmelCase_ : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase_ : Union[str, Any] = {"unk_token": "<unk>"}
UpperCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , "bart_tokenizer" )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
UpperCAmelCase_ : Tuple = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase_ : str = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowercase_ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowercase_ ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.get_dummy_dataset()
UpperCAmelCase_ : Optional[Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
UpperCAmelCase_ : str = dataset
UpperCAmelCase_ : Tuple = RagRetriever(
lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = self.get_dummy_dataset()
UpperCAmelCase_ : int = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , )
if from_disk:
UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , "dataset" )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , "index.faiss" )
dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) )
dataset.drop_index("embeddings" )
dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) )
del dataset
UpperCAmelCase_ : Optional[int] = RagRetriever(
lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
UpperCAmelCase_ : Optional[int] = RagRetriever(
lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowercase_ ) , )
return retriever
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT )
UpperCAmelCase_ : int = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" )
dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" )
pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) )
UpperCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" )
UpperCAmelCase_ : List[Any] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset}
pickle.dump(lowercase_ , open(lowercase_ , "wb" ) )
UpperCAmelCase_ : List[Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , )
UpperCAmelCase_ : int = RagRetriever(
lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : str = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase_ : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = retriever.retrieve(lowercase_ , n_docs=lowercase_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowercase_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , lowercase_ )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
UpperCAmelCase_ : List[str] = self.get_dummy_dataset()
retriever.save_pretrained(lowercase_ )
UpperCAmelCase_ : List[str] = RagRetriever.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ : Any = retriever.retrieve(lowercase_ , n_docs=1 )
self.assertTrue(out is not None )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ )
UpperCAmelCase_ : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = retriever.retrieve(lowercase_ , n_docs=lowercase_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowercase_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , lowercase_ )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = RagRetriever.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ : Optional[int] = retriever.retrieve(lowercase_ , n_docs=1 )
self.assertTrue(out is not None )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = 1
UpperCAmelCase_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ )
UpperCAmelCase_ : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = retriever.retrieve(lowercase_ , n_docs=lowercase_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowercase_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , lowercase_ )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowercase_ )
UpperCAmelCase_ : List[Any] = RagRetriever.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
UpperCAmelCase_ : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ : Tuple = retriever.retrieve(lowercase_ , n_docs=1 )
self.assertTrue(out is not None )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_legacy_index_retriever()
UpperCAmelCase_ : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = retriever.retrieve(lowercase_ , n_docs=lowercase_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowercase_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] )
self.assertEqual(len(doc_dicts[0]["text"] ) , lowercase_ )
self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowercase_ )
UpperCAmelCase_ : Tuple = RagRetriever.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
UpperCAmelCase_ : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ : List[Any] = retriever.retrieve(lowercase_ , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def UpperCamelCase__ ( self ):
"""simple docstring"""
import torch
UpperCAmelCase_ : str = 1
UpperCAmelCase_ : Dict = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase_ : Any = [[5, 7], [10, 11]]
UpperCAmelCase_ : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ : str = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(lowercase_ , lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
self.assertIsInstance(lowercase_ , np.ndarray )
UpperCAmelCase_ : List[str] = retriever(
lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ , return_tensors="pt" , )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = ( # noqa: F841
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
out["doc_ids"],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(lowercase_ , torch.Tensor )
self.assertIsInstance(lowercase_ , torch.Tensor )
self.assertIsInstance(lowercase_ , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer()
UpperCAmelCase_ : Optional[int] = 1
UpperCAmelCase_ : int = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ )
retriever.set_ctx_encoder_tokenizer(lowercase_ )
UpperCAmelCase_ : List[Any] = [[5, 7], [10, 11]]
UpperCAmelCase_ : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase_ : Dict = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ )
self.assertEqual(
len(lowercase_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , lowercase_ ) # check for doc token related keys in dictionary.
| 23 |
"""simple docstring"""
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small"
UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp()
UpperCAmelCase_ : List[str] = "en_speaker_1"
UpperCAmelCase_ : Tuple = "This is a test string"
UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json"
UpperCAmelCase_ : Any = "speaker_embeddings"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.get_tokenizer()
UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
UpperCAmelCase_ : int = 35
UpperCAmelCase_ : Optional[Any] = 2
UpperCAmelCase_ : List[Any] = 8
UpperCAmelCase_ : Optional[Any] = {
"semantic_prompt": np.ones(lowercase_ ),
"coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ),
"fine_prompt": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ )
UpperCAmelCase_ : List[str] = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" )
np.savez(lowercase_ , **lowercase_ )
UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ )
UpperCAmelCase_ : List[str] = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_tokenizer()
UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ )
UpperCAmelCase_ : Tuple = processor(text=self.input_string )
UpperCAmelCase_ : Union[str, Any] = tokenizer(
self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 23 | 1 |
"""simple docstring"""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ):
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions." )
raise
if not is_sharded:
UpperCAmelCase_ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading PyTorch weights from {pt_path}""" )
UpperCAmelCase_ : List[str] = torch.load(__lowerCamelCase, map_location="cpu" )
logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" )
UpperCAmelCase_ : Optional[int] = convert_pytorch_state_dict_to_flax(__lowerCamelCase, __lowerCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
UpperCAmelCase_ : Optional[int] = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase, __lowerCamelCase )
return flax_state_dict
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ):
def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool:
return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
UpperCAmelCase_ : int = pt_tuple_key[:-1] + ("scale",)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ("mean",)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
UpperCAmelCase_ : Optional[Any] = pt_tuple_key[:-1] + ("var",)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
UpperCAmelCase_ : int = pt_tuple_key[:-1] + ("embedding",)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
UpperCAmelCase_ : Any = pt_tensor.transpose(2, 3, 1, 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
UpperCAmelCase_ : int = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
UpperCAmelCase_ : List[str] = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
UpperCAmelCase_ : int = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
UpperCAmelCase_ : Optional[Any] = pt_tuple_key[-2] + "_g"
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
UpperCAmelCase_ : str = pt_tuple_key[-2] + "_v"
if name is not None:
UpperCAmelCase_ : Dict = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __a ( __lowerCamelCase, __lowerCamelCase ):
# convert pytorch tensor to numpy
UpperCAmelCase_ : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
UpperCAmelCase_ : int = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
UpperCAmelCase_ : List[str] = flax_model.params["params"]
else:
UpperCAmelCase_ : List[str] = flax_model.params
UpperCAmelCase_ : Tuple = flatten_dict(__lowerCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
UpperCAmelCase_ : Optional[int] = flatten_dict(flax_model.params["batch_stats"] )
random_flax_state_dict.update(__lowerCamelCase )
UpperCAmelCase_ : Any = {}
UpperCAmelCase_ : Optional[int] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()}
)
UpperCAmelCase_ : List[str] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCAmelCase_ : int = tuple(pt_key.split("." ) )
# remove base model prefix if necessary
UpperCAmelCase_ : List[Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCAmelCase_ : int = pt_tuple_key[1:]
# Correctly rename weight parameters
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = rename_key_and_reshape_tensor(
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# add model prefix if necessary
UpperCAmelCase_ : int = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
UpperCAmelCase_ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
UpperCAmelCase_ : Tuple = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase, __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
UpperCAmelCase_ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
UpperCAmelCase_ : Dict = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase ):
import torch
# Load the index
UpperCAmelCase_ : Union[str, Any] = {}
for shard_file in shard_filenames:
# load using msgpack utils
UpperCAmelCase_ : Tuple = torch.load(__lowerCamelCase )
UpperCAmelCase_ : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
UpperCAmelCase_ : Dict = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
UpperCAmelCase_ : Optional[Any] = flax_model.params["params"]
UpperCAmelCase_ : Union[str, Any] = flatten_dict(__lowerCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) )
else:
UpperCAmelCase_ : str = flax_model.params
UpperCAmelCase_ : Any = flatten_dict(__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()}
)
UpperCAmelCase_ : str = (model_prefix in flax_model_params) and (
model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCAmelCase_ : List[Any] = tuple(pt_key.split("." ) )
# remove base model prefix if necessary
UpperCAmelCase_ : Dict = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCAmelCase_ : List[Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
UpperCAmelCase_ , UpperCAmelCase_ : str = rename_key_and_reshape_tensor(
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# add model prefix if necessary
UpperCAmelCase_ : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
UpperCAmelCase_ : Tuple = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
UpperCAmelCase_ : List[Any] = jnp.asarray(__lowerCamelCase )
continue
if "var" in flax_key[-1]:
UpperCAmelCase_ : List[str] = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase, __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
UpperCAmelCase_ : Optional[int] = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
UpperCAmelCase_ : List[str] = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Union[str, Any] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" )
# import correct flax class
UpperCAmelCase_ : List[str] = getattr(__lowerCamelCase, "Flax" + model.__class__.__name__ )
# load flax weight dict
with open(__lowerCamelCase, "rb" ) as state_f:
try:
UpperCAmelCase_ : List[str] = from_bytes(__lowerCamelCase, state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(__lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase ):
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions." )
raise
# check if we have bf16 weights
UpperCAmelCase_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa, __lowerCamelCase ) ).values()
if any(__lowerCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model." )
UpperCAmelCase_ : Any = jax.tree_util.tree_map(
lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, __lowerCamelCase )
UpperCAmelCase_ : Tuple = flatten_dict(__lowerCamelCase )
UpperCAmelCase_ : List[Any] = pt_model.state_dict()
UpperCAmelCase_ : Tuple = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()}
)
UpperCAmelCase_ : int = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : Any = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
UpperCAmelCase_ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix
UpperCAmelCase_ : Optional[Any] = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCAmelCase_ : List[str] = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
UpperCAmelCase_ : List[str] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict:
# conv layer
UpperCAmelCase_ : Optional[int] = flax_key_tuple[:-1] + ("weight",)
UpperCAmelCase_ : str = jnp.transpose(__lowerCamelCase, (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict:
# linear layer
UpperCAmelCase_ : Dict = flax_key_tuple[:-1] + ("weight",)
UpperCAmelCase_ : Any = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
UpperCAmelCase_ : Optional[int] = flax_key_tuple[:-1] + ("weight",)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
UpperCAmelCase_ : Tuple = flax_key_tuple[:-1] + ("running_mean",)
elif "var" in flax_key_tuple[-1]:
UpperCAmelCase_ : Dict = flax_key_tuple[:-1] + ("running_var",)
if "batch_stats" in flax_state:
UpperCAmelCase_ : Optional[Any] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
UpperCAmelCase_ : Any = ".".join(__lowerCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
UpperCAmelCase_ : Optional[int] = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
UpperCAmelCase_ : Union[str, Any] = key.split("." )
UpperCAmelCase_ : int = None
if key_components[-3::2] == ["parametrizations", "original0"]:
UpperCAmelCase_ : List[str] = key_components[-2] + "_g"
elif key_components[-3::2] == ["parametrizations", "original1"]:
UpperCAmelCase_ : str = key_components[-2] + "_v"
if name is not None:
UpperCAmelCase_ : Optional[int] = key_components[:-3] + [name]
UpperCAmelCase_ : Tuple = ".".join(__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = key
if flax_key in special_pt_names:
UpperCAmelCase_ : Optional[Any] = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
UpperCAmelCase_ : Any = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase, np.ndarray ) else flax_tensor
UpperCAmelCase_ : str = torch.from_numpy(__lowerCamelCase )
# remove from missing keys
missing_keys.remove(__lowerCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__lowerCamelCase )
pt_model.load_state_dict(__lowerCamelCase )
# re-transform missing_keys to list
UpperCAmelCase_ : List[str] = list(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)." )
else:
logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" )
if len(__lowerCamelCase ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
" use it for predictions and inference." )
else:
logger.warning(
f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"""
"If your task is similar to the task the model of the checkpoint was trained on, "
f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" )
return pt_model
| 23 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase, __lowerCamelCase=False ):
UpperCAmelCase_ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "deit.embeddings.cls_token"),
("dist_token", "deit.embeddings.distillation_token"),
("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "deit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("norm.weight", "deit.layernorm.weight"),
("norm.bias", "deit.layernorm.bias"),
("head.weight", "cls_classifier.weight"),
("head.bias", "cls_classifier.bias"),
("head_dist.weight", "distillation_classifier.weight"),
("head_dist.bias", "distillation_classifier.bias"),
] )
return rename_keys
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ):
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase_ : int = ""
else:
UpperCAmelCase_ : Union[str, Any] = "deit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase )
UpperCAmelCase_ : Tuple = val
def __a ( ):
UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = DeiTConfig()
# all deit models have fine-tuned heads
UpperCAmelCase_ : Optional[int] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
UpperCAmelCase_ : Tuple = 1000
UpperCAmelCase_ : str = "huggingface/label-files"
UpperCAmelCase_ : str = "imagenet-1k-id2label.json"
UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) )
UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Any = idalabel
UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ : Any = int(deit_name[-6:-4] )
UpperCAmelCase_ : Dict = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("tiny" ):
UpperCAmelCase_ : Any = 192
UpperCAmelCase_ : Union[str, Any] = 768
UpperCAmelCase_ : Union[str, Any] = 12
UpperCAmelCase_ : int = 3
elif deit_name[9:].startswith("small" ):
UpperCAmelCase_ : List[str] = 384
UpperCAmelCase_ : List[str] = 1536
UpperCAmelCase_ : Dict = 12
UpperCAmelCase_ : Any = 6
if deit_name[9:].startswith("base" ):
pass
elif deit_name[4:].startswith("large" ):
UpperCAmelCase_ : int = 1024
UpperCAmelCase_ : List[Any] = 4096
UpperCAmelCase_ : Optional[int] = 24
UpperCAmelCase_ : int = 16
# load original model from timm
UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase_ : Optional[Any] = timm_model.state_dict()
UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# load HuggingFace model
UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval()
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by DeiTImageProcessor
UpperCAmelCase_ : Union[str, Any] = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size )
UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" )
UpperCAmelCase_ : int = encoding["pixel_values"]
UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase )
UpperCAmelCase_ : Any = timm_model(__lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--deit_name',
default='vit_deit_base_distilled_patch16_224',
type=str,
help='Name of the DeiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_a = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 23 | 1 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : int = [0] * len(__lowerCamelCase )
for i in range(1, len(__lowerCamelCase ) ):
# use last results for better performance - dynamic programming
UpperCAmelCase_ : str = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
UpperCAmelCase_ : Optional[int] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
UpperCAmelCase_ : Dict = j
return prefix_result
def __a ( __lowerCamelCase ):
return max(prefix_function(__lowerCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
"""simple docstring"""
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ )
UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )]
UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin" ) for f in files )
@slow
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ )
UpperCAmelCase_ : Tuple = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : List[str] = 4
UpperCAmelCase_ : Tuple = jax.device_count()
UpperCAmelCase_ : Optional[int] = num_samples * [prompt]
UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(lowercase_ ) == num_samples
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ )
UpperCAmelCase_ : Optional[int] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Union[str, Any] = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[str] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ )
UpperCAmelCase_ : Any = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : str = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Dict = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa )
UpperCAmelCase_ : List[Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Optional[int] = 50
UpperCAmelCase_ : Optional[int] = jax.device_count()
UpperCAmelCase_ : str = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , )
UpperCAmelCase_ : List[Any] = scheduler.create_state()
UpperCAmelCase_ : int = scheduler_state
UpperCAmelCase_ : Union[str, Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : int = 50
UpperCAmelCase_ : str = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , )
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , )
UpperCAmelCase_ : str = replicate(lowercase_ )
UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
warnings.warn(
"The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use SegformerImageProcessor instead." , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 23 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
_a = 0
_a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
_a = tuple[int, int]
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : int = pos_x
UpperCAmelCase_ : List[Any] = pos_y
UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x)
UpperCAmelCase_ : Any = goal_x
UpperCAmelCase_ : Dict = goal_y
UpperCAmelCase_ : Any = g_cost
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : int = self.calculate_heuristic()
UpperCAmelCase_ : Any = self.g_cost + self.h_cost
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x
UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowercase_ ) + abs(lowercase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , lowercase_ ):
"""simple docstring"""
return self.f_cost < other.f_cost
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ )
UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ )
UpperCAmelCase_ : str = [self.start]
UpperCAmelCase_ : list[Node] = []
UpperCAmelCase_ : int = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowercase_ )
self.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : str = self.get_successors(lowercase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowercase_ )
else:
self.open_nodes.append(lowercase_ )
return [self.start.pos]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = []
for action in delta:
UpperCAmelCase_ : str = parent.pos_x + action[1]
UpperCAmelCase_ : int = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) )
return successors
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = node
UpperCAmelCase_ : int = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase_ : Optional[int] = current_node.parent
path.reverse()
return path
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowercase_ , lowercase_ )
self.fwd_astar.closed_nodes.append(lowercase_ )
self.bwd_astar.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : Tuple = current_bwd_node
UpperCAmelCase_ : str = current_fwd_node
UpperCAmelCase_ : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : List[Any] = astar.open_nodes.pop(
astar.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowercase_ )
else:
astar.open_nodes.append(lowercase_ )
return [self.fwd_astar.start.pos]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ )
UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase_ : Any = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
_a = (0, 0)
_a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_a = time.time()
_a = AStar(init, goal)
_a = a_star.search()
_a = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
_a = time.time()
_a = BidirectionalAStar(init, goal)
_a = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 23 | 1 |
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = parent
UpperCAmelCase_ : Optional[Any] = batch_size
UpperCAmelCase_ : Optional[Any] = seq_length
UpperCAmelCase_ : List[str] = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : int = use_token_type_ids
UpperCAmelCase_ : List[Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : int = hidden_size
UpperCAmelCase_ : List[str] = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Tuple = hidden_act
UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob
UpperCAmelCase_ : int = attention_probs_dropout_prob
UpperCAmelCase_ : List[str] = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : Union[str, Any] = initializer_range
UpperCAmelCase_ : Optional[Any] = num_labels
UpperCAmelCase_ : Optional[Any] = num_choices
UpperCAmelCase_ : Union[str, Any] = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Any = None
if self.use_input_mask:
UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : int = None
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : Dict = None
if self.use_labels:
UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : str = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return FalconConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase_ , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = FalconModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ )
UpperCAmelCase_ : str = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = True
UpperCAmelCase_ : Optional[Any] = FalconModel(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : str = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )
UpperCAmelCase_ : Optional[Any] = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , )
UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = FalconForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : Union[str, Any] = True
UpperCAmelCase_ : List[Any] = FalconForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
# first forward pass
UpperCAmelCase_ : Tuple = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , )
UpperCAmelCase_ : Tuple = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase_ : List[str] = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )["hidden_states"][0]
UpperCAmelCase_ : str = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )["hidden_states"][0]
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : List[str] = config_and_inputs
UpperCAmelCase_ : int = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (FalconForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE__ : int = (
{
"""feature-extraction""": FalconModel,
"""text-classification""": FalconForSequenceClassification,
"""text-generation""": FalconForCausalLM,
"""question-answering""": FalconForQuestionAnswering,
"""token-classification""": FalconForTokenClassification,
"""zero-shot""": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ : int = False
SCREAMING_SNAKE_CASE__ : int = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = FalconModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , *UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
UpperCAmelCase_ : Union[str, Any] = alibi
self.model_tester.create_and_check_model(lowercase_ , *lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Optional[int] = 3
UpperCAmelCase_ : int = input_dict["input_ids"]
UpperCAmelCase_ : Any = input_ids.ne(1 ).to(lowercase_ )
UpperCAmelCase_ : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : int = FalconForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Any = 3
UpperCAmelCase_ : Tuple = "single_label_classification"
UpperCAmelCase_ : Dict = input_dict["input_ids"]
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(lowercase_ )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Optional[Any] = FalconForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : str = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Union[str, Any] = input_dict["input_ids"]
UpperCAmelCase_ : Any = FalconForCausalLM(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : Dict = model(lowercase_ , use_cache=lowercase_ )
UpperCAmelCase_ : List[Any] = input_ids.shape[0]
UpperCAmelCase_ : Optional[Any] = model._convert_to_rw_cache(result.past_key_values )
UpperCAmelCase_ : Tuple = model._convert_cache_to_standard_format(lowercase_ , lowercase_ )
for layer in range(len(lowercase_ ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Tuple = 3
UpperCAmelCase_ : Any = "multi_label_classification"
UpperCAmelCase_ : Optional[Any] = input_dict["input_ids"]
UpperCAmelCase_ : Union[str, Any] = input_ids.ne(1 ).to(lowercase_ )
UpperCAmelCase_ : Tuple = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : str = FalconForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Falcon can have different numbers of KV-heads than the number of query heads, so we need
# to override this test to use the right head counts.
for model_class in self.all_generative_model_classes:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(lowercase_ , "use_cache" ):
return
UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ).to(lowercase_ )
if "use_cache" not in inputs:
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : List[Any] = model(**lowercase_ )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
UpperCAmelCase_ : Union[str, Any] = (
getattr(lowercase_ , "decoder_layers" , lowercase_ )
or getattr(lowercase_ , "num_decoder_layers" , lowercase_ )
or config.num_hidden_layers
)
UpperCAmelCase_ : Union[str, Any] = getattr(lowercase_ , "num_kv_heads" , config.num_attention_heads )
UpperCAmelCase_ : Tuple = getattr(lowercase_ , "d_model" , config.hidden_size )
UpperCAmelCase_ : int = embed_dim // num_attention_heads
UpperCAmelCase_ : Any = outputs["past_key_values"]
self.assertEqual(len(lowercase_ ) , lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : int = inputs["input_ids"].shape
for i in range(lowercase_ ):
if config.new_decoder_architecture:
UpperCAmelCase_ : Tuple = config.num_attention_heads
elif config.multi_query:
UpperCAmelCase_ : Dict = 1
self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" )
UpperCAmelCase_ : Any = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" )
model.eval()
model.to(lowercase_ )
UpperCAmelCase_ : Optional[int] = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowercase_ )
UpperCAmelCase_ : List[str] = (
"My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday."
)
UpperCAmelCase_ : str = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=19 )
UpperCAmelCase_ : str = tokenizer.batch_decode(lowercase_ )[0]
self.assertEqual(lowercase_ , lowercase_ )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(lowercase_ )
UpperCAmelCase_ : Any = FalconForCausalLM.from_pretrained(lowercase_ )
model.eval()
model.to(lowercase_ )
UpperCAmelCase_ : int = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowercase_ )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4 )
model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4 )
model.generate(**lowercase_ , num_beams=2 , max_new_tokens=4 )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(lowercase_ )
UpperCAmelCase_ : str = FalconForCausalLM.from_pretrained(lowercase_ )
model.eval()
model.to(device=lowercase_ )
UpperCAmelCase_ : Dict = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowercase_ )
# Test results are the same with and without cache
UpperCAmelCase_ : str = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_ )
UpperCAmelCase_ : Union[str, Any] = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_ )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 23 |
"""simple docstring"""
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,)
SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),)
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowercase_ )
return config
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.dummy_sample
UpperCAmelCase_ : Dict = 0.1 * sample
UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : int = dummy_past_residuals[:]
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Optional[int] = self.dummy_sample
UpperCAmelCase_ : List[str] = 0.1 * sample
UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:]
UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = self.scheduler_classes[0]
UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ )
UpperCAmelCase_ : Tuple = 10
UpperCAmelCase_ : List[str] = self.dummy_model()
UpperCAmelCase_ : str = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : Any = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
UpperCAmelCase_ : str = self.dummy_sample
UpperCAmelCase_ : List[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ):
scheduler.set_timesteps(lowercase_ )
elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ):
UpperCAmelCase_ : List[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase_ : List[str] = dummy_past_residuals[:]
UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
UpperCAmelCase_ : List[Any] = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.dummy_sample
UpperCAmelCase_ : Optional[int] = 0.1 * sample
UpperCAmelCase_ : List[str] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : List[str] = self.scheduler_classes[0]
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.full_loop()
UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2
assert abs(result_mean.item() - 0.25_80 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 67.39_86 ) < 1E-2
assert abs(result_mean.item() - 0.08_78 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2
assert abs(result_mean.item() - 0.29_95 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2
assert abs(result_mean.item() - 0.24_34 ) < 1E-3
| 23 | 1 |
"""simple docstring"""
import cmath
import math
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = math.radians(__lowerCamelCase )
UpperCAmelCase_ : Tuple = math.radians(__lowerCamelCase )
# Convert voltage and current to rectangular form
UpperCAmelCase_ : Optional[Any] = cmath.rect(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : Optional[int] = cmath.rect(__lowerCamelCase, __lowerCamelCase )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_a = object()
# For specifying empty leaf dict `{}`
_a = object()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ):
UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )]
if matches and all(__lowerCamelCase ):
return True
return False
def __a ( __lowerCamelCase ):
def replace(__lowerCamelCase, __lowerCamelCase ):
for rule, replacement in rules:
if _match(__lowerCamelCase, __lowerCamelCase ):
return replacement
return val
return replace
def __a ( ):
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )),
(("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )),
(("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : List[str] = _get_partition_rules()
UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase )
UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )}
UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(__lowerCamelCase ) )
| 23 | 1 |
"""simple docstring"""
def __a ( __lowerCamelCase, __lowerCamelCase = False ):
if not isinstance(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[Any] = f"""Expected string as input, found {type(__lowerCamelCase )}"""
raise ValueError(__lowerCamelCase )
if not isinstance(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = f"""Expected boolean as use_pascal parameter, found {type(__lowerCamelCase )}"""
raise ValueError(__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = input_str.split("_" )
UpperCAmelCase_ : Any = 0 if use_pascal else 1
UpperCAmelCase_ : Optional[Any] = words[start_index:]
UpperCAmelCase_ : Union[str, Any] = [word[0].upper() + word[1:] for word in words_to_capitalize]
UpperCAmelCase_ : Union[str, Any] = "" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 23 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_a = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )]
if identifier is not None:
UpperCAmelCase_ : Dict = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_ ):
for n_ in n_identifier:
UpperCAmelCase_ : str = [file for file in files if n_ not in file]
else:
UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file]
UpperCAmelCase_ : Union[str, Any] = ignore_files or []
ignore_files.append("__init__.py" )
UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , lowercase_ )
if only_modules:
UpperCAmelCase_ : str = file.split("." )[0]
try:
UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ )
UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = Path("src/transformers" )
UpperCAmelCase_ : str = "modeling"
UpperCAmelCase_ : Optional[Any] = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = Path("src/transformers" )
UpperCAmelCase_ : Any = "tokenization"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = "configuration"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"]
self.analyze_directory(lowercase_ , n_identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = Path("docs/source" )
UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"]
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
| 23 | 1 |
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __a ( __lowerCamelCase, __lowerCamelCase = True, __lowerCamelCase = math.inf, __lowerCamelCase = -math.inf, __lowerCamelCase = math.inf, __lowerCamelCase = -math.inf, __lowerCamelCase = False, __lowerCamelCase = 100, __lowerCamelCase = 0.01, __lowerCamelCase = 1, ):
UpperCAmelCase_ : List[Any] = False
UpperCAmelCase_ : Any = search_prob
UpperCAmelCase_ : Any = start_temperate
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[int] = 0
UpperCAmelCase_ : Optional[int] = None
while not search_end:
UpperCAmelCase_ : int = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase_ : Union[str, Any] = current_state
scores.append(__lowerCamelCase )
iterations += 1
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : Optional[int] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase_ : List[str] = random.randint(0, len(__lowerCamelCase ) - 1 ) # picking a random neighbor
UpperCAmelCase_ : List[Any] = neighbors.pop(__lowerCamelCase )
UpperCAmelCase_ : Dict = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase_ : Optional[Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase_ : Optional[Any] = picked_neighbor
else:
UpperCAmelCase_ : str = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase_ : str = picked_neighbor
UpperCAmelCase_ : List[str] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase_ : Optional[int] = True
else:
UpperCAmelCase_ : List[str] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(__lowerCamelCase ), __lowerCamelCase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def __a ( __lowerCamelCase, __lowerCamelCase ):
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_a = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_a = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '
f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
_a = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_a = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '
f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def __a ( __lowerCamelCase, __lowerCamelCase ):
return (3 * x**2) - (6 * y)
_a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_a = simulated_annealing(prob, find_max=False, visualization=True)
print(
'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '
f"""{local_min.score()}"""
)
_a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_a = simulated_annealing(prob, find_max=True, visualization=True)
print(
'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '
f"""{local_min.score()}"""
)
| 23 |
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
_a = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
return (preds == labels).mean()
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0]
UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}"""
if task_name == "cola":
return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mrpc":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "sts-b":
return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase )
elif task_name == "qqp":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" )
if task_name == "xnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
| 23 | 1 |
"""simple docstring"""
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , **lowercase_ ):
"""simple docstring"""
requires_backends(self , ["bs4"] )
super().__init__(**lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : Union[str, Any] = []
UpperCAmelCase_ : Union[str, Any] = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
UpperCAmelCase_ : Optional[int] = parent.find_all(child.name , recursive=lowercase_ )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(lowercase_ ) else next(i for i, s in enumerate(lowercase_ , 1 ) if s is child ) )
UpperCAmelCase_ : Union[str, Any] = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = BeautifulSoup(lowercase_ , "html.parser" )
UpperCAmelCase_ : int = []
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : List[Any] = []
for element in html_code.descendants:
if type(lowercase_ ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
UpperCAmelCase_ : List[str] = html.unescape(lowercase_ ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.xpath_soup(lowercase_ )
stringaxtag_seq.append(lowercase_ )
stringaxsubs_seq.append(lowercase_ )
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError("Number of doc strings and xtags does not correspond" )
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError("Number of doc strings and xsubs does not correspond" )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = ""
for tagname, subs in zip(lowercase_ , lowercase_ ):
xpath += F"""/{tagname}"""
if subs != 0:
xpath += F"""[{subs}]"""
return xpath
def __call__( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = False
# Check that strings has a valid type
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : List[str] = True
elif isinstance(lowercase_ , (list, tuple) ):
if len(lowercase_ ) == 0 or isinstance(html_strings[0] , lowercase_ ):
UpperCAmelCase_ : List[str] = True
if not valid_strings:
raise ValueError(
"HTML strings must of type `str`, `List[str]` (batch of examples), "
F"""but is of type {type(lowercase_ )}.""" )
UpperCAmelCase_ : str = bool(isinstance(lowercase_ , (list, tuple) ) and (isinstance(html_strings[0] , lowercase_ )) )
if not is_batched:
UpperCAmelCase_ : Tuple = [html_strings]
# Get nodes + xpaths
UpperCAmelCase_ : int = []
UpperCAmelCase_ : List[Any] = []
for html_string in html_strings:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.get_three_from_single(lowercase_ )
nodes.append(lowercase_ )
UpperCAmelCase_ : Tuple = []
for node, tag_list, sub_list in zip(lowercase_ , lowercase_ , lowercase_ ):
UpperCAmelCase_ : Any = self.construct_xpath(lowercase_ , lowercase_ )
xpath_strings.append(lowercase_ )
xpaths.append(lowercase_ )
# return as Dict
UpperCAmelCase_ : Optional[int] = {"nodes": nodes, "xpaths": xpaths}
UpperCAmelCase_ : Union[str, Any] = BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
return encoded_inputs
| 23 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.json'}
_a = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
_a = {'mgp-str': 27}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ):
"""simple docstring"""
super().__init__(
unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , )
with open(lowercase_ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(lowercase_ )
UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = []
for s in text:
char_tokens.extend(lowercase_ )
return char_tokens
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.decoder.get(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) )
return
UpperCAmelCase_ : Optional[int] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowercase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" )
return (vocab_file,)
| 23 | 1 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(__lowerCamelCase )
else:
UpperCAmelCase_ : List[str] = sylvester(number - 1 )
UpperCAmelCase_ : List[str] = num - 1
UpperCAmelCase_ : List[str] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 23 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
_a = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
_a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
_a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __a ( __lowerCamelCase ):
return x[0]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase )
UpperCAmelCase_ : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase )
UpperCAmelCase_ : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase )
UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] )
UpperCAmelCase_ : str = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase )
UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__lowerCamelCase )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase )
UpperCAmelCase_ : int = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
"""simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
UpperCAmelCase_ : Tuple = TapasConfig.from_json_file(__lowerCamelCase )
# set absolute/relative position embeddings parameter
UpperCAmelCase_ : Union[str, Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
UpperCAmelCase_ : str = TapasForQuestionAnswering(config=__lowerCamelCase )
elif task == "WTQ":
# run_task_main.py hparams
UpperCAmelCase_ : List[Any] = 4
UpperCAmelCase_ : Dict = True
# hparam_utils.py hparams
UpperCAmelCase_ : Optional[int] = 0.66_4694
UpperCAmelCase_ : List[str] = 0.20_7951
UpperCAmelCase_ : Union[str, Any] = 0.12_1194
UpperCAmelCase_ : Dict = True
UpperCAmelCase_ : Union[str, Any] = True
UpperCAmelCase_ : List[Any] = False
UpperCAmelCase_ : str = 0.035_2513
UpperCAmelCase_ : List[Any] = TapasForQuestionAnswering(config=__lowerCamelCase )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
UpperCAmelCase_ : Dict = 4
UpperCAmelCase_ : Union[str, Any] = False
# hparam_utils.py hparams
UpperCAmelCase_ : Optional[int] = 36.4519
UpperCAmelCase_ : List[Any] = 0.90_3421
UpperCAmelCase_ : Union[str, Any] = 222.088
UpperCAmelCase_ : Tuple = True
UpperCAmelCase_ : Any = True
UpperCAmelCase_ : Dict = True
UpperCAmelCase_ : str = 0.76_3141
UpperCAmelCase_ : Dict = TapasForQuestionAnswering(config=__lowerCamelCase )
elif task == "TABFACT":
UpperCAmelCase_ : List[str] = TapasForSequenceClassification(config=__lowerCamelCase )
elif task == "MLM":
UpperCAmelCase_ : Optional[int] = TapasForMaskedLM(config=__lowerCamelCase )
elif task == "INTERMEDIATE_PRETRAINING":
UpperCAmelCase_ : Any = TapasModel(config=__lowerCamelCase )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(__lowerCamelCase )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
UpperCAmelCase_ : Dict = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512 )
tokenizer.save_pretrained(__lowerCamelCase )
print("Used relative position embeddings:", model.config.reset_position_index_per_cell )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 23 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_a = logging.getLogger()
def __a ( ):
UpperCAmelCase_ : Tuple = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase_ : Dict = parser.parse_args()
return args.f
class A_ (lowercase__ ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowercase_ , "argv" , lowercase_ ):
UpperCAmelCase_ : List[str] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase_ , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
| 23 | 1 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
UpperCAmelCase_ : Dict = gray_code_sequence_string(__lowerCamelCase )
#
# convert them to integers
for i in range(len(__lowerCamelCase ) ):
UpperCAmelCase_ : str = int(sequence[i], 2 )
return sequence
def __a ( __lowerCamelCase ):
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase_ : Dict = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase_ : int = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase_ : Dict = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase_ : List[Any] = "0" + smaller_sequence[i]
sequence.append(__lowerCamelCase )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase_ : Union[str, Any] = "1" + smaller_sequence[i]
sequence.append(__lowerCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_a = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 |
"""simple docstring"""
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_a = logging.get_logger(__name__) # pylint: disable=invalid-name
_a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n'
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ):
UpperCAmelCase_ : List[str] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCAmelCase_ : Tuple = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , )
UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
if latents is None:
UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
UpperCAmelCase_ : str = latents.to(lowercase_ )
UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma
return latents
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
UpperCAmelCase_ : int = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=lowercase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCAmelCase_ : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ )
# We'll offload the last model manually.
UpperCAmelCase_ : Tuple = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase_ , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase_ )
def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : str = self._execution_device
UpperCAmelCase_ : List[Any] = guidance_scale > 1.0
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 )
UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 )
if do_classifier_free_guidance:
UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ )
self.scheduler.set_timesteps(lowercase_ , device=lowercase_ )
UpperCAmelCase_ : List[Any] = self.scheduler.timesteps
UpperCAmelCase_ : List[str] = self.unet.config.in_channels
UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor )
# create initial latent
UpperCAmelCase_ : int = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase_ ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds}
UpperCAmelCase_ : Optional[Any] = self.unet(
sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0]
if do_classifier_free_guidance:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 )
UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , "variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ : List[str] = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0]
# post-processing
UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5
UpperCAmelCase_ : int = image.clamp(0 , 1 )
UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 23 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = []
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_init_end" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_train_begin" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_train_end" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_epoch_begin" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_epoch_end" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_step_begin" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_step_end" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_evaluate" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_predict" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_save" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_log" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
self.events.append("on_prediction_step" )
@require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = tempfile.mkdtemp()
def UpperCamelCase__ ( self ):
"""simple docstring"""
shutil.rmtree(self.output_dir )
def UpperCamelCase__ ( self , lowercase_=0 , lowercase_=0 , lowercase_=64 , lowercase_=64 , lowercase_=None , lowercase_=False , **lowercase_ ):
"""simple docstring"""
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
UpperCAmelCase_ : Dict = RegressionDataset(length=lowercase_ )
UpperCAmelCase_ : List[str] = RegressionDataset(length=lowercase_ )
UpperCAmelCase_ : Optional[int] = RegressionModelConfig(a=lowercase_ , b=lowercase_ )
UpperCAmelCase_ : Optional[Any] = RegressionPreTrainedModel(lowercase_ )
UpperCAmelCase_ : Dict = TrainingArguments(self.output_dir , disable_tqdm=lowercase_ , report_to=[] , **lowercase_ )
return Trainer(
lowercase_ , lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , callbacks=lowercase_ , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
# Order doesn't matter
UpperCAmelCase_ : Optional[int] = sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ )
UpperCAmelCase_ : Union[str, Any] = sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ )
for cba, cba in zip(lowercase_ , lowercase_ ):
if isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ):
self.assertEqual(lowercase_ , lowercase_ )
elif isinstance(lowercase_ , lowercase_ ) and not isinstance(lowercase_ , lowercase_ ):
self.assertEqual(lowercase_ , cba.__class__ )
elif not isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ):
self.assertEqual(cba.__class__ , lowercase_ )
else:
self.assertEqual(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = ["on_init_end", "on_train_begin"]
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : str = len(trainer.get_eval_dataloader() )
UpperCAmelCase_ : str = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("on_epoch_begin" )
for _ in range(lowercase_ ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("on_log" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("on_save" )
expected_events.append("on_epoch_end" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = self.get_trainer()
UpperCAmelCase_ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
# Callbacks passed at init are added to the default callbacks
UpperCAmelCase_ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(lowercase_ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
UpperCAmelCase_ : Any = self.get_trainer(disable_tqdm=lowercase_ )
UpperCAmelCase_ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
UpperCAmelCase_ : List[Any] = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(lowercase_ )
expected_callbacks.remove(lowercase_ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
UpperCAmelCase_ : Dict = self.get_trainer()
UpperCAmelCase_ : List[Any] = trainer.pop_callback(lowercase_ )
self.assertEqual(cb.__class__ , lowercase_ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
trainer.add_callback(lowercase_ )
expected_callbacks.insert(0 , lowercase_ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
# We can also add, pop, or remove by instance
UpperCAmelCase_ : List[Any] = self.get_trainer()
UpperCAmelCase_ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(lowercase_ )
expected_callbacks.remove(lowercase_ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
UpperCAmelCase_ : Dict = self.get_trainer()
UpperCAmelCase_ : str = trainer.callback_handler.callbacks[0]
UpperCAmelCase_ : List[str] = trainer.pop_callback(lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
trainer.add_callback(lowercase_ )
expected_callbacks.insert(0 , lowercase_ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="ignore" , category=lowercase_ )
UpperCAmelCase_ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
UpperCAmelCase_ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) )
# Independent log/save/eval
UpperCAmelCase_ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
UpperCAmelCase_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) )
UpperCAmelCase_ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
UpperCAmelCase_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) )
UpperCAmelCase_ : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" )
trainer.train()
UpperCAmelCase_ : List[Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) )
UpperCAmelCase_ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" )
trainer.train()
UpperCAmelCase_ : Tuple = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) )
# A bit of everything
UpperCAmelCase_ : int = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , )
trainer.train()
UpperCAmelCase_ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) )
# warning should be emitted for duplicated callbacks
with patch("transformers.trainer_callback.logger.warning" ) as warn_mock:
UpperCAmelCase_ : int = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(lowercase_ ) in warn_mock.call_args[0][0]
| 23 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a = logging.get_logger(__name__)
_a = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """detr"""
SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = backbone_config.get("model_type" )
UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None
UpperCAmelCase_ : int = use_timm_backbone
UpperCAmelCase_ : int = backbone_config
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Union[str, Any] = d_model
UpperCAmelCase_ : str = encoder_ffn_dim
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : List[Any] = encoder_attention_heads
UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : List[str] = attention_dropout
UpperCAmelCase_ : Any = activation_dropout
UpperCAmelCase_ : str = activation_function
UpperCAmelCase_ : Tuple = init_std
UpperCAmelCase_ : Optional[Any] = init_xavier_std
UpperCAmelCase_ : Optional[Any] = encoder_layerdrop
UpperCAmelCase_ : Optional[int] = decoder_layerdrop
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : int = auxiliary_loss
UpperCAmelCase_ : Optional[Any] = position_embedding_type
UpperCAmelCase_ : Tuple = backbone
UpperCAmelCase_ : Optional[int] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : Any = bbox_cost
UpperCAmelCase_ : int = giou_cost
# Loss coefficients
UpperCAmelCase_ : str = mask_loss_coefficient
UpperCAmelCase_ : Any = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : List[str] = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.d_model
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
return cls(backbone_config=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict()
UpperCAmelCase_ : str = self.__class__.model_type
return output
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-5
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 12
| 23 | 1 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_a = logging.getLogger()
def __a ( ):
UpperCAmelCase_ : Tuple = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase_ : Dict = parser.parse_args()
return args.f
class A_ (lowercase__ ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowercase_ , "argv" , lowercase_ ):
UpperCAmelCase_ : List[str] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase_ , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
| 23 |
"""simple docstring"""
_a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
_a = [None] * 10_000_000
_a = True
_a = False
def __a ( __lowerCamelCase ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) )
UpperCAmelCase_ : List[str] = number_chain
while number < 1000_0000:
UpperCAmelCase_ : List[Any] = number_chain
number *= 10
return number_chain
def __a ( __lowerCamelCase = 1000_0000 ):
for i in range(1, __lowerCamelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 23 | 1 |
"""simple docstring"""
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class A_ (unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = MODEL_FOR_MASKED_LM_MAPPING
SCREAMING_SNAKE_CASE__ : List[str] = TF_MODEL_FOR_MASKED_LM_MAPPING
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" )
UpperCAmelCase_ : Optional[int] = unmasker("My name is <mask>" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=6 ) , [
{"sequence": "My name is grouped", "score": 2.1E-0_5, "token": 3_8015, "token_str": " grouped"},
{"sequence": "My name is accuser", "score": 2.1E-0_5, "token": 2_5506, "token_str": " accuser"},
] , )
UpperCAmelCase_ : Union[str, Any] = unmasker("The largest city in France is <mask>" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=6 ) , [
{
"sequence": "The largest city in France is grouped",
"score": 2.1E-0_5,
"token": 3_8015,
"token_str": " grouped",
},
{
"sequence": "The largest city in France is accuser",
"score": 2.1E-0_5,
"token": 2_5506,
"token_str": " accuser",
},
] , )
UpperCAmelCase_ : Union[str, Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 )
self.assertEqual(
nested_simplify(lowercase_ , decimals=6 ) , [
{"sequence": "My name is Clara", "score": 2E-0_5, "token": 1_3606, "token_str": " Clara"},
{"sequence": "My name is Patrick", "score": 2E-0_5, "token": 3499, "token_str": " Patrick"},
{"sequence": "My name is Te", "score": 1.9E-0_5, "token": 2941, "token_str": " Te"},
] , )
@require_torch
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" )
UpperCAmelCase_ : Any = unmasker("My name is <mask>" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=6 ) , [
{"sequence": "My name is Maul", "score": 2.2E-0_5, "token": 3_5676, "token_str": " Maul"},
{"sequence": "My name isELS", "score": 2.2E-0_5, "token": 1_6416, "token_str": "ELS"},
] , )
UpperCAmelCase_ : Any = unmasker("The largest city in France is <mask>" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=6 ) , [
{
"sequence": "The largest city in France is Maul",
"score": 2.2E-0_5,
"token": 3_5676,
"token_str": " Maul",
},
{"sequence": "The largest city in France isELS", "score": 2.2E-0_5, "token": 1_6416, "token_str": "ELS"},
] , )
UpperCAmelCase_ : Optional[int] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 )
self.assertEqual(
nested_simplify(lowercase_ , decimals=6 ) , [
{"sequence": "My name is Patrick", "score": 2.1E-0_5, "token": 3499, "token_str": " Patrick"},
{"sequence": "My name is Te", "score": 2E-0_5, "token": 2941, "token_str": " Te"},
{"sequence": "My name is Clara", "score": 2E-0_5, "token": 1_3606, "token_str": " Clara"},
] , )
UpperCAmelCase_ : List[Any] = unmasker("My name is <mask> <mask>" , top_k=2 )
self.assertEqual(
nested_simplify(lowercase_ , decimals=6 ) , [
[
{
"score": 2.2E-0_5,
"token": 3_5676,
"token_str": " Maul",
"sequence": "<s>My name is Maul<mask></s>",
},
{"score": 2.2E-0_5, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"},
],
[
{
"score": 2.2E-0_5,
"token": 3_5676,
"token_str": " Maul",
"sequence": "<s>My name is<mask> Maul</s>",
},
{"score": 2.2E-0_5, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"},
],
] , )
@require_torch_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" )
# convert model to fp16
pipe.model.half()
UpperCAmelCase_ : Optional[int] = pipe("Paris is the [MASK] of France." )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(lowercase_ , lowercase_ )
@slow
@require_torch
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" )
self.run_large_test(lowercase_ )
@slow
@require_tf
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" )
self.run_large_test(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = unmasker("My name is <mask>" )
self.assertEqual(
nested_simplify(lowercase_ ) , [
{"sequence": "My name is John", "score": 0.0_08, "token": 610, "token_str": " John"},
{"sequence": "My name is Chris", "score": 0.0_07, "token": 1573, "token_str": " Chris"},
] , )
UpperCAmelCase_ : List[Any] = unmasker("The largest city in France is <mask>" )
self.assertEqual(
nested_simplify(lowercase_ ) , [
{
"sequence": "The largest city in France is Paris",
"score": 0.2_51,
"token": 2201,
"token_str": " Paris",
},
{
"sequence": "The largest city in France is Lyon",
"score": 0.2_14,
"token": 1_2790,
"token_str": " Lyon",
},
] , )
UpperCAmelCase_ : str = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 )
self.assertEqual(
nested_simplify(lowercase_ ) , [
{"sequence": "My name is Patrick", "score": 0.0_05, "token": 3499, "token_str": " Patrick"},
{"sequence": "My name is Clara", "score": 0.0_00, "token": 1_3606, "token_str": " Clara"},
{"sequence": "My name is Te", "score": 0.0_00, "token": 2941, "token_str": " Te"},
] , )
@require_torch
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" )
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Union[str, Any] = None
self.run_pipeline_test(lowercase_ , [] )
@require_tf
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : Dict = None
self.run_pipeline_test(lowercase_ , [] )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" )
UpperCAmelCase_ : Union[str, Any] = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ )
UpperCAmelCase_ : Any = [
F"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = fill_masker.tokenizer
UpperCAmelCase_ : Optional[Any] = fill_masker.model
UpperCAmelCase_ : Union[str, Any] = fill_masker(
F"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
lowercase_ , [
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
] , )
UpperCAmelCase_ : Union[str, Any] = fill_masker([F"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
lowercase_ , [
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
] , )
UpperCAmelCase_ : Union[str, Any] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
lowercase_ , [
[
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
],
[
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
],
] , )
with self.assertRaises(lowercase_ ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(lowercase_ ):
fill_masker("This is" )
self.run_test_top_k(lowercase_ , lowercase_ )
self.run_test_targets(lowercase_ , lowercase_ )
self.run_test_top_k_targets(lowercase_ , lowercase_ )
self.fill_mask_with_duplicate_targets_and_top_k(lowercase_ , lowercase_ )
self.fill_mask_with_multiple_masks(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = tokenizer.get_vocab()
UpperCAmelCase_ : Optional[Any] = sorted(vocab.keys() )[:2]
# Pipeline argument
UpperCAmelCase_ : List[str] = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ , targets=lowercase_ )
UpperCAmelCase_ : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
lowercase_ , [
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
] , )
UpperCAmelCase_ : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["token"] for el in outputs} , lowercase_ )
UpperCAmelCase_ : Any = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["token_str"] for el in outputs} , set(lowercase_ ) )
# Call argument
UpperCAmelCase_ : Optional[Any] = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ )
UpperCAmelCase_ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowercase_ )
self.assertEqual(
lowercase_ , [
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
] , )
UpperCAmelCase_ : Tuple = {vocab[el] for el in targets}
self.assertEqual({el["token"] for el in outputs} , lowercase_ )
UpperCAmelCase_ : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["token_str"] for el in outputs} , set(lowercase_ ) )
# Score equivalence
UpperCAmelCase_ : str = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowercase_ )
UpperCAmelCase_ : Tuple = [top_mask["token_str"] for top_mask in outputs]
UpperCAmelCase_ : Dict = [top_mask["score"] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(lowercase_ ) == set(lowercase_ ):
UpperCAmelCase_ : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowercase_ )
UpperCAmelCase_ : Union[str, Any] = [top_mask["score"] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(lowercase_ ) , nested_simplify(lowercase_ ) )
# Raises with invalid
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[""] )
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets="" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ , top_k=2 )
UpperCAmelCase_ : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
lowercase_ , [
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
] , )
UpperCAmelCase_ : Dict = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ )
UpperCAmelCase_ : str = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
lowercase_ , [
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
] , )
self.assertEqual(nested_simplify(lowercase_ ) , nested_simplify(lowercase_ ) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = tokenizer.get_vocab()
UpperCAmelCase_ : Any = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ )
# top_k=2, ntargets=3
UpperCAmelCase_ : Union[str, Any] = sorted(vocab.keys() )[:3]
UpperCAmelCase_ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=lowercase_ )
# If we use the most probably targets, and filter differently, we should still
# have the same results
UpperCAmelCase_ : List[str] = [el["token_str"] for el in sorted(lowercase_ , key=lambda lowercase_ : x["score"] , reverse=lowercase_ )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(lowercase_ ).issubset(lowercase_ ):
UpperCAmelCase_ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=lowercase_ )
# They should yield exactly the same result
self.assertEqual(nested_simplify(lowercase_ ) , nested_simplify(lowercase_ ) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ )
UpperCAmelCase_ : Optional[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
UpperCAmelCase_ : int = sorted(vocab.keys() )[:3]
UpperCAmelCase_ : Optional[int] = [targets[0], targets[1], targets[0], targets[2], targets[1]]
UpperCAmelCase_ : Union[str, Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=lowercase_ , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(lowercase_ ) , 3 )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ )
UpperCAmelCase_ : Union[str, Any] = fill_masker(
F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
lowercase_ , [
[
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
],
[
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
],
[
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
{"sequence": ANY(lowercase_ ), "score": ANY(lowercase_ ), "token": ANY(lowercase_ ), "token_str": ANY(lowercase_ )},
],
] , )
| 23 |
"""simple docstring"""
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# Return True if there is node that has not iterated.
UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase )
UpperCAmelCase_ : Any = []
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Tuple = True
while queue:
UpperCAmelCase_ : str = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__lowerCamelCase )
UpperCAmelCase_ : Any = True
UpperCAmelCase_ : Union[str, Any] = u
return visited[t]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# This array is filled by BFS and to store path
UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase ))
UpperCAmelCase_ : Any = 0
while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = float("Inf" )
UpperCAmelCase_ : Tuple = sink
while s != source:
# Find the minimum value in select path
UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] )
UpperCAmelCase_ : Dict = parent[s]
max_flow += path_flow
UpperCAmelCase_ : Optional[Any] = sink
while v != source:
UpperCAmelCase_ : List[str] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
UpperCAmelCase_ : Optional[int] = parent[v]
return max_flow
_a = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
_a , _a = 0, 5
print(ford_fulkerson(graph, source, sink))
| 23 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class A_ (unittest.TestCase ):
'''simple docstring'''
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Dict = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , )
return model
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = self.dummy_uncond_unet
UpperCAmelCase_ : List[Any] = ScoreSdeVeScheduler()
UpperCAmelCase_ : Any = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ )
sde_ve.to(lowercase_ )
sde_ve.set_progress_bar_config(disable=lowercase_ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=lowercase_ ).images
UpperCAmelCase_ : int = torch.manual_seed(0 )
UpperCAmelCase_ : Any = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=lowercase_ , return_dict=lowercase_ )[
0
]
UpperCAmelCase_ : str = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = "google/ncsnpp-church-256"
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(lowercase_ )
UpperCAmelCase_ : int = ScoreSdeVeScheduler.from_pretrained(lowercase_ )
UpperCAmelCase_ : List[str] = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ )
sde_ve.to(lowercase_ )
sde_ve.set_progress_bar_config(disable=lowercase_ )
UpperCAmelCase_ : Any = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=lowercase_ ).images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase_ : str = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 23 |
"""simple docstring"""
import datasets
_a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n'
_a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n'
_a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n'
def __a ( __lowerCamelCase, __lowerCamelCase ):
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
"references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
} ) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
| 23 | 1 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
_a = int(input('Enter number: ').strip())
print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
| 23 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = feature_size
UpperCAmelCase_ : Any = sampling_rate
UpperCAmelCase_ : Any = padding_value
UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" )
UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ )
super().__init__(**lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCAmelCase_ : Dict = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : List[str] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(lowercase_ ) == 0:
if return_attention_mask:
UpperCAmelCase_ : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase_ : List[str] = required_input[0]
if isinstance(lowercase_ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase_ : Any = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(lowercase_ ):
UpperCAmelCase_ : Dict = "tf"
elif is_torch_tensor(lowercase_ ):
UpperCAmelCase_ : Any = "pt"
elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase_ : str = "np"
else:
raise ValueError(
F"""type of {first_element} unknown: {type(lowercase_ )}. """
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ )
else:
UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ )
UpperCAmelCase_ : str = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : int = len(lowercase_ )
if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
UpperCAmelCase_ : int = []
for i in range(lowercase_ ):
UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase_ : List[str] = self._truncate(
lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , )
truncated_inputs.append(lowercase_ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH
UpperCAmelCase_ : List[str] = {}
for i in range(lowercase_ ):
# padding
UpperCAmelCase_ : int = self._pad(
truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase_ : Any = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ : List[Any] = value.astype(np.floataa )
batch_outputs[key].append(lowercase_ )
return BatchFeature(lowercase_ , tensor_type=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase_ : Tuple = len(lowercase_ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = max_length - len(lowercase_ )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase_ : List[Any] = np.pad(
processed_features["attention_mask"] , (0, difference) )
UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase_ : Optional[Any] = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase_ : Optional[Any] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase_ : str = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length
if needs_to_be_truncated:
UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length]
return processed_features
def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ):
"""simple docstring"""
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = padding
else:
UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 23 | 1 |
"""simple docstring"""
from __future__ import annotations
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
if len(__lowerCamelCase ) == 0:
raise ValueError("find_max() arg is an empty sequence" )
if (
left >= len(__lowerCamelCase )
or left < -len(__lowerCamelCase )
or right >= len(__lowerCamelCase )
or right < -len(__lowerCamelCase )
):
raise IndexError("list index out of range" )
if left == right:
return nums[left]
UpperCAmelCase_ : int = (left + right) >> 1 # the middle
UpperCAmelCase_ : Union[str, Any] = find_max(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # find max in range[left, mid]
UpperCAmelCase_ : Any = find_max(__lowerCamelCase, mid + 1, __lowerCamelCase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 23 |
"""simple docstring"""
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 )
UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 )
UpperCAmelCase_ : Optional[Any] = Accelerator()
UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ )
try:
pickle.loads(pickle.dumps(lowercase_ ) )
except Exception as e:
self.fail(F"""Accelerated optimizer pickling failed with {e}""" )
AcceleratorState._reset_state()
| 23 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
warnings.warn(
"The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PoolFormerImageProcessor instead." , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 23 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """ctrl"""
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : List[str] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = vocab_size
UpperCAmelCase_ : Union[str, Any] = n_positions
UpperCAmelCase_ : List[str] = n_embd
UpperCAmelCase_ : Dict = n_layer
UpperCAmelCase_ : Optional[int] = n_head
UpperCAmelCase_ : List[str] = dff
UpperCAmelCase_ : Tuple = resid_pdrop
UpperCAmelCase_ : Optional[Any] = embd_pdrop
UpperCAmelCase_ : str = layer_norm_epsilon
UpperCAmelCase_ : List[str] = initializer_range
UpperCAmelCase_ : List[str] = use_cache
super().__init__(**lowercase_ )
| 23 | 1 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty" )
UpperCAmelCase_ : Tuple = sum(__lowerCamelCase ) / len(__lowerCamelCase ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
"""simple docstring"""
def __a ( __lowerCamelCase ):
assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(__lowerCamelCase )
else:
UpperCAmelCase_ : List[str] = sylvester(number - 1 )
UpperCAmelCase_ : List[str] = num - 1
UpperCAmelCase_ : List[str] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 23 | 1 |
"""simple docstring"""
from pathlib import Path
import fire
from tqdm import tqdm
def __a ( __lowerCamelCase="ro", __lowerCamelCase="en", __lowerCamelCase="wmt16", __lowerCamelCase=None ):
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("run pip install datasets" )
UpperCAmelCase_ : List[Any] = f"""{src_lang}-{tgt_lang}"""
print(f"""Converting {dataset}-{pair}""" )
UpperCAmelCase_ : str = datasets.load_dataset(__lowerCamelCase, __lowerCamelCase )
if save_dir is None:
UpperCAmelCase_ : Dict = f"""{dataset}-{pair}"""
UpperCAmelCase_ : Dict = Path(__lowerCamelCase )
save_dir.mkdir(exist_ok=__lowerCamelCase )
for split in ds.keys():
print(f"""Splitting {split} with {ds[split].num_rows} records""" )
# to save to val.source, val.target like summary datasets
UpperCAmelCase_ : Tuple = "val" if split == "validation" else split
UpperCAmelCase_ : List[str] = save_dir.joinpath(f"""{fn}.source""" )
UpperCAmelCase_ : List[Any] = save_dir.joinpath(f"""{fn}.target""" )
UpperCAmelCase_ : int = src_path.open("w+" )
UpperCAmelCase_ : Union[str, Any] = tgt_path.open("w+" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
UpperCAmelCase_ : int = x["translation"]
src_fp.write(ex[src_lang] + "\n" )
tgt_fp.write(ex[tgt_lang] + "\n" )
print(f"""Saved {dataset} dataset to {save_dir}""" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 23 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline
SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""}
SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} )
SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ):
"""simple docstring"""
if str(lowercase_ ).startswith("mps" ):
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ )
else:
UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
UpperCAmelCase_ : int = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 23 | 1 |
"""simple docstring"""
from __future__ import annotations
from PIL import Image
# Define glider example
_a = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
_a = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : int = []
for i in range(len(__lowerCamelCase ) ):
UpperCAmelCase_ : Tuple = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
UpperCAmelCase_ : int = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(__lowerCamelCase ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(__lowerCamelCase ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(__lowerCamelCase ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
UpperCAmelCase_ : Optional[Any] = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(__lowerCamelCase )
return next_generation
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : str = []
for _ in range(__lowerCamelCase ):
# Create output image
UpperCAmelCase_ : str = Image.new("RGB", (len(cells[0] ), len(__lowerCamelCase )) )
UpperCAmelCase_ : str = img.load()
# Save cells to image
for x in range(len(__lowerCamelCase ) ):
for y in range(len(cells[0] ) ):
UpperCAmelCase_ : Union[str, Any] = 255 - cells[y][x] * 255
UpperCAmelCase_ : List[Any] = (colour, colour, colour)
# Save image
images.append(__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = new_generation(__lowerCamelCase )
return images
if __name__ == "__main__":
_a = generate_images(GLIDER, 16)
images[0].save('out.gif', save_all=True, append_images=images[1:])
| 23 |
"""simple docstring"""
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small"
UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp()
UpperCAmelCase_ : List[str] = "en_speaker_1"
UpperCAmelCase_ : Tuple = "This is a test string"
UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json"
UpperCAmelCase_ : Any = "speaker_embeddings"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.get_tokenizer()
UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
UpperCAmelCase_ : int = 35
UpperCAmelCase_ : Optional[Any] = 2
UpperCAmelCase_ : List[Any] = 8
UpperCAmelCase_ : Optional[Any] = {
"semantic_prompt": np.ones(lowercase_ ),
"coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ),
"fine_prompt": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ )
UpperCAmelCase_ : List[str] = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" )
np.savez(lowercase_ , **lowercase_ )
UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ )
UpperCAmelCase_ : List[str] = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_tokenizer()
UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ )
UpperCAmelCase_ : Tuple = processor(text=self.input_string )
UpperCAmelCase_ : Union[str, Any] = tokenizer(
self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 23 | 1 |
"""simple docstring"""
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Union[str, Any] = old_name
if "patch_embed" in old_name:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = old_name.split("." )
if layer == "0":
UpperCAmelCase_ : Any = old_name.replace("0", "convolution1" )
elif layer == "1":
UpperCAmelCase_ : Tuple = old_name.replace("1", "batchnorm_before" )
elif layer == "3":
UpperCAmelCase_ : Union[str, Any] = old_name.replace("3", "convolution2" )
else:
UpperCAmelCase_ : int = old_name.replace("4", "batchnorm_after" )
if "network" in old_name and re.search(r"\d\.\d", __lowerCamelCase ):
UpperCAmelCase_ : List[str] = r"\b\d{2}\b"
if bool(re.search(__lowerCamelCase, __lowerCamelCase ) ):
UpperCAmelCase_ : Tuple = re.search(r"\d\.\d\d.", __lowerCamelCase ).group()
else:
UpperCAmelCase_ : Optional[int] = re.search(r"\d\.\d.", __lowerCamelCase ).group()
if int(match[0] ) < 6:
UpperCAmelCase_ : Any = old_name.replace(__lowerCamelCase, "" )
UpperCAmelCase_ : str = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1] )
UpperCAmelCase_ : str = "intermediate_stages." + trimmed_name
else:
UpperCAmelCase_ : str = old_name.replace(__lowerCamelCase, "" )
if int(match[2] ) < num_meta4D_last_stage:
UpperCAmelCase_ : Optional[Any] = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2] )
else:
UpperCAmelCase_ : List[str] = str(int(match[2] ) - num_meta4D_last_stage )
UpperCAmelCase_ : Optional[int] = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index )
if "norm1" in old_name:
UpperCAmelCase_ : Optional[Any] = trimmed_name.replace("norm1", "layernorm1" )
elif "norm2" in old_name:
UpperCAmelCase_ : Optional[Any] = trimmed_name.replace("norm2", "layernorm2" )
elif "fc1" in old_name:
UpperCAmelCase_ : Tuple = trimmed_name.replace("fc1", "linear_in" )
elif "fc2" in old_name:
UpperCAmelCase_ : Optional[Any] = trimmed_name.replace("fc2", "linear_out" )
UpperCAmelCase_ : Union[str, Any] = "last_stage." + trimmed_name
elif "network" in old_name and re.search(r".\d.", __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = old_name.replace("network", "intermediate_stages" )
if "fc" in new_name:
UpperCAmelCase_ : List[str] = new_name.replace("fc", "convolution" )
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
UpperCAmelCase_ : List[Any] = new_name.replace("norm1", "batchnorm_before" )
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
UpperCAmelCase_ : Union[str, Any] = new_name.replace("norm2", "batchnorm_after" )
if "proj" in new_name:
UpperCAmelCase_ : Optional[int] = new_name.replace("proj", "projection" )
if "dist_head" in new_name:
UpperCAmelCase_ : Union[str, Any] = new_name.replace("dist_head", "distillation_classifier" )
elif "head" in new_name:
UpperCAmelCase_ : Dict = new_name.replace("head", "classifier" )
elif "patch_embed" in new_name:
UpperCAmelCase_ : Union[str, Any] = "efficientformer." + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
UpperCAmelCase_ : Dict = new_name.replace("norm", "layernorm" )
UpperCAmelCase_ : int = "efficientformer." + new_name
else:
UpperCAmelCase_ : int = "efficientformer.encoder." + new_name
return new_name
def __a ( __lowerCamelCase, __lowerCamelCase ):
for key in checkpoint.copy().keys():
UpperCAmelCase_ : List[str] = checkpoint.pop(__lowerCamelCase )
UpperCAmelCase_ : Optional[int] = val
return checkpoint
def __a ( ):
UpperCAmelCase_ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : Optional[Any] = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
return image
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = torch.load(__lowerCamelCase, map_location="cpu" )["model"]
UpperCAmelCase_ : int = EfficientFormerConfig.from_json_file(__lowerCamelCase )
UpperCAmelCase_ : List[str] = EfficientFormerForImageClassificationWithTeacher(__lowerCamelCase )
UpperCAmelCase_ : Optional[Any] = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] )
UpperCAmelCase_ : Any = config.depths[-1] - config.num_metaad_blocks + 1
UpperCAmelCase_ : Union[str, Any] = convert_torch_checkpoint(__lowerCamelCase, __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
model.eval()
UpperCAmelCase_ : str = {
"bilinear": PILImageResampling.BILINEAR,
"bicubic": PILImageResampling.BICUBIC,
"nearest": PILImageResampling.NEAREST,
}
# prepare image
UpperCAmelCase_ : List[str] = prepare_img()
UpperCAmelCase_ : List[Any] = 256
UpperCAmelCase_ : List[str] = 224
UpperCAmelCase_ : Optional[int] = EfficientFormerImageProcessor(
size={"shortest_edge": image_size}, crop_size={"height": crop_size, "width": crop_size}, resample=pillow_resamplings["bicubic"], )
UpperCAmelCase_ : str = processor(images=__lowerCamelCase, return_tensors="pt" ).pixel_values
# original processing pipeline
UpperCAmelCase_ : Dict = Compose(
[
Resize(__lowerCamelCase, interpolation=pillow_resamplings["bicubic"] ),
CenterCrop(__lowerCamelCase ),
ToTensor(),
Normalize(__lowerCamelCase, __lowerCamelCase ),
] )
UpperCAmelCase_ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 )
assert torch.allclose(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = outputs.logits
UpperCAmelCase_ : str = (1, 1000)
if "l1" in model_name:
UpperCAmelCase_ : Tuple = torch.Tensor(
[-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] )
assert torch.allclose(logits[0, :10], __lowerCamelCase, atol=1E-3 )
assert logits.shape == expected_shape
elif "l3" in model_name:
UpperCAmelCase_ : Any = torch.Tensor(
[-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] )
assert torch.allclose(logits[0, :10], __lowerCamelCase, atol=1E-3 )
assert logits.shape == expected_shape
elif "l7" in model_name:
UpperCAmelCase_ : Dict = torch.Tensor(
[-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] )
assert logits.shape == expected_shape
else:
raise ValueError(
f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" )
# Save Checkpoints
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
model.save_pretrained(__lowerCamelCase )
print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" )
processor.save_pretrained(__lowerCamelCase )
print(f"""Processor successfuly saved at {pytorch_dump_path}""" )
if push_to_hub:
print("Pushing model to the hub..." )
model.push_to_hub(
repo_id=f"""Bearnardd/{pytorch_dump_path}""", commit_message="Add model", use_temp_dir=__lowerCamelCase, )
processor.push_to_hub(
repo_id=f"""Bearnardd/{pytorch_dump_path}""", commit_message="Add image processor", use_temp_dir=__lowerCamelCase, )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--pytorch_model_path',
default=None,
type=str,
required=True,
help='Path to EfficientFormer pytorch checkpoint.',
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The json file for EfficientFormer model config.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
parser.add_argument(
'--no-push_to_hub',
dest='push_to_hub',
action='store_false',
help='Do not push model and image processor to the hub',
)
parser.set_defaults(push_to_hub=True)
_a = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 23 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger(__name__)
def __a ( __lowerCamelCase, __lowerCamelCase=False ):
UpperCAmelCase_ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "deit.embeddings.cls_token"),
("dist_token", "deit.embeddings.distillation_token"),
("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "deit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("norm.weight", "deit.layernorm.weight"),
("norm.bias", "deit.layernorm.bias"),
("head.weight", "cls_classifier.weight"),
("head.bias", "cls_classifier.bias"),
("head_dist.weight", "distillation_classifier.weight"),
("head_dist.bias", "distillation_classifier.bias"),
] )
return rename_keys
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ):
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase_ : int = ""
else:
UpperCAmelCase_ : Union[str, Any] = "deit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase )
UpperCAmelCase_ : Tuple = val
def __a ( ):
UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : List[str] = DeiTConfig()
# all deit models have fine-tuned heads
UpperCAmelCase_ : Optional[int] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
UpperCAmelCase_ : Tuple = 1000
UpperCAmelCase_ : str = "huggingface/label-files"
UpperCAmelCase_ : str = "imagenet-1k-id2label.json"
UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) )
UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Any = idalabel
UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ : Any = int(deit_name[-6:-4] )
UpperCAmelCase_ : Dict = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("tiny" ):
UpperCAmelCase_ : Any = 192
UpperCAmelCase_ : Union[str, Any] = 768
UpperCAmelCase_ : Union[str, Any] = 12
UpperCAmelCase_ : int = 3
elif deit_name[9:].startswith("small" ):
UpperCAmelCase_ : List[str] = 384
UpperCAmelCase_ : List[str] = 1536
UpperCAmelCase_ : Dict = 12
UpperCAmelCase_ : Any = 6
if deit_name[9:].startswith("base" ):
pass
elif deit_name[4:].startswith("large" ):
UpperCAmelCase_ : int = 1024
UpperCAmelCase_ : List[Any] = 4096
UpperCAmelCase_ : Optional[int] = 24
UpperCAmelCase_ : int = 16
# load original model from timm
UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase_ : Optional[Any] = timm_model.state_dict()
UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# load HuggingFace model
UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval()
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by DeiTImageProcessor
UpperCAmelCase_ : Union[str, Any] = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size )
UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" )
UpperCAmelCase_ : int = encoding["pixel_values"]
UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase )
UpperCAmelCase_ : Any = timm_model(__lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--deit_name',
default='vit_deit_base_distilled_patch16_224',
type=str,
help='Name of the DeiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_a = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 23 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
_a = {
'config': [
'EXTERNAL_DATA_FORMAT_SIZE_LIMIT',
'OnnxConfig',
'OnnxConfigWithPast',
'OnnxSeq2SeqConfigWithPast',
'PatchingSpec',
],
'convert': ['export', 'validate_model_outputs'],
'features': ['FeaturesManager'],
'utils': ['ParameterFormat', 'compute_serialized_parameters_size'],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 |
"""simple docstring"""
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ )
UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )]
UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin" ) for f in files )
@slow
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ )
UpperCAmelCase_ : Tuple = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : List[str] = 4
UpperCAmelCase_ : Tuple = jax.device_count()
UpperCAmelCase_ : Optional[int] = num_samples * [prompt]
UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(lowercase_ ) == num_samples
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ )
UpperCAmelCase_ : Optional[int] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Union[str, Any] = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[str] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ )
UpperCAmelCase_ : Any = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : str = jax.random.PRNGKey(0 )
UpperCAmelCase_ : str = 50
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Dict = replicate(lowercase_ )
UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa )
UpperCAmelCase_ : List[Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 )
UpperCAmelCase_ : Optional[int] = 50
UpperCAmelCase_ : Optional[int] = jax.device_count()
UpperCAmelCase_ : str = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , )
UpperCAmelCase_ : List[Any] = scheduler.create_state()
UpperCAmelCase_ : int = scheduler_state
UpperCAmelCase_ : Union[str, Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase_ : int = 50
UpperCAmelCase_ : str = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
UpperCAmelCase_ : int = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = shard(lowercase_ )
UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
UpperCAmelCase_ : List[str] = jax.device_count()
UpperCAmelCase_ : List[Any] = num_samples * [prompt]
UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , )
UpperCAmelCase_ : Any = replicate(lowercase_ )
UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : List[str] = shard(lowercase_ )
UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , )
UpperCAmelCase_ : str = replicate(lowercase_ )
UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ )
UpperCAmelCase_ : Optional[int] = shard(lowercase_ )
UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
"""simple docstring"""
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ):
if radian_mode:
return [magnitude * cos(__lowerCamelCase ), magnitude * sin(__lowerCamelCase )]
return [magnitude * cos(radians(__lowerCamelCase ) ), magnitude * sin(radians(__lowerCamelCase ) )]
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 10**-1 ):
UpperCAmelCase_ : NDArray[floataa] = cross(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : float = sum(__lowerCamelCase )
return abs(__lowerCamelCase ) < eps
if __name__ == "__main__":
# Test to check if it works
_a = array(
[
polar_force(718.4, 180 - 30),
polar_force(879.54, 45),
polar_force(100, -90),
]
)
_a = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
_a = array(
[
polar_force(30 * 9.81, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
_a = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
_a = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]])
_a = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 23 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
_a = 0
_a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
_a = tuple[int, int]
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : int = pos_x
UpperCAmelCase_ : List[Any] = pos_y
UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x)
UpperCAmelCase_ : Any = goal_x
UpperCAmelCase_ : Dict = goal_y
UpperCAmelCase_ : Any = g_cost
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : int = self.calculate_heuristic()
UpperCAmelCase_ : Any = self.g_cost + self.h_cost
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x
UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowercase_ ) + abs(lowercase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , lowercase_ ):
"""simple docstring"""
return self.f_cost < other.f_cost
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ )
UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ )
UpperCAmelCase_ : str = [self.start]
UpperCAmelCase_ : list[Node] = []
UpperCAmelCase_ : int = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowercase_ )
self.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : str = self.get_successors(lowercase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowercase_ )
else:
self.open_nodes.append(lowercase_ )
return [self.start.pos]
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = []
for action in delta:
UpperCAmelCase_ : str = parent.pos_x + action[1]
UpperCAmelCase_ : int = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) )
return successors
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = node
UpperCAmelCase_ : int = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase_ : Optional[int] = current_node.parent
path.reverse()
return path
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowercase_ , lowercase_ )
self.fwd_astar.closed_nodes.append(lowercase_ )
self.bwd_astar.closed_nodes.append(lowercase_ )
UpperCAmelCase_ : Tuple = current_bwd_node
UpperCAmelCase_ : str = current_fwd_node
UpperCAmelCase_ : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowercase_ )
else:
# retrieve the best current path
UpperCAmelCase_ : List[Any] = astar.open_nodes.pop(
astar.open_nodes.index(lowercase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowercase_ )
else:
astar.open_nodes.append(lowercase_ )
return [self.fwd_astar.start.pos]
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ )
UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase_ : Any = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
_a = (0, 0)
_a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_a = time.time()
_a = AStar(init, goal)
_a = a_star.search()
_a = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
_a = time.time()
_a = BidirectionalAStar(init, goal)
_a = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 23 | 1 |
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.txt'}
_a = {
'vocab_file': {
'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt',
'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt',
},
}
_a = {
'facebook/esm2_t6_8M_UR50D': 1_024,
'facebook/esm2_t12_35M_UR50D': 1_024,
}
def __a ( __lowerCamelCase ):
with open(__lowerCamelCase, "r" ) as f:
UpperCAmelCase_ : int = f.read().splitlines()
return [l.strip() for l in lines]
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : int = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase_ , lowercase_="<unk>" , lowercase_="<cls>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_="<eos>" , **lowercase_ , ):
"""simple docstring"""
super().__init__(**lowercase_ )
UpperCAmelCase_ : str = load_vocab_file(lowercase_ )
UpperCAmelCase_ : Any = dict(enumerate(self.all_tokens ) )
UpperCAmelCase_ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase_ : int = unk_token
UpperCAmelCase_ : Optional[int] = cls_token
UpperCAmelCase_ : Optional[int] = pad_token
UpperCAmelCase_ : Optional[int] = mask_token
UpperCAmelCase_ : List[Any] = eos_token
UpperCAmelCase_ : str = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self._id_to_token.get(lowercase_ , self.unk_token )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self._token_to_id.get(lowercase_ , self._token_to_id.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ , **lowercase_ ):
"""simple docstring"""
return text.split()
def UpperCamelCase__ ( self , lowercase_=False ):
"""simple docstring"""
return len(self._id_to_token )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens )}
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self._token_to_id.get(lowercase_ , self._token_to_id.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self._id_to_token.get(lowercase_ , self.unk_token )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [self.cls_token_id]
UpperCAmelCase_ : int = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase_ : Dict = [1] + ([0] * len(lowercase_ )) + [1]
if token_ids_a is not None:
mask += [0] * len(lowercase_ ) + [1]
return mask
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = os.path.join(lowercase_ , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" )
with open(lowercase_ , "w" ) as f:
f.write("\n".join(self.all_tokens ) )
return (vocab_file,)
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = False ):
"""simple docstring"""
return super()._add_tokens(lowercase_ , special_tokens=lowercase_ )
| 23 |
"""simple docstring"""
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,)
SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),)
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowercase_ )
return config
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.dummy_sample
UpperCAmelCase_ : Dict = 0.1 * sample
UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
UpperCAmelCase_ : int = dummy_past_residuals[:]
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ )
UpperCAmelCase_ : Optional[int] = self.dummy_sample
UpperCAmelCase_ : List[str] = 0.1 * sample
UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:]
UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = self.scheduler_classes[0]
UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ )
UpperCAmelCase_ : Tuple = 10
UpperCAmelCase_ : List[str] = self.dummy_model()
UpperCAmelCase_ : str = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : Any = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
UpperCAmelCase_ : str = self.dummy_sample
UpperCAmelCase_ : List[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ):
scheduler.set_timesteps(lowercase_ )
elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ):
UpperCAmelCase_ : List[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase_ : List[str] = dummy_past_residuals[:]
UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample
UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
UpperCAmelCase_ : List[Any] = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.dummy_sample
UpperCAmelCase_ : Optional[int] = 0.1 * sample
UpperCAmelCase_ : List[str] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : List[str] = self.scheduler_classes[0]
UpperCAmelCase_ : str = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.full_loop()
UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2
assert abs(result_mean.item() - 0.25_80 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 67.39_86 ) < 1E-2
assert abs(result_mean.item() - 0.08_78 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2
assert abs(result_mean.item() - 0.29_95 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2
assert abs(result_mean.item() - 0.24_34 ) < 1E-3
| 23 | 1 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
_a = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class A_ (unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase__ ( cls ):
"""simple docstring"""
UpperCAmelCase_ : str = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def UpperCamelCase__ ( cls ):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id="test-model-flax" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" )
except HTTPError:
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : int = FlaxBertModel(lowercase_ )
model.push_to_hub("test-model-flax" , use_auth_token=self._token )
UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase_ : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(lowercase_ , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id="test-model-flax" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(lowercase_ , repo_id="test-model-flax" , push_to_hub=lowercase_ , use_auth_token=self._token )
UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(lowercase_ , 1E-3 , msg=F"""{key} not identical""" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : Union[str, Any] = FlaxBertModel(lowercase_ )
model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token )
UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" )
UpperCAmelCase_ : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : List[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Dict = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(lowercase_ , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
lowercase_ , repo_id="valid_org/test-model-flax-org" , push_to_hub=lowercase_ , use_auth_token=self._token )
UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" )
UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(lowercase_ , 1E-3 , msg=F"""{key} not identical""" )
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = True
UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params )
UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4:
UpperCAmelCase_ : int = False
return models_are_equal
@require_flax
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
UpperCAmelCase_ : Any = FlaxBertModel(lowercase_ )
UpperCAmelCase_ : Optional[Any] = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) )
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(lowercase_ )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ )
self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
UpperCAmelCase_ : int = FlaxBertModel(lowercase_ )
UpperCAmelCase_ : Tuple = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) , max_shard_size="10KB" )
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = FlaxBertModel.from_pretrained(lowercase_ )
UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ )
self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = "bert"
UpperCAmelCase_ : List[str] = "hf-internal-testing/tiny-random-bert-subfolder"
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = FlaxBertModel.from_pretrained(lowercase_ )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ )
self.assertIsNotNone(lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = "bert"
UpperCAmelCase_ : str = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
with self.assertRaises(lowercase_ ):
UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(lowercase_ )
UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ )
self.assertIsNotNone(lowercase_ )
| 23 |
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_a = object()
# For specifying empty leaf dict `{}`
_a = object()
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ):
UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )]
if matches and all(__lowerCamelCase ):
return True
return False
def __a ( __lowerCamelCase ):
def replace(__lowerCamelCase, __lowerCamelCase ):
for rule, replacement in rules:
if _match(__lowerCamelCase, __lowerCamelCase ):
return replacement
return val
return replace
def __a ( ):
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )),
(("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )),
(("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : List[str] = _get_partition_rules()
UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase )
UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )}
UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(__lowerCamelCase ) )
| 23 | 1 |
"""simple docstring"""
from __future__ import annotations
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = str(__lowerCamelCase )
return len(__lowerCamelCase ) == 9 and set(__lowerCamelCase ) == set("123456789" )
def __a ( ):
for base_num in range(9999, 4999, -1 ):
UpperCAmelCase_ : Tuple = 10_0002 * base_num
if is_9_pandigital(__lowerCamelCase ):
return candidate
for base_num in range(333, 99, -1 ):
UpperCAmelCase_ : int = 100_2003 * base_num
if is_9_pandigital(__lowerCamelCase ):
return candidate
return None
if __name__ == "__main__":
print(f"""{solution() = }""")
| 23 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_a = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )]
if identifier is not None:
UpperCAmelCase_ : Dict = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_ ):
for n_ in n_identifier:
UpperCAmelCase_ : str = [file for file in files if n_ not in file]
else:
UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file]
UpperCAmelCase_ : Union[str, Any] = ignore_files or []
ignore_files.append("__init__.py" )
UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , lowercase_ )
if only_modules:
UpperCAmelCase_ : str = file.split("." )[0]
try:
UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ )
UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ )
UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = Path("src/transformers" )
UpperCAmelCase_ : str = "modeling"
UpperCAmelCase_ : Optional[Any] = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = Path("src/transformers" )
UpperCAmelCase_ : Any = "tokenization"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = "configuration"
self.analyze_directory(lowercase_ , identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" )
UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"]
self.analyze_directory(lowercase_ , n_identifier=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = Path("docs/source" )
UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"]
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
| 23 | 1 |
"""simple docstring"""
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 23 |
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
_a = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
return (preds == labels).mean()
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0]
UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}"""
if task_name == "cola":
return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mrpc":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "sts-b":
return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase )
elif task_name == "qqp":
return acc_and_fa(__lowerCamelCase, __lowerCamelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
warnings.warn(__lowerCamelCase, __lowerCamelCase )
requires_backends(__lowerCamelCase, "sklearn" )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" )
if task_name == "xnli":
return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )}
else:
raise KeyError(__lowerCamelCase )
| 23 | 1 |
"""simple docstring"""
import os
from typing import Dict, List, Tuple, TypeVar, Union
_a = TypeVar('T')
_a = Union[List[T], Tuple[T, ...]]
_a = Union[T, List[T], Dict[str, T]]
_a = Union[str, bytes, os.PathLike]
| 23 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.json'}
_a = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
_a = {'mgp-str': 27}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ):
"""simple docstring"""
super().__init__(
unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , )
with open(lowercase_ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(lowercase_ )
UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = []
for s in text:
char_tokens.extend(lowercase_ )
return char_tokens
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return self.decoder.get(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) )
return
UpperCAmelCase_ : Optional[int] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowercase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" )
return (vocab_file,)
| 23 | 1 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
_a = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('', '|', '|'),
datarow=DataRow('', '|', '|'),
padding=1,
with_header_hide=None,
)
_a = []
_a = []
_a = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}}
_a = [
{
'type': 'header',
'text': {
'type': 'plain_text',
'text': f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""",
'emoji': True,
},
}
]
_a = 0
for log in Path().glob('*.log'):
_a = 0
with open(log, 'r') as f:
for line in f:
_a = json.loads(line)
if line.get('nodeid', '') != "":
_a = line['nodeid']
if line.get('duration', None) is not None:
_a = f"""{line['duration']:.4f}"""
if line.get('outcome', '') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('_')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
_a = []
log.unlink()
_a = ''
_a = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
_a = []
_a = {}
for test in failed_tests:
_a = test[0].split('::')
_a = data[0].split('/')[-1]
if data[0] not in filesafailed:
_a = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
_a = [test[0] for test in failed_table]
_a = list(set(files))
# Count number of instances in failed_tests
_a = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
_a = tabulate(
table,
headers=['Test Location', 'Num Failed'],
tablefmt=hf_table_format,
stralign='right',
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_000:
_a = 'Too many failed tests, please see the full report in the Action results.'
_a = len(err) + 10
_a = message[: 3_000 - offset] + f"""\n...\n```\n{err}"""
print(f"""### {message}""")
else:
_a = 'No failed tests! 🤗'
print(f"""## {message}""")
payload.append(no_error_payload)
if os.environ.get('TEST_TYPE', '') != "":
from slack_sdk import WebClient
_a = WebClient(token=os.environ['SLACK_API_TOKEN'])
if message != "No failed tests! 🤗":
_a = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': message,
},
}
payload.append(md_report)
_a = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': '*For more details:*',
},
'accessory': {
'type': 'button',
'text': {
'type': 'plain_text',
'text': 'Check Action results',
'emoji': True,
},
'url': f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
payload.append(action_button)
_a = {
'type': 'context',
'elements': [
{
'type': 'plain_text',
'text': f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""",
}
],
}
payload.append(date_report)
_a = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload)
_a = response.data['ts']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
_a = ''
for i, row in enumerate(test_failures):
if row[0] != test_class:
_a = row[0]
else:
_a = ''
_a = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""",
},
}
client.chat_postMessage(
channel='#accelerate-ci-daily',
thread_ts=ts,
blocks=[payload],
)
| 23 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
_a = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
_a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
_a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __a ( __lowerCamelCase ):
return x[0]
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase )
UpperCAmelCase_ : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase )
UpperCAmelCase_ : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase )
UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] )
UpperCAmelCase_ : str = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase )
UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__lowerCamelCase )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase )
UpperCAmelCase_ : int = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
"""simple docstring"""
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = emb.weight.shape
UpperCAmelCase_ : List[str] = nn.Linear(__lowerCamelCase, __lowerCamelCase, bias=__lowerCamelCase )
UpperCAmelCase_ : Any = emb.weight.data
return lin_layer
def __a ( __lowerCamelCase, __lowerCamelCase=None ):
UpperCAmelCase_ : str = {}
for old_key in state_dict.keys():
UpperCAmelCase_ : Optional[int] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
UpperCAmelCase_ : str = key.replace("moe_layer.experts.0", f"""ffn.experts.expert_{expert_idx}""" )
else:
UpperCAmelCase_ : Union[str, Any] = key.replace("moe_layer.experts.", "ffn.experts.expert_" )
if "gate" in key:
UpperCAmelCase_ : int = key.replace(".moe_layer.gate.wg", ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
UpperCAmelCase_ : Tuple = key.replace(".fc2.", ".ffn.fc2." )
if "fc1" and "experts" not in key:
UpperCAmelCase_ : str = key.replace(".fc1.", ".ffn.fc1." )
if ".encoder_attn." in key:
UpperCAmelCase_ : Any = key.replace(".encoder_attn.", ".cross_attention." )
if "encoder_attn_layer_norm" in key:
UpperCAmelCase_ : str = key.replace("encoder_attn_layer_norm", "cross_attention_layer_norm" )
if "final_layer_norm" in key:
UpperCAmelCase_ : Optional[Any] = key.replace("final_layer_norm", "ff_layer_norm" )
UpperCAmelCase_ : str = state_dict[old_key]
return new_dict
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = WEIGHTS_NAME ):
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : int = 0
os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase )
for expert in range(__lowerCamelCase ):
UpperCAmelCase_ : str = switch_checkpoint_path + f"""-rank-{expert}.pt"""
if os.path.isfile(__lowerCamelCase ):
UpperCAmelCase_ : Tuple = torch.load(__lowerCamelCase )["model"]
remove_ignore_keys_(__lowerCamelCase )
UpperCAmelCase_ : Optional[Any] = rename_fairseq_keys(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : Optional[int] = os.path.join(
__lowerCamelCase, weights_name.replace(".bin", f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) )
torch.save(__lowerCamelCase, __lowerCamelCase )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__lowerCamelCase )[0]].dtype )
# Add the last block
UpperCAmelCase_ : Optional[Any] = os.path.join(__lowerCamelCase, weights_name.replace(".bin", f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) )
UpperCAmelCase_ : Union[str, Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = rename_fairseq_keys(__lowerCamelCase, __lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__lowerCamelCase ) == 1:
UpperCAmelCase_ : int = os.path.join(__lowerCamelCase, __lowerCamelCase )
torch.save(__lowerCamelCase, __lowerCamelCase )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__lowerCamelCase, __lowerCamelCase )
# Otherwise, let's build the index
UpperCAmelCase_ : Tuple = {}
for idx, shard in enumerate(__lowerCamelCase ):
UpperCAmelCase_ : List[str] = weights_name.replace(".bin", f"""-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin""" )
UpperCAmelCase_ : Optional[Any] = os.path.join(__lowerCamelCase, weights_name.replace(".bin", f"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(__lowerCamelCase, os.path.join(__lowerCamelCase, __lowerCamelCase ) )
for key in shard:
UpperCAmelCase_ : str = shard_file
# Add the metadata
UpperCAmelCase_ : int = {"total_size": total_size}
UpperCAmelCase_ : Any = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), "w", encoding="utf-8" ) as f:
UpperCAmelCase_ : int = json.dumps(__lowerCamelCase, indent=2, sort_keys=__lowerCamelCase ) + "\n"
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
_a = parser.parse_args()
_a , _a = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
_a = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
_a = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path)
| 23 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_a = logging.getLogger()
def __a ( ):
UpperCAmelCase_ : Tuple = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase_ : Dict = parser.parse_args()
return args.f
class A_ (lowercase__ ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowercase_ , "argv" , lowercase_ ):
UpperCAmelCase_ : List[str] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase_ , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowercase_ )
| 23 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=13 , lowercase_=32 , lowercase_=3 , lowercase_=4 , lowercase_=[10, 20, 30, 40] , lowercase_=[2, 2, 3, 2] , lowercase_=True , lowercase_=True , lowercase_=37 , lowercase_="gelu" , lowercase_=10 , lowercase_=0.02 , lowercase_=["stage2", "stage3", "stage4"] , lowercase_=[2, 3, 4] , lowercase_=None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Tuple = image_size
UpperCAmelCase_ : int = num_channels
UpperCAmelCase_ : Union[str, Any] = num_stages
UpperCAmelCase_ : List[str] = hidden_sizes
UpperCAmelCase_ : Optional[Any] = depths
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : Optional[Any] = use_labels
UpperCAmelCase_ : Tuple = intermediate_size
UpperCAmelCase_ : Optional[int] = hidden_act
UpperCAmelCase_ : Optional[int] = num_labels
UpperCAmelCase_ : str = initializer_range
UpperCAmelCase_ : str = out_features
UpperCAmelCase_ : Optional[int] = out_indices
UpperCAmelCase_ : int = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : int = None
if self.use_labels:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ : Tuple = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = ConvNextVaModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(lowercase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ConvNextVaForImageClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = ConvNextVaBackbone(config=lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : Optional[int] = model(lowercase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase_ : int = None
UpperCAmelCase_ : str = ConvNextVaBackbone(config=lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : int = model(lowercase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = config_and_inputs
UpperCAmelCase_ : Optional[int] = {"pixel_values": pixel_values}
return config, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs
UpperCAmelCase_ : Optional[int] = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : Dict = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ : Optional[int] = False
SCREAMING_SNAKE_CASE__ : int = False
SCREAMING_SNAKE_CASE__ : Tuple = False
SCREAMING_SNAKE_CASE__ : List[Any] = False
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = ConvNextVaModelTester(self )
UpperCAmelCase_ : Any = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ ( self ):
"""simple docstring"""
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase_ : List[str] = True
if model_class.__name__ in [
*get_values(lowercase_ ),
*get_values(lowercase_ ),
]:
continue
UpperCAmelCase_ : Union[str, Any] = model_class(lowercase_ )
model.to(lowercase_ )
model.train()
UpperCAmelCase_ : Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ )
UpperCAmelCase_ : int = model(**lowercase_ ).loss
loss.backward()
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase_ : Optional[int] = False
UpperCAmelCase_ : Optional[int] = True
if (
model_class.__name__
in [*get_values(lowercase_ ), *get_values(lowercase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase_ : Optional[Any] = model_class(lowercase_ )
model.to(lowercase_ )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase_ : Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ )
UpperCAmelCase_ : int = model(**lowercase_ ).loss
loss.backward()
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : str = model_class(lowercase_ )
UpperCAmelCase_ : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : List[str] = [*signature.parameters.keys()]
UpperCAmelCase_ : Tuple = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ):
UpperCAmelCase_ : str = model_class(lowercase_ )
model.to(lowercase_ )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) )
UpperCAmelCase_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : List[Any] = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Any = ConvNextVaModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def __a ( ):
UpperCAmelCase_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A_ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowercase_ )
UpperCAmelCase_ : Any = self.default_image_processor
UpperCAmelCase_ : Dict = prepare_img()
UpperCAmelCase_ : List[str] = preprocessor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**lowercase_ )
# verify the logits
UpperCAmelCase_ : Optional[int] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowercase_ )
UpperCAmelCase_ : Dict = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(lowercase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
| 23 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 23 | 1 |
"""simple docstring"""
import os
import sys
import unittest
_a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_a = os.path.join(git_repo_path, 'src', 'transformers')
_a = '\n{0} = None\n'
_a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n'
_a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" )
self.assertIsNone(lowercase_ )
UpperCAmelCase_ : str = find_backend(" if not is_tokenizers_available():" )
self.assertEqual(lowercase_ , "tokenizers" )
UpperCAmelCase_ : Dict = find_backend(" if not is_tensorflow_text_available():" )
self.assertEqual(lowercase_ , "tensorflow_text" )
UpperCAmelCase_ : List[str] = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" )
self.assertEqual(lowercase_ , "sentencepiece_and_tokenizers" )
UpperCAmelCase_ : List[str] = find_backend(
" if not (is_sentencepiece_available() and is_tensorflow_text_available()):" )
self.assertEqual(lowercase_ , "sentencepiece_and_tensorflow_text" )
UpperCAmelCase_ : List[str] = find_backend(
" if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" )
self.assertEqual(lowercase_ , "sentencepiece_and_tokenizers_and_vision" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch" , lowercase_ )
self.assertIn("tensorflow_text" , lowercase_ )
self.assertIn("sentencepiece_and_tokenizers" , lowercase_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("BertModel" , objects["torch"] )
self.assertIn("TFBertModel" , objects["tf"] )
self.assertIn("FlaxBertModel" , objects["flax"] )
self.assertIn("BertModel" , objects["torch"] )
self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] )
self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = create_dummy_object("CONSTANT" , "'torch'" )
self.assertEqual(lowercase_ , "\nCONSTANT = None\n" )
UpperCAmelCase_ : int = create_dummy_object("function" , "'torch'" )
self.assertEqual(
lowercase_ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" )
UpperCAmelCase_ : Tuple = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n"
UpperCAmelCase_ : Dict = create_dummy_object("FakeClass" , "'torch'" )
self.assertEqual(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n"
UpperCAmelCase_ : List[Any] = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} )
self.assertEqual(dummy_files["torch"] , lowercase_ )
| 23 |
"""simple docstring"""
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_a = logging.get_logger(__name__) # pylint: disable=invalid-name
_a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n'
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ):
UpperCAmelCase_ : List[str] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCAmelCase_ : Tuple = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , )
UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
if latents is None:
UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
UpperCAmelCase_ : str = latents.to(lowercase_ )
UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma
return latents
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
UpperCAmelCase_ : int = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self , lowercase_=0 ):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=lowercase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCAmelCase_ : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ )
# We'll offload the last model manually.
UpperCAmelCase_ : Tuple = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase_ , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase_ )
def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ):
"""simple docstring"""
UpperCAmelCase_ : str = self._execution_device
UpperCAmelCase_ : List[Any] = guidance_scale > 1.0
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 )
UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 )
if do_classifier_free_guidance:
UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 )
UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ )
self.scheduler.set_timesteps(lowercase_ , device=lowercase_ )
UpperCAmelCase_ : List[Any] = self.scheduler.timesteps
UpperCAmelCase_ : List[str] = self.unet.config.in_channels
UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor )
# create initial latent
UpperCAmelCase_ : int = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase_ ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds}
UpperCAmelCase_ : Optional[Any] = self.unet(
sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0]
if do_classifier_free_guidance:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 )
UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , "variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ : List[str] = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0]
# post-processing
UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5
UpperCAmelCase_ : int = image.clamp(0 , 1 )
UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 23 | 1 |
"""simple docstring"""
def __a ( __lowerCamelCase, __lowerCamelCase ):
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 23 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a = logging.get_logger(__name__)
_a = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """detr"""
SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = backbone_config.get("model_type" )
UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None
UpperCAmelCase_ : int = use_timm_backbone
UpperCAmelCase_ : int = backbone_config
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Union[str, Any] = d_model
UpperCAmelCase_ : str = encoder_ffn_dim
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : List[Any] = encoder_attention_heads
UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : List[str] = attention_dropout
UpperCAmelCase_ : Any = activation_dropout
UpperCAmelCase_ : str = activation_function
UpperCAmelCase_ : Tuple = init_std
UpperCAmelCase_ : Optional[Any] = init_xavier_std
UpperCAmelCase_ : Optional[Any] = encoder_layerdrop
UpperCAmelCase_ : Optional[int] = decoder_layerdrop
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : int = auxiliary_loss
UpperCAmelCase_ : Optional[Any] = position_embedding_type
UpperCAmelCase_ : Tuple = backbone
UpperCAmelCase_ : Optional[int] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : Any = bbox_cost
UpperCAmelCase_ : int = giou_cost
# Loss coefficients
UpperCAmelCase_ : str = mask_loss_coefficient
UpperCAmelCase_ : Any = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : List[str] = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.d_model
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
return cls(backbone_config=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict()
UpperCAmelCase_ : str = self.__class__.model_type
return output
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-5
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 12
| 23 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.