code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __magic_name__ (unittest.TestCase ): def __a ( self , _a ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase_ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(_a ) def __a ( self ) -> Tuple: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "sgugger/tiny-distilbert-classification" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[str]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def __a ( self ) -> Tuple: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[str]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` lowerCAmelCase_ = None lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Dict: lowerCAmelCase_ = "sshleifer/tinier_bart" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> int: lowerCAmelCase_ = "sshleifer/tinier_bart" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , "inf_time.csv" ) , train_memory_csv_file=os.path.join(_a , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(_a , "inf_mem.csv" ) , train_time_csv_file=os.path.join(_a , "train_time.csv" ) , env_info_csv_file=os.path.join(_a , "env.csv" ) , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "env.csv" ) ).exists() ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , "sequential" ) ) self.assertTrue(hasattr(_a , "cumulative" ) ) self.assertTrue(hasattr(_a , "current" ) ) self.assertTrue(hasattr(_a , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , "log.txt" ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , "log.txt" ) ).exists() )
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def A(__a: Optional[Any] , __a: int , __a: List[str] , __a: int=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("<mask>" ) == 1 lowerCAmelCase_ = torch.tensor(tokenizer.encode(__a , add_special_tokens=__a ) ).unsqueeze(0 ) # Batch size 1 lowerCAmelCase_ = model(__a )[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase_ = logits[0, masked_index, :] lowerCAmelCase_ = logits.softmax(dim=0 ) lowerCAmelCase_ , lowerCAmelCase_ = prob.topk(k=__a , dim=0 ) lowerCAmelCase_ = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__a ) )] ) lowerCAmelCase_ = tokenizer.mask_token lowerCAmelCase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): lowerCAmelCase_ = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(__a ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(__a ) , __a ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__a , __a ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCamelCase__ = CamembertTokenizer.from_pretrained('''camembert-base''') lowerCamelCase__ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowerCamelCase__ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
def A(__a: list , __a: int , __a: int = 0 , __a: int = 0 ): lowerCAmelCase_ = right or len(__a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__a , __a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def A(__a: np.ndarray , __a: Union[int, Iterable[int]] , __a: bool , __a: int ): def constraint_to_multiple_of(__a: Union[str, Any] , __a: Dict , __a: List[str]=0 , __a: List[Any]=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(__a , __a ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(__a ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=__a ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=__a ) return (new_height, new_width) class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''pixel_values'''] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = False , _a = 1 , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) lowerCAmelCase_ = size if size is not None else {"height": 384, "width": 384} lowerCAmelCase_ = get_size_dict(_a ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , _a , _a , _a = False , _a = 1 , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowerCAmelCase_ = get_resize_output_image_size( _a , output_size=(size["height"], size["width"]) , keep_aspect_ratio=_a , multiple=_a , ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __a ( self , _a , _a , _a = None , **_a , ) -> str: return rescale(_a , scale=_a , data_format=_a , **_a ) def __a ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __a ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_a ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(_a ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(_a , _a ) for image in images] lowerCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a ) def __a ( self , _a , _a = None ) -> Dict: lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_a ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(_a ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_a ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase__ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowerCamelCase__ = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split() lowerCamelCase__ = '''|'''.join(sys.argv[1:]) lowerCamelCase__ = re.compile(RF'''^({joined_dirs}).*?\.py$''') lowerCamelCase__ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=24 , _a=2 , _a=6 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=None , _a=1000 , ) -> Dict: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = scope lowerCAmelCase_ = range_bbox def __a ( self ) -> Any: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase_ = bbox[i, j, 3] lowerCAmelCase_ = bbox[i, j, 1] lowerCAmelCase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase_ = bbox[i, j, 2] lowerCAmelCase_ = bbox[i, j, 0] lowerCAmelCase_ = t lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self ) -> List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]: lowerCAmelCase_ = LiltModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) lowerCAmelCase_ = model(_a , bbox=_a , token_type_ids=_a ) lowerCAmelCase_ = model(_a , bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , ) -> Dict: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , ) -> Dict: lowerCAmelCase_ = LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __magic_name__ (__lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self , _a , _a , _a , _a , _a ) -> Optional[int]: return True def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = LiltModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , hidden_size=37 ) def __a ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __a ( self ) -> Tuple: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*_a ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def __a ( self ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Optional[int]: lowerCAmelCase_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_a ) lowerCAmelCase_ = torch.tensor([[1, 2]] , device=_a ) lowerCAmelCase_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_a ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(input_ids=_a , bbox=_a ) lowerCAmelCase_ = torch.Size([1, 2, 768] ) lowerCAmelCase_ = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=_a , ) self.assertTrue(outputs.last_hidden_state.shape , _a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _a , atol=1E-3 ) )
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __magic_name__ : def __a ( self , _a ) -> int: raise NotImplementedError() def __a ( self ) -> str: raise NotImplementedError() class __magic_name__ (__lowercase ): def __init__( self , _a , _a = False , **_a ) -> int: lowerCAmelCase_ = tokenizer lowerCAmelCase_ = skip_prompt lowerCAmelCase_ = decode_kwargs # variables used in the streaming process lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = True def __a ( self , _a ) -> List[str]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: lowerCAmelCase_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCAmelCase_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCAmelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): lowerCAmelCase_ = text[self.print_len :] lowerCAmelCase_ = [] lowerCAmelCase_ = 0 # If the last token is a CJK character, we print the characters. elif len(_a ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCAmelCase_ = text[self.print_len :] self.print_len += len(_a ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCAmelCase_ = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(_a ) self.on_finalized_text(_a ) def __a ( self ) -> Tuple: # Flush the cache, if it exists if len(self.token_cache ) > 0: lowerCAmelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCAmelCase_ = text[self.print_len :] lowerCAmelCase_ = [] lowerCAmelCase_ = 0 else: lowerCAmelCase_ = "" lowerCAmelCase_ = True self.on_finalized_text(_a , stream_end=_a ) def __a ( self , _a , _a = False ) -> Union[str, Any]: print(_a , flush=_a , end="" if not stream_end else None ) def __a ( self , _a ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False class __magic_name__ (__lowercase ): def __init__( self , _a , _a = False , _a = None , **_a ) -> Any: super().__init__(_a , _a , **_a ) lowerCAmelCase_ = Queue() lowerCAmelCase_ = None lowerCAmelCase_ = timeout def __a ( self , _a , _a = False ) -> int: self.text_queue.put(_a , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> str: return self def __a ( self ) -> int: lowerCAmelCase_ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __magic_name__ : lowerCamelCase__ = 42 lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = namedtuple('''CoinsDistribResult''', '''moves excess''') def A(__a: TreeNode | None ): if root is None: return 0 # Validation def count_nodes(__a: TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__a: TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__a ) != count_coins(__a ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(__a: TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCAmelCase_ , lowerCAmelCase_ = get_distrib(node.left ) lowerCAmelCase_ , lowerCAmelCase_ = get_distrib(node.right ) lowerCAmelCase_ = 1 - left_distrib_excess lowerCAmelCase_ = 1 - right_distrib_excess lowerCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(__a ) + abs(__a ) ) lowerCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__a , __a ) return get_distrib(__a )[0] if __name__ == "__main__": import doctest doctest.testmod()
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
def A(__a: list ): if len(__a ) <= 1: return lst lowerCAmelCase_ = 1 while i < len(__a ): if lst[i - 1] <= lst[i]: i += 1 else: lowerCAmelCase_ , lowerCAmelCase_ = lst[i], lst[i - 1] i -= 1 if i == 0: lowerCAmelCase_ = 1 return lst if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
import math class __magic_name__ : def __init__( self , _a=0 ) -> str: # a graph with Node 0,1,...,N-1 lowerCAmelCase_ = n lowerCAmelCase_ = [ [math.inf for j in range(0 , _a )] for i in range(0 , _a ) ] # adjacency matrix for weight lowerCAmelCase_ = [ [math.inf for j in range(0 , _a )] for i in range(0 , _a ) ] # dp[i][j] stores minimum distance from i to j def __a ( self , _a , _a , _a ) -> Tuple: lowerCAmelCase_ = w def __a ( self ) -> Tuple: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __a ( self , _a , _a ) -> List[str]: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
from __future__ import annotations def A(__a: list[int | float] , __a: int , __a: int ): if len(__a ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(__a ) or left < -len(__a ) or right >= len(__a ) or right < -len(__a ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] lowerCAmelCase_ = (left + right) >> 1 # the middle lowerCAmelCase_ = find_max(__a , __a , __a ) # find max in range[left, mid] lowerCAmelCase_ = find_max(__a , mid + 1 , __a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A(__a: Dict ): lowerCAmelCase_ , lowerCAmelCase_ = image.size lowerCAmelCase_ , lowerCAmelCase_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase_ = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) lowerCAmelCase_ = np.array(__a ).astype(np.floataa ) / 255.0 lowerCAmelCase_ = image[None].transpose(0 , 3 , 1 , 2 ) lowerCAmelCase_ = torch.from_numpy(__a ) return 2.0 * image - 1.0 class __magic_name__ (__lowercase ): def __init__( self , _a , _a , _a , ) -> int: super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(_a , PIL.Image.Image ): lowerCAmelCase_ = 1 elif isinstance(_a , torch.Tensor ): lowerCAmelCase_ = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}" ) if isinstance(_a , PIL.Image.Image ): lowerCAmelCase_ = preprocess(_a ) lowerCAmelCase_ , lowerCAmelCase_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase_ = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase_ = next(self.unet.parameters() ).dtype lowerCAmelCase_ = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) lowerCAmelCase_ = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) lowerCAmelCase_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase_ = {} if accepts_eta: lowerCAmelCase_ = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase_ = torch.cat([latents, image] , dim=1 ) lowerCAmelCase_ = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual lowerCAmelCase_ = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase_ = self.vqvae.decode(_a ).sample lowerCAmelCase_ = torch.clamp(_a , -1.0 , 1.0 ) lowerCAmelCase_ = image / 2 + 0.5 lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''pixel_values'''] def __init__( self , _a = True , _a = None , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) lowerCAmelCase_ = size if size is not None else {"shortest_edge": 384} lowerCAmelCase_ = get_size_dict(_a , default_to_square=_a ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None lowerCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , _a , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" ) lowerCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCAmelCase_ = int(shortest_edge / crop_pct ) lowerCAmelCase_ = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) lowerCAmelCase_ = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a ) def __a ( self , _a , _a , _a = None , **_a , ) -> Any: return rescale(_a , scale=_a , data_format=_a , **_a ) def __a ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __a ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_a , default_to_square=_a ) lowerCAmelCase_ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(_a ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(_a , _a ) for image in images] lowerCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a )
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
def A(__a: float ): if edge <= 0 or not isinstance(__a , __a ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def A(__a: float ): if edge <= 0 or not isinstance(__a , __a ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase__ = parse(importlib.metadata.version('''torch''')) def A(__a: Union[str, Version] , __a: str , __a: str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) lowerCAmelCase_ = STR_OPERATION_TO_FUNC[operation] if isinstance(__a , __a ): lowerCAmelCase_ = parse(importlib.metadata.version(__a ) ) return operation(__a , parse(__a ) ) def A(__a: str , __a: str ): return compare_versions(__a , __a , __a )
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __magic_name__ (__lowercase ): def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Any: super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) lowerCAmelCase_ = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits lowerCAmelCase_ = self.builder.as_dataset( split="train" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class __magic_name__ : def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> List[str]: if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) lowerCAmelCase_ = dataset lowerCAmelCase_ = name lowerCAmelCase_ = con lowerCAmelCase_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCAmelCase_ = num_proc lowerCAmelCase_ = to_sql_kwargs def __a ( self ) -> int: lowerCAmelCase_ = self.to_sql_kwargs.pop("sql" , _a ) lowerCAmelCase_ = self.to_sql_kwargs.pop("con" , _a ) lowerCAmelCase_ = self.to_sql_kwargs.pop("index" , _a ) lowerCAmelCase_ = self._write(index=_a , **self.to_sql_kwargs ) return written def __a ( self , _a ) -> Optional[int]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = args lowerCAmelCase_ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs lowerCAmelCase_ = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCAmelCase_ = batch.to_pandas() lowerCAmelCase_ = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def __a ( self , _a , **_a ) -> int: lowerCAmelCase_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: lowerCAmelCase_ , lowerCAmelCase_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = StableDiffusionDiffEditPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} lowerCamelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase__ = frozenset([] ) def __a ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) lowerCAmelCase_ = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_zero=_a , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCAmelCase_ = CLIPTextModel(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __a ( self , _a , _a=0 ) -> Union[str, Any]: lowerCAmelCase_ = floats_tensor((1, 16, 16) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self , _a , _a=0 ) -> Any: lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(_a ) ).convert("RGB" ) if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self , _a , _a=0 ) -> Any: lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(_a ) ).convert("RGB" ) if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def __a ( self ) -> str: if not hasattr(self.pipeline_class , "_optional_components" ): return lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_a , _a , _a ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) lowerCAmelCase_ = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_a , _a ) is None , f"`{optional_component}` did not stay set to None after loading." , ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = pipe_loaded(**_a )[0] lowerCAmelCase_ = np.abs(output - output_loaded ).max() self.assertLess(_a , 1E-4 ) def __a ( self ) -> Any: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_mask_inputs(_a ) lowerCAmelCase_ = pipe.generate_mask(**_a ) lowerCAmelCase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase_ = np.array([0] * 9 ) lowerCAmelCase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inversion_inputs(_a ) lowerCAmelCase_ = pipe.invert(**_a ).images lowerCAmelCase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) def __a ( self ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = {"beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "beta_schedule": "scaled_linear"} lowerCAmelCase_ = DPMSolverMultistepScheduler(**_a ) lowerCAmelCase_ = DPMSolverMultistepInverseScheduler(**_a ) lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inversion_inputs(_a ) lowerCAmelCase_ = pipe.invert(**_a ).images lowerCAmelCase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) @require_torch_gpu @slow class _UpperCAmelCase (unittest.TestCase ): def __a ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __a ( cls ) -> Optional[int]: lowerCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) lowerCAmelCase_ = raw_image.convert("RGB" ).resize((768, 768) ) lowerCAmelCase_ = raw_image def __a ( self ) -> int: lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=_a , torch_dtype=torch.floataa ) lowerCAmelCase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "a bowl of fruit" lowerCAmelCase_ = "a bowl of pears" lowerCAmelCase_ = pipe.generate_mask( image=self.raw_image , source_prompt=_a , target_prompt=_a , generator=_a , ) lowerCAmelCase_ = pipe.invert( prompt=_a , image=self.raw_image , inpaint_strength=0.7 , generator=_a ).latents lowerCAmelCase_ = pipe( prompt=_a , mask_image=_a , image_latents=_a , generator=_a , negative_prompt=_a , inpaint_strength=0.7 , output_type="numpy" , ).images[0] lowerCAmelCase_ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __a ( self ) -> Optional[int]: lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=_a , torch_dtype=torch.floataa ) lowerCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "a bowl of fruit" lowerCAmelCase_ = "a bowl of pears" lowerCAmelCase_ = pipe.generate_mask( image=self.raw_image , source_prompt=_a , target_prompt=_a , generator=_a , ) lowerCAmelCase_ = pipe.invert( prompt=_a , image=self.raw_image , inpaint_strength=0.7 , generator=_a , num_inference_steps=25 , ).latents lowerCAmelCase_ = pipe( prompt=_a , mask_image=_a , image_latents=_a , generator=_a , negative_prompt=_a , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] lowerCAmelCase_ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _a = TypeVar('T') _a = TypeVar('U') class A_ (Generic[T, U] ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = key UpperCAmelCase_ : Union[str, Any] = val UpperCAmelCase_ : DoubleLinkedListNode[T, U] | None = None UpperCAmelCase_ : DoubleLinkedListNode[T, U] | None = None def __repr__( self ): """simple docstring""" return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class A_ (Generic[T, U] ): '''simple docstring''' def __init__( self ): """simple docstring""" UpperCAmelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_ , lowercase_ ) UpperCAmelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_ , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.rear, self.head def __repr__( self ): """simple docstring""" UpperCAmelCase_ : Dict = ["DoubleLinkedList"] UpperCAmelCase_ : Union[str, Any] = self.head while node.next is not None: rep.append(str(lowercase_ ) ) UpperCAmelCase_ : str = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCAmelCase_ : str = node UpperCAmelCase_ : Tuple = previous UpperCAmelCase_ : List[str] = node UpperCAmelCase_ : Tuple = self.rear def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if node.prev is None or node.next is None: return None UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Dict = node.prev UpperCAmelCase_ : Any = None UpperCAmelCase_ : str = None return node class A_ (Generic[T, U] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : DoubleLinkedList[T, U] = DoubleLinkedList() UpperCAmelCase_ : List[str] = capacity UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ): """simple docstring""" return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , lowercase_ ): """simple docstring""" return key in self.cache def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 UpperCAmelCase_ : DoubleLinkedListNode[T, U] = self.cache[key] UpperCAmelCase_ : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_ ) return node.val self.miss += 1 return None def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCAmelCase_ : List[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCAmelCase_ : Optional[int] = DoubleLinkedListNode(lowercase_ , lowercase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCAmelCase_ : int = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCAmelCase_ : Dict = value self.list.add(lowercase_ ) @classmethod def UpperCamelCase__ ( cls , lowercase_ = 128 ): """simple docstring""" def cache_decorator_inner(lowercase_ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase_ ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCAmelCase_ : str = LRUCache(lowercase_ ) UpperCAmelCase_ : Dict = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCAmelCase_ : Optional[int] = func(*lowercase_ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_ , "cache_info" , lowercase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
1
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCAmelCase_ : List[Any] = mf_knapsack(i - 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: UpperCAmelCase_ : List[str] = max( mf_knapsack(i - 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), mf_knapsack(i - 1, __lowerCamelCase, __lowerCamelCase, j - wt[i - 1] ) + val[i - 1], ) UpperCAmelCase_ : Optional[int] = val return f[i][j] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1, n + 1 ): for w_ in range(1, w + 1 ): if wt[i - 1] <= w_: UpperCAmelCase_ : str = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] ) else: UpperCAmelCase_ : Optional[Any] = dp[i - 1][w_] return dp[n][w_], dp def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if not (isinstance(__lowerCamelCase, (list, tuple) ) and isinstance(__lowerCamelCase, (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) UpperCAmelCase_ : int = len(__lowerCamelCase ) if num_items != len(__lowerCamelCase ): UpperCAmelCase_ : str = ( "The number of weights must be the same as the number of values.\n" f"""But got {num_items} weights and {len(__lowerCamelCase )} values""" ) raise ValueError(__lowerCamelCase ) for i in range(__lowerCamelCase ): if not isinstance(wt[i], __lowerCamelCase ): UpperCAmelCase_ : Tuple = ( "All weights must be integers but got weight of " f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(__lowerCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = knapsack(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : set = set() _construct_solution(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) return optimal_val, example_optional_set def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__lowerCamelCase, __lowerCamelCase, i - 1, __lowerCamelCase, __lowerCamelCase ) else: optimal_set.add(__lowerCamelCase ) _construct_solution(__lowerCamelCase, __lowerCamelCase, i - 1, j - wt[i - 1], __lowerCamelCase ) if __name__ == "__main__": _a = [3, 2, 4, 4] _a = [4, 3, 2, 3] _a = 4 _a = 6 _a = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _a , _a = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _a , _a = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
23
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
1
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _a = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] _a = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = ' Hello world! cécé herlolip' _a = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = val def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = torch.load(__lowerCamelCase, map_location="cpu" ) UpperCAmelCase_ : Dict = torch.hub.load("pytorch/fairseq", "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def __a ( __lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = emb.weight.shape UpperCAmelCase_ : Dict = nn.Linear(__lowerCamelCase, __lowerCamelCase, bias=__lowerCamelCase ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): if not os.path.exists(__lowerCamelCase ): UpperCAmelCase_ : Optional[int] = torch.hub.load("pytorch/fairseq", __lowerCamelCase ).eval() else: UpperCAmelCase_ : str = load_xsum_checkpoint(__lowerCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCAmelCase_ : Optional[Any] = checkpoint_path.replace(".", "-" ) UpperCAmelCase_ : int = BartConfig.from_pretrained(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = bart.encode(__lowerCamelCase ).unsqueeze(0 ) UpperCAmelCase_ : Optional[int] = BartTokenizer.from_pretrained(__lowerCamelCase ).encode(__lowerCamelCase, return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__lowerCamelCase, __lowerCamelCase ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCAmelCase_ : Optional[int] = bart.state_dict() remove_ignore_keys_(__lowerCamelCase ) UpperCAmelCase_ : Any = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Any = BartForSequenceClassification(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = bart.predict("mnli", __lowerCamelCase, return_logits=__lowerCamelCase ) UpperCAmelCase_ : Any = model(__lowerCamelCase )[0] # logits else: # no classification heads to worry about UpperCAmelCase_ : Tuple = bart.model.state_dict() remove_ignore_keys_(__lowerCamelCase ) UpperCAmelCase_ : Dict = state_dict["decoder.embed_tokens.weight"] UpperCAmelCase_ : Optional[Any] = bart.extract_features(__lowerCamelCase ) if hf_checkpoint_name == "facebook/bart-large": UpperCAmelCase_ : Optional[int] = BartModel(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ).model[0] else: UpperCAmelCase_ : Tuple = BartForConditionalGeneration(__lowerCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(__lowerCamelCase ) if hasattr(__lowerCamelCase, "lm_head" ): UpperCAmelCase_ : int = make_linear_from_emb(model.model.shared ) UpperCAmelCase_ : Dict = model.model(__lowerCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) _a = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
1
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [] for part_id in partition_order: UpperCAmelCase_ : int = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__lowerCamelCase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : List[str] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : Union[str, Any] = spark.range(100 ).repartition(1 ) UpperCAmelCase_ : Union[str, Any] = Spark(__lowerCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : Union[str, Any] = spark.range(10 ).repartition(2 ) UpperCAmelCase_ : List[Any] = [1, 0] UpperCAmelCase_ : Optional[Any] = _generate_iterable_examples(__lowerCamelCase, __lowerCamelCase ) # Reverse the partitions. UpperCAmelCase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase, __lowerCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : List[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : str = spark.range(10 ).repartition(1 ) UpperCAmelCase_ : Any = SparkExamplesIterable(__lowerCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : str = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : List[str] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: UpperCAmelCase_ : Any = lambda __lowerCamelCase : x.reverse() UpperCAmelCase_ : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase, [2, 1, 0] ) UpperCAmelCase_ : Optional[int] = SparkExamplesIterable(__lowerCamelCase ).shuffle_data_sources(__lowerCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : Union[str, Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase_ : List[Any] = SparkExamplesIterable(__lowerCamelCase ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase, [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase_ : List[Any] = SparkExamplesIterable(__lowerCamelCase ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase_ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase, [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : List[str] = spark.range(100 ).repartition(1 ) UpperCAmelCase_ : List[str] = Spark(__lowerCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
23
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
1
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : List[str] = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : Dict = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = (1 - _cos) / 2 UpperCAmelCase_ : Optional[Any] = 1 - _cos UpperCAmelCase_ : Tuple = 1 + alpha UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Optional[Any] = tau * frequency / samplerate UpperCAmelCase_ : List[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : Tuple = cos(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Tuple = (1 + _cos) / 2 UpperCAmelCase_ : Optional[Any] = -1 - _cos UpperCAmelCase_ : Dict = 1 + alpha UpperCAmelCase_ : Tuple = -2 * _cos UpperCAmelCase_ : Union[str, Any] = 1 - alpha UpperCAmelCase_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : List[str] = sin(__lowerCamelCase ) UpperCAmelCase_ : str = cos(__lowerCamelCase ) UpperCAmelCase_ : Dict = _sin / (2 * q_factor) UpperCAmelCase_ : str = _sin / 2 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : int = -ba UpperCAmelCase_ : int = 1 + alpha UpperCAmelCase_ : Tuple = -2 * _cos UpperCAmelCase_ : str = 1 - alpha UpperCAmelCase_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : Any = sin(__lowerCamelCase ) UpperCAmelCase_ : int = cos(__lowerCamelCase ) UpperCAmelCase_ : Any = _sin / (2 * q_factor) UpperCAmelCase_ : Any = 1 - alpha UpperCAmelCase_ : Union[str, Any] = -2 * _cos UpperCAmelCase_ : Dict = 1 + alpha UpperCAmelCase_ : int = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : Optional[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : str = 1 + alpha * big_a UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Optional[Any] = 1 - alpha * big_a UpperCAmelCase_ : List[str] = 1 + alpha / big_a UpperCAmelCase_ : List[Any] = -2 * _cos UpperCAmelCase_ : Optional[int] = 1 - alpha / big_a UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Optional[Any] = tau * frequency / samplerate UpperCAmelCase_ : Optional[int] = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Tuple = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : str = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Dict = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : List[str] = big_a * (pmc + aaa) UpperCAmelCase_ : Any = 2 * big_a * mpc UpperCAmelCase_ : List[str] = big_a * (pmc - aaa) UpperCAmelCase_ : Dict = ppmc + aaa UpperCAmelCase_ : Optional[Any] = -2 * pmpc UpperCAmelCase_ : Union[str, Any] = ppmc - aaa UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Optional[int] = tau * frequency / samplerate UpperCAmelCase_ : List[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = cos(__lowerCamelCase ) UpperCAmelCase_ : str = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Any = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Optional[int] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Any = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : int = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : Dict = big_a * (ppmc + aaa) UpperCAmelCase_ : Optional[int] = -2 * big_a * pmpc UpperCAmelCase_ : Union[str, Any] = big_a * (ppmc - aaa) UpperCAmelCase_ : Optional[Any] = pmc + aaa UpperCAmelCase_ : Any = 2 * mpc UpperCAmelCase_ : List[str] = pmc - aaa UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt
23
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
1
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(__lowerCamelCase ) * abs(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = int(number**0.5 ) return number == sq * sq def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ : int = x_den * y_den * z_den UpperCAmelCase_ : int = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __a ( __lowerCamelCase = 35 ): UpperCAmelCase_ : set = set() UpperCAmelCase_ : int UpperCAmelCase_ : Fraction = Fraction(0 ) UpperCAmelCase_ : tuple[int, int] for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 UpperCAmelCase_ : Union[str, Any] = x_num * y_den + x_den * y_num UpperCAmelCase_ : List[str] = x_den * y_den UpperCAmelCase_ : Tuple = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Union[str, Any] = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 UpperCAmelCase_ : Union[str, Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ : int = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): UpperCAmelCase_ : List[Any] = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase_ : Tuple = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Tuple = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 UpperCAmelCase_ : Any = x_num * y_num UpperCAmelCase_ : Dict = x_den * y_num + x_num * y_den UpperCAmelCase_ : Any = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : List[Any] = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 UpperCAmelCase_ : Optional[Any] = x_num * x_num * y_num * y_num UpperCAmelCase_ : Union[str, Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): UpperCAmelCase_ : Tuple = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase_ : List[Any] = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase_ : List[Any] = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : List[str] = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
23
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = XLMProphetNetTokenizer SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : Optional[int] = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "[PAD]" UpperCAmelCase_ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase_ ) , 1012 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_ ) UpperCAmelCase_ : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ : Dict = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = "Hello World!" UpperCAmelCase_ : Optional[Any] = [3_5389, 6672, 49, 2] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # fmt: off UpperCAmelCase_ : Union[str, Any] = {"input_ids": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
23
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=2 , lowercase_=8 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=16 , lowercase_=5 , lowercase_=2 , lowercase_=36 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : int = use_input_mask UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Dict = num_choices UpperCAmelCase_ : Optional[int] = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.get_config() UpperCAmelCase_ : Optional[Any] = 300 return config def UpperCamelCase__ ( self ): """simple docstring""" ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = MraModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : int = model(lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : str = True UpperCAmelCase_ : List[str] = MraModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : int = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) UpperCAmelCase_ : List[Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , encoder_hidden_states=lowercase_ , ) UpperCAmelCase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = MraForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MraForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Optional[Any] = MraForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : List[Any] = MraForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = self.num_choices UpperCAmelCase_ : Dict = MraForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Optional[int] = () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MraModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : List[Any] = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = MraModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason="MRA does not output attentions" ) def UpperCamelCase__ ( self ): """simple docstring""" return @require_torch class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowercase_ )[0] UpperCAmelCase_ : Dict = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : Optional[Any] = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowercase_ )[0] UpperCAmelCase_ : Optional[int] = 5_0265 UpperCAmelCase_ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : int = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) UpperCAmelCase_ : Optional[int] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(lowercase_ )[0] UpperCAmelCase_ : List[str] = 5_0265 UpperCAmelCase_ : Any = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : List[str] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
1
"""simple docstring""" import argparse import json import subprocess def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Optional[Any] = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCAmelCase_ : str = subprocess.run(__lowerCamelCase, shell=__lowerCamelCase, stdout=subprocess.PIPE ) UpperCAmelCase_ : Any = output.stdout.decode("utf-8" ) UpperCAmelCase_ : Dict = json.loads(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__lowerCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt", "w" ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : str = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __a ( __lowerCamelCase ): return values.split("," ) _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a = parser.parse_args() get_runner_status(args.target_runners, args.token)
23
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = {} with open(__lowerCamelCase, "r" ) as file: for line_number, line in enumerate(__lowerCamelCase ): UpperCAmelCase_ : str = line.strip() if line: UpperCAmelCase_ : Tuple = line.split() UpperCAmelCase_ : int = line_number UpperCAmelCase_ : List[Any] = words[0] UpperCAmelCase_ : List[str] = value return result def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for attribute in key.split("." ): UpperCAmelCase_ : Union[str, Any] = getattr(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): UpperCAmelCase_ : Optional[int] = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase_ : str = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase_ : List[Any] = getattr(__lowerCamelCase, __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase_ : str = hf_pointer for attribute in hf_param_name.split("." ): UpperCAmelCase_ : List[Any] = getattr(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[str] = shape_pointer.shape # let's reduce dimension UpperCAmelCase_ : Tuple = value[0] else: UpperCAmelCase_ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ : List[str] = value elif weight_type == "weight_g": UpperCAmelCase_ : int = value elif weight_type == "weight_v": UpperCAmelCase_ : Any = value elif weight_type == "bias": UpperCAmelCase_ : Optional[int] = value elif weight_type == "param": for attribute in hf_param_name.split("." ): UpperCAmelCase_ : int = getattr(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Tuple = value else: UpperCAmelCase_ : Union[str, Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase_ : List[str] = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase_ : List[Any] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase_ : Union[str, Any] = ".".join([key, hf_param_name] ) else: UpperCAmelCase_ : int = key UpperCAmelCase_ : Union[str, Any] = value if "lm_head" in full_key else value[0] _a = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None ): UpperCAmelCase_ : Any = False for key, mapped_key in MAPPING.items(): UpperCAmelCase_ : Union[str, Any] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ : Dict = True if "*" in mapped_key: UpperCAmelCase_ : int = name.split(__lowerCamelCase )[0].split("." )[-2] UpperCAmelCase_ : List[str] = mapped_key.replace("*", __lowerCamelCase ) if "weight_g" in name: UpperCAmelCase_ : Optional[Any] = "weight_g" elif "weight_v" in name: UpperCAmelCase_ : int = "weight_v" elif "bias" in name: UpperCAmelCase_ : Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ : List[Any] = "weight" else: UpperCAmelCase_ : Tuple = None if hf_dict is not None: rename_dict(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: set_recursively(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) return is_used return is_used def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[int] = fairseq_model.state_dict() UpperCAmelCase_ : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ : int = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase_ : Any = True else: UpperCAmelCase_ : List[Any] = load_wavaveca_layer(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = full_name.split("conv_layers." )[-1] UpperCAmelCase_ : Optional[Any] = name.split("." ) UpperCAmelCase_ : Any = int(items[0] ) UpperCAmelCase_ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=True, __lowerCamelCase=False ): if config_path is not None: UpperCAmelCase_ : str = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase_ : str = WavaVecaConfig() if is_seq_class: UpperCAmelCase_ : Dict = read_txt_into_dict(__lowerCamelCase ) UpperCAmelCase_ : Dict = idalabel UpperCAmelCase_ : str = WavaVecaForSequenceClassification(__lowerCamelCase ) UpperCAmelCase_ : List[str] = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=__lowerCamelCase, return_attention_mask=__lowerCamelCase, ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: UpperCAmelCase_ : str = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ : Any = target_dict.pad_index UpperCAmelCase_ : Any = target_dict.bos_index UpperCAmelCase_ : Optional[int] = target_dict.eos_index UpperCAmelCase_ : str = len(target_dict.symbols ) UpperCAmelCase_ : Tuple = os.path.join(__lowerCamelCase, "vocab.json" ) if not os.path.isdir(__lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) UpperCAmelCase_ : Any = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Dict = 1 with open(__lowerCamelCase, "w", encoding="utf-8" ) as vocab_handle: json.dump(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = WavaVecaCTCTokenizer( __lowerCamelCase, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=__lowerCamelCase, ) UpperCAmelCase_ : List[str] = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=__lowerCamelCase, return_attention_mask=__lowerCamelCase, ) UpperCAmelCase_ : Tuple = WavaVecaProcessor(feature_extractor=__lowerCamelCase, tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) UpperCAmelCase_ : Dict = WavaVecaForCTC(__lowerCamelCase ) else: UpperCAmelCase_ : Optional[Any] = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ : List[str] = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ : Optional[int] = fairseq.tasks.setup_task(__lowerCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = model[0].eval() recursively_load_weights(__lowerCamelCase, __lowerCamelCase, not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _a = parser.parse_args() _a = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
1
"""simple docstring""" def __a ( __lowerCamelCase ): if len(__lowerCamelCase ) <= 1: return [tuple(__lowerCamelCase )] UpperCAmelCase_ : Any = [] def generate(__lowerCamelCase, __lowerCamelCase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1, __lowerCamelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = arr[k - 1], arr[i] else: # k is odd UpperCAmelCase_ , UpperCAmelCase_ : int = arr[k - 1], arr[0] generate(k - 1, __lowerCamelCase ) generate(len(__lowerCamelCase ), __lowerCamelCase ) return res if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(heaps(arr))
23
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
23
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
1
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = MobileBertTokenizer SCREAMING_SNAKE_CASE__ : int = MobileBertTokenizerFast SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Dict = filter_non_english SCREAMING_SNAKE_CASE__ : Dict = """google/mobilebert-uncased""" def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() UpperCAmelCase_ : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ : Optional[int] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "UNwant\u00E9d,running" UpperCAmelCase_ : List[str] = "unwanted, running" return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowercase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Dict = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = "UNwant\u00E9d,running" UpperCAmelCase_ : Any = tokenizer.tokenize(lowercase_ ) UpperCAmelCase_ : List[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Optional[int] = tokenizer.encode(lowercase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # With lower casing UpperCAmelCase_ : Optional[int] = self.get_tokenizer(do_lower_case=lowercase_ ) UpperCAmelCase_ : List[Any] = self.get_rust_tokenizer(do_lower_case=lowercase_ ) UpperCAmelCase_ : Tuple = "UNwant\u00E9d,running" UpperCAmelCase_ : int = tokenizer.tokenize(lowercase_ ) UpperCAmelCase_ : int = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = self.get_rust_tokenizer() UpperCAmelCase_ : List[Any] = tokenizer.encode(lowercase_ ) UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=lowercase_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ : List[str] = {} for i, token in enumerate(lowercase_ ): UpperCAmelCase_ : Optional[Any] = i UpperCAmelCase_ : List[str] = WordpieceTokenizer(vocab=lowercase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) UpperCAmelCase_ : str = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ : Optional[Any] = tokenizer_r.encode_plus( lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ , ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(lowercase_ , "do_lower_case" ) else False UpperCAmelCase_ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = ["的", "人", "有"] UpperCAmelCase_ : Any = "".join(lowercase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(lowercase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Dict = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : List[str] = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : str = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer_r.convert_ids_to_tokens(lowercase_ ) UpperCAmelCase_ : int = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ : Any = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase_ ) ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
23
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
1
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) _a = parser.parse_args() _a = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
23
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _a = logging.get_logger(__name__) _a = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _a = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _a = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _a = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _a = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _a = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _a = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _a = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _a = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _a = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _a = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _a = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _a = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _a = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = FLAX_MODEL_MAPPING _a = auto_class_update(FlaxAutoModel) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_PRETRAINING_MAPPING _a = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _a = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_MASKED_LM_MAPPING _a = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _a = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _a = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _a = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _a = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _a = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
23
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _a = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __a ( __lowerCamelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return max(metric_fn(__lowerCamelCase, __lowerCamelCase ) for gt in ground_truths ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : int = [] if args.gold_data_mode == "qa": UpperCAmelCase_ : str = pd.read_csv(__lowerCamelCase, sep="\t", header=__lowerCamelCase ) for answer_list in data[1]: UpperCAmelCase_ : int = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: UpperCAmelCase_ : Tuple = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Optional[int] = [[reference] for reference in references] UpperCAmelCase_ : List[str] = 0 for prediction, ground_truths in zip(__lowerCamelCase, __lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = 100.0 * em / total UpperCAmelCase_ : Dict = 100.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = args.k UpperCAmelCase_ : str = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : int = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Union[str, Any] = 0 for hypo, reference in zip(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = set(hypo.split("\t" )[:k] ) UpperCAmelCase_ : Optional[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase_ : Optional[Any] = 100.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): def strip_title(__lowerCamelCase ): if title.startswith("\"" ): UpperCAmelCase_ : Union[str, Any] = title[1:] if title.endswith("\"" ): UpperCAmelCase_ : List[str] = title[:-1] return title UpperCAmelCase_ : Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase, )["input_ids"].to(args.device ) UpperCAmelCase_ : Optional[int] = rag_model.rag.question_encoder(__lowerCamelCase ) UpperCAmelCase_ : Dict = question_enc_outputs[0] UpperCAmelCase_ : str = rag_model.retriever( __lowerCamelCase, question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) UpperCAmelCase_ : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase_ : Tuple = [] for docs in all_docs: UpperCAmelCase_ : Optional[int] = [strip_title(__lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__lowerCamelCase ) ) return provenance_strings def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with torch.no_grad(): UpperCAmelCase_ : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase ) UpperCAmelCase_ : Tuple = inputs_dict.input_ids.to(args.device ) UpperCAmelCase_ : Any = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase_ : Any = rag_model.generate( # rag_model overwrites generate __lowerCamelCase, attention_mask=__lowerCamelCase, num_beams=args.num_beams, min_length=args.min_length, max_length=args.max_length, early_stopping=__lowerCamelCase, num_return_sequences=1, bad_words_ids=[[0, 0]], ) UpperCAmelCase_ : Tuple = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase, skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase, __lowerCamelCase ): logger.info("Q: {} - A: {}".format(__lowerCamelCase, __lowerCamelCase ) ) return answers def __a ( ): UpperCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart"], type=__lowerCamelCase, help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--index_name", default=__lowerCamelCase, choices=["exact", "compressed", "legacy"], type=__lowerCamelCase, help="RAG model retriever type", ) parser.add_argument( "--index_path", default=__lowerCamelCase, type=__lowerCamelCase, help="Path to the retrieval index", ) parser.add_argument("--n_docs", default=5, type=__lowerCamelCase, help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to pretrained checkpoints or model identifier from huggingface.co/models", ) parser.add_argument( "--eval_mode", choices=["e2e", "retrieval"], default="e2e", type=__lowerCamelCase, help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ), ) parser.add_argument("--k", default=1, type=__lowerCamelCase, help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a file containing evaluation samples", ) parser.add_argument( "--gold_data_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a tab-separated file with gold samples", ) parser.add_argument( "--gold_data_mode", default="qa", type=__lowerCamelCase, choices=["qa", "ans"], help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ), ) parser.add_argument( "--predictions_path", type=__lowerCamelCase, default="predictions.txt", help="Name of the predictions file, to be stored in the checkpoints directory", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--eval_batch_size", default=8, type=__lowerCamelCase, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--recalculate", help="Recalculate predictions even if the prediction file exists", action="store_true", ) parser.add_argument( "--num_beams", default=4, type=__lowerCamelCase, help="Number of beams to be used when generating answers", ) parser.add_argument("--min_length", default=1, type=__lowerCamelCase, help="Min length of the generated answers" ) parser.add_argument("--max_length", default=50, type=__lowerCamelCase, help="Max length of the generated answers" ) parser.add_argument( "--print_predictions", action="store_true", help="If True, prints predictions while evaluating.", ) parser.add_argument( "--print_docs", action="store_true", help="If True, prints docs retried while generating.", ) UpperCAmelCase_ : List[str] = parser.parse_args() UpperCAmelCase_ : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = {} if args.model_type is None: UpperCAmelCase_ : Union[str, Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCAmelCase_ : List[Any] = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCAmelCase_ : str = args.n_docs if args.index_name is not None: UpperCAmelCase_ : Optional[Any] = args.index_name if args.index_path is not None: UpperCAmelCase_ : Dict = args.index_path else: UpperCAmelCase_ : Tuple = BartForConditionalGeneration UpperCAmelCase_ : List[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s", __lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCAmelCase_ : Tuple = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__lowerCamelCase ) ) logger.info(" Batch size = %d", args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCAmelCase_ : Union[str, Any] = RagRetriever.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) UpperCAmelCase_ : Any = model_class.from_pretrained(__lowerCamelCase, retriever=__lowerCamelCase, **__lowerCamelCase ) model.retriever.init_retrieval() else: UpperCAmelCase_ : int = model_class.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set, "r" ) as eval_file, open(args.predictions_path, "w" ) as preds_file: UpperCAmelCase_ : List[Any] = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: UpperCAmelCase_ : Optional[int] = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) + "\n" ) preds_file.flush() UpperCAmelCase_ : List[str] = [] if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : List[Any] = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) if __name__ == "__main__": _a = get_args() main(args)
23
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : UNetaDModel SCREAMING_SNAKE_CASE__ : ScoreSdeVeScheduler def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = 2000 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.unet.config.sample_size UpperCAmelCase_ : Tuple = (batch_size, 3, img_size, img_size) UpperCAmelCase_ : List[Any] = self.unet UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ ) * self.scheduler.init_noise_sigma UpperCAmelCase_ : List[str] = sample.to(self.device ) self.scheduler.set_timesteps(lowercase_ ) self.scheduler.set_sigmas(lowercase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase_ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase_ : Union[str, Any] = self.unet(lowercase_ , lowercase_ ).sample UpperCAmelCase_ : str = self.scheduler.step_correct(lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # prediction step UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ).sample UpperCAmelCase_ : int = self.scheduler.step_pred(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase_ : str = sample_mean.clamp(0 , 1 ) UpperCAmelCase_ : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase_ )
23
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
1
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=False , lowercase_=True , lowercase_="None" , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Optional[Any] = use_token_type_ids UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : int = relative_attention UpperCAmelCase_ : str = position_biased_input UpperCAmelCase_ : Tuple = pos_att_type UpperCAmelCase_ : Union[str, Any] = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = None if self.use_input_mask: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = DebertaVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase_ : Union[str, Any] = model(lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase_ : List[str] = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = DebertaVaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : List[str] = DebertaVaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.num_labels UpperCAmelCase_ : str = DebertaVaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = DebertaVaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = DebertaVaForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : List[str] = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Optional[int] = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = DebertaVaModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = DebertaVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCAmelCase_ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase_ : str = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
23
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure)
23
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
1
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = "hf-internal-testing/tiny-random-t5" UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase_ ) UpperCAmelCase_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(lowercase_ ) UpperCAmelCase_ : List[Any] = tokenizer("This is me" , return_tensors="pt" ) UpperCAmelCase_ : List[Any] = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase_ : Dict = model.generate(**lowercase_ ) UpperCAmelCase_ : Union[str, Any] = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) UpperCAmelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase_ ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase_ : Tuple = model_reloaded.generate(**lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = "hf-internal-testing/tiny-random-t5" UpperCAmelCase_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowercase_ ): model.save_pretrained(lowercase_ ) UpperCAmelCase_ : Optional[int] = model.reverse_bettertransformer() model.save_pretrained(lowercase_ )
23
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
1
"""simple docstring""" from __future__ import annotations def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( __lowerCamelCase, nominal_annual_percentage_rate / 365, number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
1
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _a = 'src/transformers' _a = 'docs/source/en/tasks' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() # Find the start prompt. UpperCAmelCase_ : Optional[int] = 0 while not lines[start_index].startswith(__lowerCamelCase ): start_index += 1 start_index += 1 UpperCAmelCase_ : str = start_index while not lines[end_index].startswith(__lowerCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _a = direct_transformers_import(TRANSFORMERS_PATH) _a = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _a = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCAmelCase_ : Optional[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowerCamelCase, set() ) UpperCAmelCase_ : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = _find_text_in_file( filename=os.path.join(__lowerCamelCase, __lowerCamelCase ), start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->", end_prompt="<!--End of the generated tip-->", ) UpperCAmelCase_ : Any = get_model_list_for_task(__lowerCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _a = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] )
23
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
1
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = None ): UpperCAmelCase_ : List[Any] = tesseract_config if tesseract_config is not None else "" # apply OCR UpperCAmelCase_ : Optional[Any] = to_pil_image(__lowerCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = pil_image.size UpperCAmelCase_ : Any = pytesseract.image_to_data(__lowerCamelCase, lang=__lowerCamelCase, output_type="dict", config=__lowerCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates UpperCAmelCase_ : Optional[int] = [idx for idx, word in enumerate(__lowerCamelCase ) if not word.strip()] UpperCAmelCase_ : Union[str, Any] = [word for idx, word in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase_ : Union[str, Any] = [coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase_ : Optional[int] = [coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase_ : Dict = [coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase_ : Tuple = [coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase_ : int = [] for x, y, w, h in zip(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = [x, y, x + w, y + h] actual_boxes.append(__lowerCamelCase ) # finally, normalize the bounding boxes UpperCAmelCase_ : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""pixel_values"""] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = "" , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : Dict = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : Any = get_size_dict(lowercase_ ) UpperCAmelCase_ : List[Any] = do_resize UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : int = resample UpperCAmelCase_ : List[Any] = apply_ocr UpperCAmelCase_ : Tuple = ocr_lang UpperCAmelCase_ : Optional[Any] = tesseract_config def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCAmelCase_ : int = (size["height"], size["width"]) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Union[str, Any] = size if size is not None else self.size UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ ) UpperCAmelCase_ : int = resample if resample is not None else self.resample UpperCAmelCase_ : Dict = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase_ : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase_ : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase_ : List[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Tuple = [to_numpy_array(lowercase_ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[Any] = [] for image in images: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = apply_tesseract(lowercase_ , lowercase_ , lowercase_ ) words_batch.append(lowercase_ ) boxes_batch.append(lowercase_ ) if do_resize: UpperCAmelCase_ : Tuple = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCAmelCase_ : str = [flip_channel_order(lowercase_ ) for image in images] UpperCAmelCase_ : int = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase_ : List[Any] = BatchFeature(data={"pixel_values": images} , tensor_type=lowercase_ ) if apply_ocr: UpperCAmelCase_ : Any = words_batch UpperCAmelCase_ : Dict = boxes_batch return data
23
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = value UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = tree def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=10 , lowercase_=[10, 20, 30, 40] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Dict = embeddings_size UpperCAmelCase_ : Optional[int] = hidden_sizes UpperCAmelCase_ : int = depths UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : int = scope UpperCAmelCase_ : Union[str, Any] = len(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFResNetModel(config=lowercase_ ) UpperCAmelCase_ : Optional[Any] = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : List[Any] = TFResNetForImageClassification(lowercase_ ) UpperCAmelCase_ : List[str] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : List[str] = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : str = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = TFResNetModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) UpperCAmelCase_ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase_ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase_ : Union[str, Any] = model_class(lowercase_ ) UpperCAmelCase_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Tuple = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ : Dict = layer_type UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = TFResNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __a ( ): UpperCAmelCase_ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A_ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase_ : int = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : int = image_processor(images=lowercase_ , return_tensors="tf" ) # forward pass UpperCAmelCase_ : str = model(**lowercase_ ) # verify the logits UpperCAmelCase_ : List[str] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase_ : List[str] = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1E-4 ) )
23
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Optional[Any] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : int = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase_ : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Optional[int] = OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) UpperCAmelCase_ : Optional[int] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : str = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Optional[int] = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass UpperCAmelCase_ : int = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) UpperCAmelCase_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )["hidden_states"][0] UpperCAmelCase_ : List[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )["hidden_states"][0] # select random slice UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : int = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[int] = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Any = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : List[Any] = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = OpenLlamaModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Optional[Any] = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = 3 UpperCAmelCase_ : Optional[Any] = input_dict["input_ids"] UpperCAmelCase_ : Union[str, Any] = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : str = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : int = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : str = 3 UpperCAmelCase_ : str = "single_label_classification" UpperCAmelCase_ : Any = input_dict["input_ids"] UpperCAmelCase_ : int = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = 3 UpperCAmelCase_ : Union[str, Any] = "multi_label_classification" UpperCAmelCase_ : Dict = input_dict["input_ids"] UpperCAmelCase_ : Tuple = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : List[str] = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase_ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Union[str, Any] = OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() UpperCAmelCase_ : Optional[int] = original_model(lowercase_ ).last_hidden_state UpperCAmelCase_ : Optional[int] = original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Optional[int] = {"type": scaling_type, "factor": 10.0} UpperCAmelCase_ : List[Any] = OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() UpperCAmelCase_ : Tuple = scaled_model(lowercase_ ).last_hidden_state UpperCAmelCase_ : Any = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) )
23
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ : Dict = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ : str = 0.01 with locka.acquire(): with pytest.raises(__lowerCamelCase ): UpperCAmelCase_ : str = time.time() locka.acquire(__lowerCamelCase ) assert time.time() - _start > timeout def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = "a" * 1000 + ".lock" UpperCAmelCase_ : Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__lowerCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ : Tuple = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCamelCase ): locka.acquire(0 )
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
1
"""simple docstring""" _a = 8.31_4462 # Unit - J mol-1 K-1 def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
23
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } UpperCAmelCase_ : Optional[Any] = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(lowercase_ ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowercase_ ) , x.transpose() ) ) UpperCAmelCase_ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase_ : str = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ ) , transpose(lowercase_ ).numpy() ) ) UpperCAmelCase_ : str = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : List[Any] = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0) ) , transpose(lowercase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = np.random.randn(3 , 4 ) UpperCAmelCase_ : str = tf.constant(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ ) , transpose(lowercase_ ).numpy() ) ) UpperCAmelCase_ : int = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : List[Any] = tf.constant(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0) ) , transpose(lowercase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase_ : int = jnp.array(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ ) , np.asarray(transpose(lowercase_ ) ) ) ) UpperCAmelCase_ : str = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : int = jnp.array(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0) ) , np.asarray(transpose(lowercase_ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3) ) , np.reshape(lowercase_ , (4, 3) ) ) ) UpperCAmelCase_ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5) ) , np.reshape(lowercase_ , (12, 5) ) ) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase_ : str = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3) ) , reshape(lowercase_ , (4, 3) ).numpy() ) ) UpperCAmelCase_ : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : Dict = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5) ) , reshape(lowercase_ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = np.random.randn(3 , 4 ) UpperCAmelCase_ : Dict = tf.constant(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3) ) , reshape(lowercase_ , (4, 3) ).numpy() ) ) UpperCAmelCase_ : Optional[int] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : List[Any] = tf.constant(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5) ) , reshape(lowercase_ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase_ : Any = jnp.array(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3) ) , np.asarray(reshape(lowercase_ , (4, 3) ) ) ) ) UpperCAmelCase_ : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : Optional[int] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5) ) , np.asarray(reshape(lowercase_ , (12, 5) ) ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowercase_ ) , np.squeeze(lowercase_ ) ) ) UpperCAmelCase_ : List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2 ) , np.squeeze(lowercase_ , axis=2 ) ) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ : List[Any] = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ ) , squeeze(lowercase_ ).numpy() ) ) UpperCAmelCase_ : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ : Optional[int] = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2 ) , squeeze(lowercase_ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ : Optional[int] = tf.constant(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ ) , squeeze(lowercase_ ).numpy() ) ) UpperCAmelCase_ : Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ : Union[str, Any] = tf.constant(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2 ) , squeeze(lowercase_ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ : Optional[Any] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ ) , np.asarray(squeeze(lowercase_ ) ) ) ) UpperCAmelCase_ : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ : Optional[Any] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2 ) , np.asarray(squeeze(lowercase_ , axis=2 ) ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1 ) , np.expand_dims(lowercase_ , axis=1 ) ) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = np.random.randn(3 , 4 ) UpperCAmelCase_ : Tuple = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1 ) , expand_dims(lowercase_ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase_ : Optional[int] = tf.constant(lowercase_ ) self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1 ) , expand_dims(lowercase_ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = np.random.randn(3 , 4 ) UpperCAmelCase_ : str = jnp.array(lowercase_ ) self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1 ) , np.asarray(expand_dims(lowercase_ , axis=1 ) ) ) )
23
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
1
"""simple docstring""" from __future__ import annotations from typing import Any class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = num_of_nodes UpperCAmelCase_ : list[list[int]] = [] UpperCAmelCase_ : dict[int, int] = {} def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase_ : Optional[int] = self.find_component(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: UpperCAmelCase_ : Optional[Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_ ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase_ : Optional[Any] = self.find_component(lowercase_ ) component_size[u_node] += component_size[v_node] self.set_component(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase_ : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = edge UpperCAmelCase_ : Dict = self.m_component[u] UpperCAmelCase_ : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase_ : List[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = edge UpperCAmelCase_ : List[Any] = self.m_component[u] UpperCAmelCase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 UpperCAmelCase_ : List[Any] = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __a ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __a ( ): UpperCAmelCase_ : Union[str, Any] = HfArgumentParser(__lowerCamelCase ) UpperCAmelCase_ : Any = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Any = TensorFlowBenchmark(args=__lowerCamelCase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." UpperCAmelCase_ : List[str] = " ".join(str(__lowerCamelCase ).split(" " )[:-1] ) UpperCAmelCase_ : Optional[Any] = "" UpperCAmelCase_ : str = eval(str(__lowerCamelCase ).split(" " )[-1] ) UpperCAmelCase_ : Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : str = full_error_msg + begin_error_msg + str(__lowerCamelCase ) raise ValueError(__lowerCamelCase ) benchmark.run() if __name__ == "__main__": main()
23
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
1
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = 10 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = [1, 2, 3, 4] UpperCAmelCase_ : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = process_story(lowercase_ ) self.assertEqual(lowercase_ , [] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = process_story(lowercase_ ) self.assertEqual(lowercase_ , [] ) self.assertEqual(lowercase_ , [] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = process_story(lowercase_ ) UpperCAmelCase_ : str = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : str = ["It was the best of times."] self.assertEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase_ : List[str] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase_ , 0 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase_ : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase_ , 23 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase_ , 1 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = 101 UpperCAmelCase_ : Tuple = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase_ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase_ : Optional[int] = compute_token_type_ids(lowercase_ , lowercase_ ) np.testing.assert_array_equal(lowercase_ , lowercase_ )
23
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
1
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _a = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' _a = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' _a = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return float((preds == labels).mean() ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[str] = float(fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = np.array(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = np.array(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = en_sentvecs.shape[0] # mean centering UpperCAmelCase_ : Optional[int] = en_sentvecs - np.mean(__lowerCamelCase, axis=0 ) UpperCAmelCase_ : int = in_sentvecs - np.mean(__lowerCamelCase, axis=0 ) UpperCAmelCase_ : List[str] = cdist(__lowerCamelCase, __lowerCamelCase, "cosine" ) UpperCAmelCase_ : Any = np.array(range(__lowerCamelCase ) ) UpperCAmelCase_ : Dict = sim.argsort(axis=1 )[:, :10] UpperCAmelCase_ : Any = np.any(preds == actual[:, None], axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowercase_ , lowercase_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowercase_ , lowercase_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
23
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """MCTCTFeatureExtractor""" SCREAMING_SNAKE_CASE__ : Dict = """AutoTokenizer""" def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__(lowercase_ , lowercase_ ) UpperCAmelCase_ : int = self.feature_extractor UpperCAmelCase_ : Any = False def __call__( self , *lowercase_ , **lowercase_ ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ : List[Any] = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ : List[Any] = kwargs.pop("audio" , lowercase_ ) UpperCAmelCase_ : List[Any] = kwargs.pop("sampling_rate" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("text" , lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase_ : Dict = args[0] UpperCAmelCase_ : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ : List[Any] = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) if text is not None: UpperCAmelCase_ : List[Any] = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ : Union[str, Any] = encodings["input_ids"] return inputs def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase_ , **lowercase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("input_features" , lowercase_ ) UpperCAmelCase_ : Tuple = kwargs.pop("labels" , lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase_ : Optional[Any] = args[0] UpperCAmelCase_ : str = args[1:] if input_features is not None: UpperCAmelCase_ : Union[str, Any] = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) if labels is not None: UpperCAmelCase_ : Optional[Any] = self.tokenizer.pad(lowercase_ , **lowercase_ ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ : Union[str, Any] = labels["input_ids"] return input_features def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @contextmanager def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ : str = True UpperCAmelCase_ : List[str] = self.tokenizer yield UpperCAmelCase_ : List[str] = self.feature_extractor UpperCAmelCase_ : Optional[Any] = False
23
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
1
"""simple docstring""" import os import sys import unittest _a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a = os.path.join(git_repo_path, 'src', 'diffusers') class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = find_backend(" if not is_torch_available():" ) self.assertEqual(lowercase_ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCAmelCase_ : List[str] = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(lowercase_ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCAmelCase_ : Any = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(lowercase_ , "torch_and_transformers_and_onnx" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowercase_ ) self.assertIn("torch_and_transformers" , lowercase_ ) self.assertIn("flax_and_transformers" , lowercase_ ) self.assertIn("torch_and_transformers_and_onnx" , lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowercase_ , "\nCONSTANT = None\n" ) UpperCAmelCase_ : Union[str, Any] = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowercase_ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCAmelCase_ : List[Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" UpperCAmelCase_ : List[str] = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCAmelCase_ : int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowercase_ )
23
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
1
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=False , lowercase_=True , lowercase_="None" , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Union[str, Any] = use_input_mask UpperCAmelCase_ : List[Any] = use_token_type_ids UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Any = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : Tuple = num_choices UpperCAmelCase_ : Dict = relative_attention UpperCAmelCase_ : Dict = position_biased_input UpperCAmelCase_ : Optional[Any] = pos_att_type UpperCAmelCase_ : List[str] = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = None if self.use_input_mask: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.get_config() UpperCAmelCase_ : Optional[Any] = 300 return config def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = DebertaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase_ : str = model(lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase_ : Union[str, Any] = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = DebertaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.num_labels UpperCAmelCase_ : Optional[int] = DebertaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Optional[Any] = DebertaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = DebertaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : str = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : str = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = DebertaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = DebertaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = DebertaModel.from_pretrained("microsoft/deberta-base" ) UpperCAmelCase_ : Optional[int] = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase_ : List[Any] = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
23
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
1
"""simple docstring""" import logging import os from .state import PartialState class A_ (logging.LoggerAdapter ): '''simple docstring''' @staticmethod def UpperCamelCase__ ( lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) UpperCAmelCase_ : Dict = kwargs.pop("main_process_only" , lowercase_ ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("in_order" , lowercase_ ) if self.isEnabledFor(lowercase_ ): if self._should_log(lowercase_ ): UpperCAmelCase_ , UpperCAmelCase_ : str = self.process(lowercase_ , lowercase_ ) self.logger.log(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ) elif in_order: UpperCAmelCase_ : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.process(lowercase_ , lowercase_ ) self.logger.log(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ) state.wait_for_everyone() def __a ( __lowerCamelCase, __lowerCamelCase = None ): if log_level is None: UpperCAmelCase_ : str = os.environ.get("ACCELERATE_LOG_LEVEL", __lowerCamelCase ) UpperCAmelCase_ : Dict = logging.getLogger(__lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__lowerCamelCase, {} )
23
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
1
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_="" , lowercase_="train" ): """simple docstring""" assert os.path.isdir(lowercase_ ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = os.listdir(lowercase_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCAmelCase_ : Union[str, Any] = os.path.join(lowercase_ , lowercase_ ) if not os.path.isfile(lowercase_ ): continue self.documents.append(lowercase_ ) def __len__( self ): """simple docstring""" return len(self.documents ) def __getitem__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.documents[idx] UpperCAmelCase_ : Dict = document_path.split("/" )[-1] with open(lowercase_ , encoding="utf-8" ) as source: UpperCAmelCase_ : Union[str, Any] = source.read() UpperCAmelCase_ , UpperCAmelCase_ : Any = process_story(lowercase_ ) return document_name, story_lines, summary_lines def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = list(filter(lambda __lowerCamelCase : len(__lowerCamelCase ) != 0, [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it UpperCAmelCase_ : List[Any] = [_add_missing_period(__lowerCamelCase ) for line in nonempty_lines] # gather article lines UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = deque(__lowerCamelCase ) while True: try: UpperCAmelCase_ : List[str] = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(__lowerCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCAmelCase_ : int = list(filter(lambda __lowerCamelCase : not t.startswith("@highlight" ), __lowerCamelCase ) ) return story_lines, summary_lines def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[Any] = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if len(__lowerCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowerCamelCase )) ) return sequence def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = torch.ones_like(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = sequence == pad_token_id UpperCAmelCase_ : Any = 0 return mask def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [tokenizer.encode(__lowerCamelCase ) for line in story_lines] UpperCAmelCase_ : Optional[Any] = [token for sentence in story_lines_token_ids for token in sentence] UpperCAmelCase_ : Optional[Any] = [tokenizer.encode(__lowerCamelCase ) for line in summary_lines] UpperCAmelCase_ : str = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = [] for sequence in batch: UpperCAmelCase_ : Dict = -1 UpperCAmelCase_ : Any = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowerCamelCase ) return torch.tensor(__lowerCamelCase )
23
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
1
"""simple docstring""" import sys import turtle def __a ( __lowerCamelCase, __lowerCamelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(__lowerCamelCase, get_mid(__lowerCamelCase, __lowerCamelCase ), get_mid(__lowerCamelCase, __lowerCamelCase ), depth - 1 ) triangle(__lowerCamelCase, get_mid(__lowerCamelCase, __lowerCamelCase ), get_mid(__lowerCamelCase, __lowerCamelCase ), depth - 1 ) triangle(__lowerCamelCase, get_mid(__lowerCamelCase, __lowerCamelCase ), get_mid(__lowerCamelCase, __lowerCamelCase ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) _a = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') _a = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
23
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
1
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['GLPNFeatureExtractor'] _a = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
1
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
1
"""simple docstring""" from collections.abc import Callable import numpy as np def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase_ : Union[str, Any] = np.zeros((n + 1,) ) UpperCAmelCase_ : str = ya UpperCAmelCase_ : Optional[int] = xa for k in range(__lowerCamelCase ): UpperCAmelCase_ : int = y[k] + step_size * ode_func(__lowerCamelCase, y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'sentencepiece.bpe.model'} _a = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _a = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_ = None , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token UpperCAmelCase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase_ : int = vocab_file UpperCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCAmelCase_ : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} UpperCAmelCase_ : Union[str, Any] = len(self.sp_model ) - 1 UpperCAmelCase_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : List[str] = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Any = self.sp_model.PieceToId(lowercase_ ) return spm_id if spm_id else self.unk_token_id def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Optional[Any] = "" UpperCAmelCase_ : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase_ : Any = True UpperCAmelCase_ : List[str] = [] else: current_sub_tokens.append(lowercase_ ) UpperCAmelCase_ : List[Any] = False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def __getstate__( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : Dict = None return state def __setstate__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : int = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , "wb" ) as fi: UpperCAmelCase_ : int = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
23
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
1
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
1
"""simple docstring""" from sklearn.metrics import fa_score import datasets _a = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' _a = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' _a = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=1 , lowercase_="binary" , lowercase_=None ): """simple docstring""" UpperCAmelCase_ : Tuple = fa_score( lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_ ) return {"f1": float(lowercase_ ) if score.size == 1 else score}
23
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _a = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _a = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _a = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
1
"""simple docstring""" from math import isclose, sqrt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = point_y / 4 / point_x UpperCAmelCase_ : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase_ : Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase_ : Any = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase_ : Optional[Any] = outgoing_gradient**2 + 4 UpperCAmelCase_ : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase_ : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase_ : int = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase_ : str = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase_ : Optional[int] = x_minus if isclose(__lowerCamelCase, __lowerCamelCase ) else x_plus UpperCAmelCase_ : List[str] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __a ( __lowerCamelCase = 1.4, __lowerCamelCase = -9.6 ): UpperCAmelCase_ : int = 0 UpperCAmelCase_ : float = first_x_coord UpperCAmelCase_ : float = first_y_coord UpperCAmelCase_ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = next_point(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
23
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """unispeech-sat""" def __init__( self , lowercase_=32 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.02 , lowercase_=1E-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(512, 512, 512, 512, 512, 512, 512) , lowercase_=(5, 2, 2, 2, 2, 2, 2) , lowercase_=(10, 3, 3, 3, 3, 2, 2) , lowercase_=False , lowercase_=128 , lowercase_=16 , lowercase_=False , lowercase_=True , lowercase_=0.05 , lowercase_=10 , lowercase_=2 , lowercase_=0.0 , lowercase_=10 , lowercase_=0 , lowercase_=320 , lowercase_=2 , lowercase_=0.1 , lowercase_=100 , lowercase_=256 , lowercase_=256 , lowercase_=0.1 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=256 , lowercase_=(512, 512, 512, 512, 1500) , lowercase_=(5, 3, 3, 1, 1) , lowercase_=(1, 2, 3, 1, 1) , lowercase_=512 , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=504 , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = feat_extract_norm UpperCAmelCase_ : Optional[int] = feat_extract_activation UpperCAmelCase_ : Optional[int] = list(lowercase_ ) UpperCAmelCase_ : Optional[Any] = list(lowercase_ ) UpperCAmelCase_ : List[Any] = list(lowercase_ ) UpperCAmelCase_ : List[Any] = conv_bias UpperCAmelCase_ : str = num_conv_pos_embeddings UpperCAmelCase_ : str = num_conv_pos_embedding_groups UpperCAmelCase_ : Tuple = len(self.conv_dim ) UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[int] = hidden_dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : Union[str, Any] = activation_dropout UpperCAmelCase_ : int = feat_proj_dropout UpperCAmelCase_ : str = final_dropout UpperCAmelCase_ : List[str] = layerdrop UpperCAmelCase_ : List[Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Tuple = num_clusters UpperCAmelCase_ : Tuple = do_stable_layer_norm UpperCAmelCase_ : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[Any] = apply_spec_augment UpperCAmelCase_ : Any = mask_time_prob UpperCAmelCase_ : Tuple = mask_time_length UpperCAmelCase_ : Optional[int] = mask_time_min_masks UpperCAmelCase_ : Any = mask_feature_prob UpperCAmelCase_ : Optional[int] = mask_feature_length UpperCAmelCase_ : str = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Tuple = num_codevectors_per_group UpperCAmelCase_ : Optional[Any] = num_codevector_groups UpperCAmelCase_ : Optional[int] = contrastive_logits_temperature UpperCAmelCase_ : Optional[int] = feat_quantizer_dropout UpperCAmelCase_ : Dict = num_negatives UpperCAmelCase_ : Optional[int] = codevector_dim UpperCAmelCase_ : Optional[Any] = proj_codevector_dim UpperCAmelCase_ : List[str] = diversity_loss_weight # ctc loss UpperCAmelCase_ : List[str] = ctc_loss_reduction UpperCAmelCase_ : Dict = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(lowercase_ ) UpperCAmelCase_ : Optional[Any] = list(lowercase_ ) UpperCAmelCase_ : Any = list(lowercase_ ) UpperCAmelCase_ : Tuple = xvector_output_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
1
"""simple docstring""" import random def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = a[left_index] UpperCAmelCase_ : Tuple = left_index + 1 for j in range(left_index + 1, __lowerCamelCase ): if a[j] < pivot: UpperCAmelCase_ , UpperCAmelCase_ : str = a[i], a[j] i += 1 UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = a[i - 1], a[left_index] return i - 1 def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if left < right: UpperCAmelCase_ : List[Any] = random.randint(__lowerCamelCase, right - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCAmelCase_ : Union[str, Any] = partition(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) quick_sort_random( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowerCamelCase, pivot_index + 1, __lowerCamelCase ) # recursive quicksort to the right of the pivot point def __a ( ): UpperCAmelCase_ : List[str] = input("Enter numbers separated by a comma:\n" ).strip() UpperCAmelCase_ : Union[str, Any] = [int(__lowerCamelCase ) for item in user_input.split("," )] quick_sort_random(__lowerCamelCase, 0, len(__lowerCamelCase ) ) print(__lowerCamelCase ) if __name__ == "__main__": main()
23
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = """llama""" SCREAMING_SNAKE_CASE__ : List[Any] = ["""past_key_values"""] def __init__( self , lowercase_=3_2000 , lowercase_=4096 , lowercase_=1_1008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.02 , lowercase_=1E-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = num_key_value_heads UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Dict = rms_norm_eps UpperCAmelCase_ : str = pretraining_tp UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) UpperCAmelCase_ : Any = self.rope_scaling.get("type" , lowercase_ ) UpperCAmelCase_ : Optional[Any] = self.rope_scaling.get("factor" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
23
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _a = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
23
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} SCREAMING_SNAKE_CASE__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCAmelCase_ : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ : str = CLIPTextModel(lowercase_ ) UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : List[str] = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : int = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Optional[Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ) UpperCAmelCase_ : int = floats_tensor(control_image.shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : str = Image.fromarray(np.uinta(lowercase_ ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} SCREAMING_SNAKE_CASE__ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Union[str, Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowercase_ ): if isinstance(lowercase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCAmelCase_ : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ : Optional[int] = CLIPTextModel(lowercase_ ) UpperCAmelCase_ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : Optional[int] = MultiControlNetModel([controlneta, controlneta] ) UpperCAmelCase_ : Optional[int] = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : int = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Any = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), ] UpperCAmelCase_ : str = floats_tensor(control_image[0].shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(lowercase_ ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Tuple = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) UpperCAmelCase_ : Any = 10.0 UpperCAmelCase_ : Optional[int] = 4 UpperCAmelCase_ : str = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : str = steps UpperCAmelCase_ : Optional[int] = scale UpperCAmelCase_ : Union[str, Any] = pipe(**lowercase_ )[0] UpperCAmelCase_ : Tuple = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = steps UpperCAmelCase_ : List[Any] = scale UpperCAmelCase_ : Union[str, Any] = pipe(**lowercase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCAmelCase_ : str = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = steps UpperCAmelCase_ : Union[str, Any] = scale UpperCAmelCase_ : int = pipe(**lowercase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = steps UpperCAmelCase_ : Union[str, Any] = scale UpperCAmelCase_ : Union[str, Any] = pipe(**lowercase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Tuple = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowercase_ ) except NotImplementedError: pass @slow @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) UpperCAmelCase_ : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=lowercase_ , controlnet=lowercase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ : List[str] = "evil space-punk bird" UpperCAmelCase_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) UpperCAmelCase_ : Optional[int] = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) UpperCAmelCase_ : Union[str, Any] = pipe( lowercase_ , lowercase_ , control_image=lowercase_ , generator=lowercase_ , output_type="np" , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase_ : Tuple = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase_ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
23
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _a = logging.get_logger(__name__) _a = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off _a = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] _a = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = """whisper""" SCREAMING_SNAKE_CASE__ : int = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase_=5_1865 , lowercase_=80 , lowercase_=6 , lowercase_=4 , lowercase_=6 , lowercase_=4 , lowercase_=1536 , lowercase_=1536 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=5_0257 , lowercase_=True , lowercase_=True , lowercase_="gelu" , lowercase_=256 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=False , lowercase_=1500 , lowercase_=448 , lowercase_=5_0256 , lowercase_=5_0256 , lowercase_=5_0256 , lowercase_=None , lowercase_=[220, 5_0256] , lowercase_=False , lowercase_=256 , lowercase_=False , lowercase_=0.05 , lowercase_=10 , lowercase_=2 , lowercase_=0.0 , lowercase_=10 , lowercase_=0 , lowercase_=7 , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Any = num_mel_bins UpperCAmelCase_ : int = d_model UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : List[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : int = decoder_ffn_dim UpperCAmelCase_ : List[Any] = encoder_ffn_dim UpperCAmelCase_ : str = dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : List[Any] = activation_dropout UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Any = encoder_layerdrop UpperCAmelCase_ : List[Any] = decoder_layerdrop UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Optional[Any] = encoder_layers UpperCAmelCase_ : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase_ : int = max_source_positions UpperCAmelCase_ : Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Union[str, Any] = classifier_proj_size UpperCAmelCase_ : Tuple = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : List[str] = apply_spec_augment UpperCAmelCase_ : Optional[int] = mask_time_prob UpperCAmelCase_ : Any = mask_time_length UpperCAmelCase_ : Optional[int] = mask_time_min_masks UpperCAmelCase_ : Any = mask_feature_prob UpperCAmelCase_ : Optional[Any] = mask_feature_length UpperCAmelCase_ : int = mask_feature_min_masks UpperCAmelCase_ : List[Any] = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ (lowercase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase_ : int = {0: "batch"} else: UpperCAmelCase_ : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction="inputs" ) return common_inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 2_2050 , lowercase_ = 5.0 , lowercase_ = 220 , ): """simple docstring""" UpperCAmelCase_ : Any = OrderedDict() UpperCAmelCase_ : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase_ : List[Any] = encoder_inputs["input_features"].shape[2] UpperCAmelCase_ : Dict = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase_ : Any = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = encoder_inputs.pop("input_features" ) UpperCAmelCase_ : Optional[Any] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: UpperCAmelCase_ : Optional[Any] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-3
23
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
1
"""simple docstring""" import argparse import copy def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = {} with open(__lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase_ : Optional[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase_ : int = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase_ : str = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase_ : List[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __a ( __lowerCamelCase, __lowerCamelCase ): with open(__lowerCamelCase ) as f: UpperCAmelCase_ : List[str] = f.read(1 ) UpperCAmelCase_ : str = start_node UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = start_node UpperCAmelCase_ : List[str] = 0 while visiting not in first_solution: UpperCAmelCase_ : Union[str, Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowerCamelCase ) and k[0] not in first_solution: UpperCAmelCase_ : Union[str, Any] = k[1] UpperCAmelCase_ : int = k[0] first_solution.append(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = distance_of_first_solution + int(__lowerCamelCase ) UpperCAmelCase_ : List[str] = best_node first_solution.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase_ : Dict = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = [] for n in solution[1:-1]: UpperCAmelCase_ : List[str] = solution.index(__lowerCamelCase ) for kn in solution[1:-1]: UpperCAmelCase_ : Union[str, Any] = solution.index(__lowerCamelCase ) if n == kn: continue UpperCAmelCase_ : Tuple = copy.deepcopy(__lowerCamelCase ) UpperCAmelCase_ : Any = kn UpperCAmelCase_ : List[Any] = n UpperCAmelCase_ : List[Any] = 0 for k in _tmp[:-1]: UpperCAmelCase_ : Optional[int] = _tmp[_tmp.index(__lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase_ : List[Any] = distance + int(i[1] ) _tmp.append(__lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase_ : Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Optional[int] = first_solution UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : str = distance_of_first_solution UpperCAmelCase_ : int = solution while count <= iters: UpperCAmelCase_ : Optional[int] = find_neighborhood(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : int = neighborhood[index_of_best_solution] UpperCAmelCase_ : List[str] = len(__lowerCamelCase ) - 1 UpperCAmelCase_ : Optional[int] = False while not found: UpperCAmelCase_ : Dict = 0 while i < len(__lowerCamelCase ): if best_solution[i] != solution[i]: UpperCAmelCase_ : List[Any] = best_solution[i] UpperCAmelCase_ : Dict = solution[i] break UpperCAmelCase_ : Optional[int] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : int = best_solution[:-1] UpperCAmelCase_ : List[str] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase_ : int = cost UpperCAmelCase_ : Union[str, Any] = solution else: UpperCAmelCase_ : List[Any] = index_of_best_solution + 1 UpperCAmelCase_ : Union[str, Any] = neighborhood[index_of_best_solution] if len(__lowerCamelCase ) >= size: tabu_list.pop(0 ) UpperCAmelCase_ : Any = count + 1 return best_solution_ever, best_cost def __a ( __lowerCamelCase=None ): UpperCAmelCase_ : Optional[Any] = generate_neighbours(args.File ) UpperCAmelCase_ , UpperCAmelCase_ : str = generate_first_solution( args.File, __lowerCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = tabu_search( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, args.Iterations, args.Size, ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": _a = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
23
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = """git_vision_model""" def __init__( self , lowercase_=768 , lowercase_=3072 , lowercase_=12 , lowercase_=12 , lowercase_=3 , lowercase_=224 , lowercase_=16 , lowercase_="quick_gelu" , lowercase_=1E-5 , lowercase_=0.0 , lowercase_=0.02 , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Any = patch_size UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : str = hidden_act @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Any = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": UpperCAmelCase_ : str = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = """git""" def __init__( self , lowercase_=None , lowercase_=3_0522 , lowercase_=768 , lowercase_=6 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1024 , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=0 , lowercase_="absolute" , lowercase_=True , lowercase_=False , lowercase_=101 , lowercase_=102 , lowercase_=None , **lowercase_ , ): """simple docstring""" super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , pad_token_id=lowercase_ , **lowercase_ ) if vision_config is None: UpperCAmelCase_ : List[Any] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) UpperCAmelCase_ : Union[str, Any] = GitVisionConfig(**lowercase_ ) UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Tuple = position_embedding_type UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : Union[str, Any] = tie_word_embeddings UpperCAmelCase_ : Tuple = num_image_with_embedding UpperCAmelCase_ : Optional[int] = bos_token_id UpperCAmelCase_ : Any = eos_token_id def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Union[str, Any] = self.vision_config.to_dict() UpperCAmelCase_ : Dict = self.__class__.model_type return output
23
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
1
"""simple docstring""" import functools from typing import Any def __a ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or len(__lowerCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all( isinstance(__lowerCamelCase, __lowerCamelCase ) and len(__lowerCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie UpperCAmelCase_ : dict[str, Any] = {} UpperCAmelCase_ : str = "WORD_KEEPER" for word in words: UpperCAmelCase_ : List[Any] = trie for c in word: if c not in trie_node: UpperCAmelCase_ : str = {} UpperCAmelCase_ : Optional[Any] = trie_node[c] UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Optional[int] = len(__lowerCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__lowerCamelCase ) -> bool: if index == len_string: return True UpperCAmelCase_ : List[Any] = trie for i in range(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = trie_node.get(string[i], __lowerCamelCase ) if trie_node is None: return False if trie_node.get(__lowerCamelCase, __lowerCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
1
"""simple docstring""" from math import loga def __a ( __lowerCamelCase ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
1
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] SCREAMING_SNAKE_CASE__ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ : ClassVar[Any] = None SCREAMING_SNAKE_CASE__ : str = field(default="""Translation""" ,init=lowercase__ ,repr=lowercase__ ) def __call__( self ): """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCamelCase__ ( self ): """simple docstring""" from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[List] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ : ClassVar[Any] = None SCREAMING_SNAKE_CASE__ : str = field(default="""TranslationVariableLanguages""" ,init=lowercase__ ,repr=lowercase__ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase_ : List[str] = len(self.languages ) if self.languages else None def __call__( self ): """simple docstring""" return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = set(self.languages ) if self.languages and set(lowercase_ ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(lowercase_ ) - lang_set ) )}) are not in valid set ({", ".join(lowercase_ )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase_ : Optional[Any] = [] for lang, text in translation_dict.items(): if isinstance(lowercase_ , lowercase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = zip(*sorted(lowercase_ ) ) return {"language": languages, "translation": translations} def UpperCamelCase__ ( self ): """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
23
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
1
"""simple docstring""" import requests from bsa import BeautifulSoup def __a ( __lowerCamelCase = "https://www.worldometers.info/coronavirus" ): UpperCAmelCase_ : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text, "html.parser" ) UpperCAmelCase_ : Optional[Any] = soup.findAll("h1" ) UpperCAmelCase_ : Union[str, Any] = soup.findAll("div", {"class": "maincounter-number"} ) keys += soup.findAll("span", {"class": "panel-title"} ) values += soup.findAll("div", {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCamelCase, __lowerCamelCase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
23
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = BlenderbotConfig SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu""" def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=20 , lowercase_=2 , lowercase_=1 , lowercase_=0 , ): """simple docstring""" UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : int = eos_token_id UpperCAmelCase_ : Optional[int] = pad_token_id UpperCAmelCase_ : Optional[int] = bos_token_id def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : Tuple = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFBlenderbotModel(config=lowercase_ ).get_decoder() UpperCAmelCase_ : Optional[Any] = inputs_dict["input_ids"] UpperCAmelCase_ : int = input_ids[:1, :] UpperCAmelCase_ : Optional[Any] = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ : Optional[Any] = inputs_dict["head_mask"] UpperCAmelCase_ : Optional[int] = 1 # first forward pass UpperCAmelCase_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ )[0] UpperCAmelCase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : Tuple = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: UpperCAmelCase_ : int = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCAmelCase_ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : int = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = TFBlenderbotModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_tokenizers @require_tf class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""My friends are cool but they eat too many carbs."""] SCREAMING_SNAKE_CASE__ : Optional[Any] = """facebook/blenderbot-400M-distill""" @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.tokenizer(self.src_text , return_tensors="tf" ) UpperCAmelCase_ : Union[str, Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase_ : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
23
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
1
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __a ( __lowerCamelCase ): if "model" in orig_key: UpperCAmelCase_ : List[Any] = orig_key.replace("model.", "" ) if "norm1" in orig_key: UpperCAmelCase_ : Any = orig_key.replace("norm1", "attention.output.LayerNorm" ) if "norm2" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace("norm2", "output.LayerNorm" ) if "norm" in orig_key: UpperCAmelCase_ : List[Any] = orig_key.replace("norm", "LayerNorm" ) if "transformer" in orig_key: UpperCAmelCase_ : str = orig_key.split("." )[0].split("_" )[-1] UpperCAmelCase_ : List[Any] = orig_key.replace(f"""transformer_{layer_num}""", f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: UpperCAmelCase_ : List[Any] = orig_key.replace("mha.attn", "attention.self" ) if "mha" in orig_key: UpperCAmelCase_ : str = orig_key.replace("mha", "attention" ) if "W_q" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace("W_q", "self.query" ) if "W_k" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace("W_k", "self.key" ) if "W_v" in orig_key: UpperCAmelCase_ : int = orig_key.replace("W_v", "self.value" ) if "ff1" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace("ff1", "intermediate.dense" ) if "ff2" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace("ff2", "output.dense" ) if "ff" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace("ff", "output.dense" ) if "mlm_class" in orig_key: UpperCAmelCase_ : Any = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder" ) if "mlm" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace("mlm", "cls.predictions.transform" ) if "cls" not in orig_key: UpperCAmelCase_ : List[Any] = "yoso." + orig_key return orig_key def __a ( __lowerCamelCase, __lowerCamelCase ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase_ : List[str] = val UpperCAmelCase_ : List[str] = orig_state_dict["cls.predictions.decoder.bias"] UpperCAmelCase_ : int = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = torch.load(__lowerCamelCase, map_location="cpu" )["model_state_dict"] UpperCAmelCase_ : Union[str, Any] = YosoConfig.from_json_file(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = YosoForMaskedLM(__lowerCamelCase ) UpperCAmelCase_ : Tuple = convert_checkpoint_helper(config.max_position_embeddings, __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
23
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: UpperCAmelCase_ : Dict = ksize + 1 UpperCAmelCase_ : Tuple = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center UpperCAmelCase_ : Any = x - ksize // 2 UpperCAmelCase_ : List[str] = y - ksize // 2 # degree to radiant UpperCAmelCase_ : Union[str, Any] = theta / 180 * np.pi UpperCAmelCase_ : Dict = np.cos(_theta ) UpperCAmelCase_ : List[str] = np.sin(_theta ) # get kernel x UpperCAmelCase_ : Optional[Any] = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase_ : Union[str, Any] = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase_ : str = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _a = imread('../image_data/lena.jpg') # turn image in gray scale value _a = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _a = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _a = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _a = out / out.max() * 255 _a = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
23
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
1
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = ['model.decoder.embed_positions.weights'] def __a ( __lowerCamelCase ): if "emb" in name: UpperCAmelCase_ : str = name.replace("emb", "model.decoder.embed_tokens" ) if "transformer" in name: UpperCAmelCase_ : int = name.replace("transformer", "model.decoder" ) if "cross_attention" in name: UpperCAmelCase_ : str = name.replace("cross_attention", "encoder_attn" ) if "linear1" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("linear1", "fc1" ) if "linear2" in name: UpperCAmelCase_ : Any = name.replace("linear2", "fc2" ) if "norm1" in name: UpperCAmelCase_ : List[str] = name.replace("norm1", "self_attn_layer_norm" ) if "norm_cross" in name: UpperCAmelCase_ : List[Any] = name.replace("norm_cross", "encoder_attn_layer_norm" ) if "norm2" in name: UpperCAmelCase_ : Any = name.replace("norm2", "final_layer_norm" ) if "out_norm" in name: UpperCAmelCase_ : int = name.replace("out_norm", "model.decoder.layer_norm" ) if "linears" in name: UpperCAmelCase_ : Optional[int] = name.replace("linears", "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase_ : List[str] = name.replace("condition_provider.conditioners.description.output_proj", "enc_to_dec_proj" ) return name def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = list(state_dict.keys() ) UpperCAmelCase_ : List[Any] = {} for key in keys: UpperCAmelCase_ : int = state_dict.pop(__lowerCamelCase ) UpperCAmelCase_ : int = rename_keys(__lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase_ : List[str] = val[:hidden_size, :] UpperCAmelCase_ : int = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase_ : Any = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase_ : Optional[int] = val else: UpperCAmelCase_ : List[Any] = val return state_dict, enc_dec_proj_state_dict def __a ( __lowerCamelCase ): if checkpoint == "small": # default config values UpperCAmelCase_ : Tuple = 1024 UpperCAmelCase_ : List[str] = 24 UpperCAmelCase_ : Optional[int] = 16 elif checkpoint == "medium": UpperCAmelCase_ : Optional[int] = 1536 UpperCAmelCase_ : Tuple = 48 UpperCAmelCase_ : Any = 24 elif checkpoint == "large": UpperCAmelCase_ : str = 2048 UpperCAmelCase_ : Union[str, Any] = 48 UpperCAmelCase_ : Dict = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) UpperCAmelCase_ : Union[str, Any] = MusicgenDecoderConfig( hidden_size=__lowerCamelCase, ffn_dim=hidden_size * 4, num_hidden_layers=__lowerCamelCase, num_attention_heads=__lowerCamelCase, ) return config @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase="cpu" ): UpperCAmelCase_ : List[Any] = MusicGen.get_pretrained(__lowerCamelCase, device=__lowerCamelCase ) UpperCAmelCase_ : List[str] = decoder_config_from_checkpoint(__lowerCamelCase ) UpperCAmelCase_ : int = fairseq_model.lm.state_dict() UpperCAmelCase_ , UpperCAmelCase_ : Tuple = rename_state_dict( __lowerCamelCase, hidden_size=decoder_config.hidden_size ) UpperCAmelCase_ : Optional[int] = TaEncoderModel.from_pretrained("t5-base" ) UpperCAmelCase_ : List[Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCAmelCase_ : Dict = MusicgenForCausalLM(__lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase_ , UpperCAmelCase_ : Dict = decoder.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(__lowerCamelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCAmelCase_ : Optional[int] = MusicgenForConditionalGeneration(text_encoder=__lowerCamelCase, audio_encoder=__lowerCamelCase, decoder=__lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__lowerCamelCase ) # check we can do a forward pass UpperCAmelCase_ : Tuple = torch.arange(0, 8, dtype=torch.long ).reshape(2, -1 ) UpperCAmelCase_ : List[Any] = input_ids.reshape(2 * 4, -1 ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(input_ids=__lowerCamelCase, decoder_input_ids=__lowerCamelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained("t5-base" ) UpperCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz", padding_side="left" ) UpperCAmelCase_ : str = MusicgenProcessor(feature_extractor=__lowerCamelCase, tokenizer=__lowerCamelCase ) # set the appropriate bos/pad token ids UpperCAmelCase_ : int = 2048 UpperCAmelCase_ : Tuple = 2048 # set other default generation config params UpperCAmelCase_ : Any = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = 3.0 if pytorch_dump_folder is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(__lowerCamelCase ) processor.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) _a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
23
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _a = logging.get_logger(__name__) _a = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class A_ : '''simple docstring''' def __init__( self , lowercase_=None , **lowercase_ ): """simple docstring""" logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) UpperCAmelCase_ : List[str] = model UpperCAmelCase_ : Dict = kwargs.get("model_save_dir" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.get("latest_model_name" , lowercase_ ) def __call__( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = {k: np.array(lowercase_ ) for k, v in kwargs.items()} return self.model.run(lowercase_ , lowercase_ ) @staticmethod def UpperCamelCase__ ( lowercase_ , lowercase_=None , lowercase_=None ): """simple docstring""" if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) UpperCAmelCase_ : List[str] = "CPUExecutionProvider" return ort.InferenceSession(lowercase_ , providers=[provider] , sess_options=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(lowercase_ ) if src_path.exists(): UpperCAmelCase_ : Tuple = Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass def UpperCamelCase__ ( self , lowercase_ , **lowercase_ , ): """simple docstring""" if os.path.isfile(lowercase_ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) # saving model weights/files self._save_pretrained(lowercase_ , **lowercase_ ) @classmethod def UpperCamelCase__ ( cls , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase_ ): UpperCAmelCase_ : str = OnnxRuntimeModel.load_model( os.path.join(lowercase_ , lowercase_ ) , provider=lowercase_ , sess_options=lowercase_ ) UpperCAmelCase_ : List[Any] = Path(lowercase_ ) # load model from hub else: # download model UpperCAmelCase_ : Union[str, Any] = hf_hub_download( repo_id=lowercase_ , filename=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , ) UpperCAmelCase_ : str = Path(lowercase_ ).parent UpperCAmelCase_ : Dict = Path(lowercase_ ).name UpperCAmelCase_ : Optional[int] = OnnxRuntimeModel.load_model(lowercase_ , provider=lowercase_ , sess_options=lowercase_ ) return cls(model=lowercase_ , **lowercase_ ) @classmethod def UpperCamelCase__ ( cls , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = None if len(str(lowercase_ ).split("@" ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Dict = model_id.split("@" ) return cls._from_pretrained( model_id=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , use_auth_token=lowercase_ , **lowercase_ , )
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
1
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = int(__lowerCamelCase ) # Initialize Result UpperCAmelCase_ : Any = [] # Traverse through all denomination for denomination in reversed(__lowerCamelCase ): # Find denominations while int(__lowerCamelCase ) >= int(__lowerCamelCase ): total_value -= int(__lowerCamelCase ) answer.append(__lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _a = [] _a = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): _a = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) _a = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter _a = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] _a = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"""Following is minimal change for {value}: """) _a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
23
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """mra""" def __init__( self , lowercase_=5_0265 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=1 , lowercase_=0.02 , lowercase_=1E-5 , lowercase_="absolute" , lowercase_=4 , lowercase_="full" , lowercase_=0 , lowercase_=0 , lowercase_=1 , lowercase_=0 , lowercase_=2 , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : str = position_embedding_type UpperCAmelCase_ : int = block_per_row UpperCAmelCase_ : Optional[int] = approx_mode UpperCAmelCase_ : int = initial_prior_first_n_blocks UpperCAmelCase_ : Optional[int] = initial_prior_diagonal_n_blocks
23
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
1
"""simple docstring""" from manim import * class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : List[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : List[str] = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[int] = Text("CPU" , font_size=24 ) UpperCAmelCase_ : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : Optional[int] = [mem.copy() for i in range(4 )] UpperCAmelCase_ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Any = Text("GPU" , font_size=24 ) UpperCAmelCase_ : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : int = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[int] = Text("Model" , font_size=24 ) UpperCAmelCase_ : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : Dict = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase_ : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) UpperCAmelCase_ : Dict = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase_ : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase_ : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ : Dict = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase_ : Union[str, Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : str = [] for i, rect in enumerate(lowercase_ ): UpperCAmelCase_ : int = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) UpperCAmelCase_ : str = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
23
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""pixel_values"""] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PIL.Image.BICUBIC , lowercase_ = True , lowercase_ = None , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : List[Any] = size if size is not None else {"height": 256, "width": 256} UpperCAmelCase_ : Dict = get_size_dict(lowercase_ ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : List[str] = get_size_dict(lowercase_ , param_name="crop_size" ) UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : int = size UpperCAmelCase_ : str = resample UpperCAmelCase_ : str = do_center_crop UpperCAmelCase_ : Dict = crop_size UpperCAmelCase_ : Dict = do_rescale UpperCAmelCase_ : str = rescale_factor UpperCAmelCase_ : List[Any] = do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PIL.Image.BICUBIC , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( lowercase_ , size=(size["height"], size["width"]) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Dict = resample if resample is not None else self.resample UpperCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Optional[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Tuple = size if size is not None else self.size UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ ) UpperCAmelCase_ : Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ , param_name="crop_size" ) UpperCAmelCase_ : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Dict = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase_ : Dict = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Dict = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase_ : str = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase_ : List[str] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase_ : Tuple = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase_ : List[str] = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
23
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A_ (unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=18 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCAmelCase_ : Any = size if size is not None else {"shortest_edge": 18} UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : Dict = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : Any = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[Any] = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : List[Any] = image_std def UpperCamelCase__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , "image_mean" ) ) self.assertTrue(hasattr(lowercase_ , "image_std" ) ) self.assertTrue(hasattr(lowercase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase_ , "do_resize" ) ) self.assertTrue(hasattr(lowercase_ , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase_ , "size" ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : str = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
23
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
1
"""simple docstring""" def __a ( __lowerCamelCase ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _a = logging.get_logger('transformers.models.speecht5') def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): hf_model.apply_weight_norm() UpperCAmelCase_ : Any = checkpoint["input_conv.weight_g"] UpperCAmelCase_ : Any = checkpoint["input_conv.weight_v"] UpperCAmelCase_ : List[str] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): UpperCAmelCase_ : int = checkpoint[f"""upsamples.{i}.1.weight_g"""] UpperCAmelCase_ : Dict = checkpoint[f"""upsamples.{i}.1.weight_v"""] UpperCAmelCase_ : Optional[int] = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase_ : Dict = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase_ : str = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase_ : Any = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase_ : Any = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase_ : List[Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase_ : int = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase_ : Union[str, Any] = checkpoint["output_conv.1.weight_g"] UpperCAmelCase_ : str = checkpoint["output_conv.1.weight_v"] UpperCAmelCase_ : List[str] = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, ): if config_path is not None: UpperCAmelCase_ : Any = SpeechTaHifiGanConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig() UpperCAmelCase_ : List[str] = SpeechTaHifiGan(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = torch.load(__lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"], __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = np.load(__lowerCamelCase ) UpperCAmelCase_ : Dict = stats[0].reshape(-1 ) UpperCAmelCase_ : Optional[int] = stats[1].reshape(-1 ) UpperCAmelCase_ : Tuple = torch.from_numpy(__lowerCamelCase ).float() UpperCAmelCase_ : Dict = torch.from_numpy(__lowerCamelCase ).float() model.save_pretrained(__lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _a = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
23
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
1
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = CLIPTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPTokenizerFast SCREAMING_SNAKE_CASE__ : List[str] = True SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase_ : str = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCAmelCase_ : Dict = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase_ : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCAmelCase_ : Tuple = {"unk_token": "<unk>"} UpperCAmelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = "lower newer" UpperCAmelCase_ : Any = "lower newer" return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : Union[str, Any] = "lower newer" UpperCAmelCase_ : Union[str, Any] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCAmelCase_ : List[Any] = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : int = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Any = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) @require_ftfy def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : List[str] = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCAmelCase_ : int = tokenizer_s.tokenize(lowercase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCAmelCase_ : Union[str, Any] = "xa\u0303y" + " " + "x\xe3y" UpperCAmelCase_ : Optional[Any] = tokenizer_s.tokenize(lowercase_ ) UpperCAmelCase_ : Dict = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on unicode of space type UpperCAmelCase_ : Optional[int] = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCAmelCase_ : Tuple = tokenizer_s.tokenize(lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on unicode of line break type UpperCAmelCase_ : Any = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCAmelCase_ : List[str] = tokenizer_s.tokenize(lowercase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Any = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_ : List[str] = F"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase_ : List[Any] = F""" {text}""" UpperCAmelCase_ : Dict = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , ) UpperCAmelCase_ : Optional[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCamelCase__ ( self ): """simple docstring""" super().test_tokenization_python_rust_equals() def UpperCamelCase__ ( self ): """simple docstring""" # CLIP always lower cases letters pass
23
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
1
"""simple docstring""" _a = [0, 2, 4, 6, 8] _a = [1, 3, 5, 7, 9] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCAmelCase_ : Union[str, Any] = 0 for digit in range(10 ): UpperCAmelCase_ : str = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, __lowerCamelCase, __lowerCamelCase ) return result UpperCAmelCase_ : Optional[int] = 0 for digita in range(10 ): UpperCAmelCase_ : Union[str, Any] = digita if (remainder + digita) % 2 == 0: UpperCAmelCase_ : List[Any] = ODD_DIGITS else: UpperCAmelCase_ : int = EVEN_DIGITS for digita in other_parity_digits: UpperCAmelCase_ : int = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, __lowerCamelCase, __lowerCamelCase, ) return result def __a ( __lowerCamelCase = 9 ): UpperCAmelCase_ : Tuple = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(__lowerCamelCase, 0, [0] * length, __lowerCamelCase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
23
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _a = numpy.array([0, 0]) _a = numpy.array([0.5, 0.866_0254]) _a = numpy.array([1, 0]) _a = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = initial_vectors for _ in range(__lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = iteration_step(__lowerCamelCase ) return vectors def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase_ : str = vectors[i + 1] new_vectors.append(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3, 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = numpy.radians(__lowerCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = numpy.cos(__lowerCamelCase ), numpy.sin(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = zip(*__lowerCamelCase ) plt.plot(__lowerCamelCase, __lowerCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _a = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
1
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = JukeboxTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch UpperCAmelCase_ : Any = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) UpperCAmelCase_ : str = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCAmelCase_ : Any = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch UpperCAmelCase_ : Dict = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) UpperCAmelCase_ : Any = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCAmelCase_ : Tuple = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
23
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
1