code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def A(__a: list[list[int]] , __a: int , __a: int , __a: set ): lowerCAmelCase_ , lowerCAmelCase_ = len(SCREAMING_SNAKE_CASE_ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowerCAmelCase_ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE_ , row + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , row - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , col + 1 , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , col - 1 , SCREAMING_SNAKE_CASE_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = '''▁''' lowerCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __magic_name__ (a__ , unittest.TestCase ): lowerCamelCase__ = BertGenerationTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def __a ( self ) -> int: super().setUp() lowerCAmelCase_ = BertGenerationTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> str: lowerCAmelCase_ = '<s>' lowerCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1002 ) def __a ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = BertGenerationTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __a ( self ) -> Tuple: return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def __a ( self ) -> List[Any]: lowerCAmelCase_ = 'Hello World!' lowerCAmelCase_ = [18536, 2260, 101] self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCAmelCase_ = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @require_torch @slow def __a ( self ) -> Dict: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , return_tensors="pt" , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ = BertGenerationConfig() lowerCAmelCase_ = BertGenerationEncoder(SCREAMING_SNAKE_CASE_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE_ ) model(**SCREAMING_SNAKE_CASE_ ) @slow def __a ( self ) -> Optional[int]: # fmt: off lowerCAmelCase_ = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
def A(__a: str ): assert column_title.isupper() lowerCAmelCase_ = 0 lowerCAmelCase_ = len(lowerCAmelCase__ ) - 1 lowerCAmelCase_ = 0 while index >= 0: lowerCAmelCase_ = (ord(column_title[index] ) - 64) * pow(26 , lowerCAmelCase__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self ) -> str: lowerCAmelCase_ = 1 lowerCAmelCase_ = 3 lowerCAmelCase_ = (32, 32) lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowercase ) return image @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__lowercase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def __a ( self ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __a ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(__lowercase ) def __a ( self ) -> str: lowerCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet_upscale lowerCAmelCase_ = DDPMScheduler() lowerCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(__lowercase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionUpscalePipeline( unet=__lowercase , low_res_scheduler=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , max_noise_level=350 , ) lowerCAmelCase_ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger''' lowerCAmelCase_ = torch.Generator(device=__lowercase ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , image=__lowercase , generator=__lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=__lowercase ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , image=__lowercase , generator=__lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__lowercase , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] lowerCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCAmelCase_ = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> List[str]: lowerCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet_upscale lowerCAmelCase_ = DDPMScheduler() lowerCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(__lowercase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionUpscalePipeline( unet=__lowercase , low_res_scheduler=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , max_noise_level=350 , ) lowerCAmelCase_ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger''' lowerCAmelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase_ = output.images assert image.shape[0] == 2 lowerCAmelCase_ = torch.Generator(device=__lowercase ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , image=__lowercase , generator=__lowercase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.dummy_cond_unet_upscale lowerCAmelCase_ = DDPMScheduler() lowerCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(__lowercase ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCAmelCase_ = unet.half() lowerCAmelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionUpscalePipeline( unet=__lowercase , low_res_scheduler=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , max_noise_level=350 , ) lowerCAmelCase_ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , image=__lowercase , generator=__lowercase , num_inference_steps=2 , output_type="np" , ).images lowerCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) lowerCAmelCase_ = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() lowerCAmelCase_ = '''a cat sitting on a park bench''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=__lowercase , image=__lowercase , generator=__lowercase , output_type="np" , ) lowerCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) lowerCAmelCase_ = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __lowercase , torch_dtype=torch.floataa , ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() lowerCAmelCase_ = '''a cat sitting on a park bench''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=__lowercase , image=__lowercase , generator=__lowercase , output_type="np" , ) lowerCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __a ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCAmelCase_ = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __lowercase , torch_dtype=torch.floataa , ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = '''a cat sitting on a park bench''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=__lowercase , image=__lowercase , generator=__lowercase , num_inference_steps=5 , output_type="np" , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __magic_name__ : lowerCamelCase__ = MBartConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , ) -> Tuple: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase_ = prepare_mbart_inputs_dict(__a , __a , __a ) return config, inputs_dict def __a ( self , _a , _a ) -> Tuple: lowerCAmelCase_ = TFMBartModel(config=__a ).get_decoder() lowerCAmelCase_ = inputs_dict["input_ids"] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict["attention_mask"][:1, :] lowerCAmelCase_ = inputs_dict["head_mask"] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() lowerCAmelCase_ = past_key_values[1] def A(__a: Tuple , __a: Tuple , __a: Tuple , __a: Tuple=None , __a: List[str]=None , __a: List[str]=None , __a: int=None , __a: Optional[int]=None , ): if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCamelCase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self , _a , _a , _a , _a , _a ) -> str: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __a ( self ) -> Any: lowerCAmelCase_ = TFMBartModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=__a ) def __a ( self ) -> Dict: self.config_tester.run_common_tests() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_sentencepiece @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] lowerCamelCase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] lowerCamelCase__ = """facebook/mbart-large-en-ro""" @cached_property def __a ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __a ( self , **_a ) -> Tuple: lowerCAmelCase_ = self.translate_src_text(**__a ) self.assertListEqual(self.expected_text , __a ) def __a ( self , **_a ) -> int: lowerCAmelCase_ = self.tokenizer(self.src_text , **__a , return_tensors="tf" ) lowerCAmelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowerCAmelCase_ = self.tokenizer.batch_decode(__a , skip_special_tokens=__a ) return generated_words @slow def __a ( self ) -> Tuple: self._assert_generated_batch_equal_expected()
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
def A(__a: Tuple , __a: List[str] ): def get_matched_characters(__a: str , __a: Union[str, Any] ) -> str: lowerCAmelCase_ = [] lowerCAmelCase_ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowerCAmelCase_ = int(max(0 , i - limit ) ) lowerCAmelCase_ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCAmelCase_ ) lowerCAmelCase_ = F"{_stra[0:_stra.index(lowerCAmelCase_ )]} {_stra[_stra.index(lowerCAmelCase_ ) + 1:]}" return "".join(lowerCAmelCase_ ) # matching characters lowerCAmelCase_ = get_matched_characters(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ = get_matched_characters(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ = len(lowerCAmelCase_ ) # transposition lowerCAmelCase_ = ( len([(ca, ca) for ca, ca in zip(lowerCAmelCase_ , lowerCAmelCase_ ) if ca != ca] ) // 2 ) if not match_count: lowerCAmelCase_ = 0.0 else: lowerCAmelCase_ = ( 1 / 3 * ( match_count / len(lowerCAmelCase_ ) + match_count / len(lowerCAmelCase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowerCAmelCase_ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __magic_name__ (__snake_case ): lowerCamelCase__ = """dpr""" def __init__( self , _a=30522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.0_2 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ) -> List[str]: super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = projection_dim lowerCAmelCase_ = position_embedding_type
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
import sys from collections import defaultdict class _UpperCAmelCase : def __init__( self ) -> str: lowerCAmelCase_ = [] def __a ( self , _a ) -> Any: return self.node_position[vertex] def __a ( self , _a , _a ) -> Tuple: lowerCAmelCase_ = pos def __a ( self , _a , _a , _a , _a ) -> Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase_ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase_ = 2 * start + 1 else: lowerCAmelCase_ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase_ , lowerCAmelCase_ = heap[smallest_child], positions[smallest_child] lowerCAmelCase_ , lowerCAmelCase_ = ( heap[start], positions[start], ) lowerCAmelCase_ , lowerCAmelCase_ = temp, tempa lowerCAmelCase_ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __snake_case ) self.top_to_bottom(__snake_case , __snake_case , __snake_case , __snake_case ) def __a ( self , _a , _a , _a , _a ) -> Optional[int]: lowerCAmelCase_ = position[index] while index != 0: lowerCAmelCase_ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase_ = heap[parent] lowerCAmelCase_ = position[parent] self.set_position(position[parent] , __snake_case ) else: lowerCAmelCase_ = val lowerCAmelCase_ = temp self.set_position(__snake_case , __snake_case ) break lowerCAmelCase_ = parent else: lowerCAmelCase_ = val lowerCAmelCase_ = temp self.set_position(__snake_case , 0 ) def __a ( self , _a , _a ) -> Optional[int]: lowerCAmelCase_ = len(__snake_case ) // 2 - 1 for i in range(__snake_case , -1 , -1 ): self.top_to_bottom(__snake_case , __snake_case , len(__snake_case ) , __snake_case ) def __a ( self , _a , _a ) -> Optional[Any]: lowerCAmelCase_ = positions[0] lowerCAmelCase_ = sys.maxsize self.top_to_bottom(__snake_case , 0 , len(__snake_case ) , __snake_case ) return temp def A(__a: Dict ): lowerCAmelCase_ = Heap() lowerCAmelCase_ = [0] * len(__lowerCAmelCase ) lowerCAmelCase_ = [-1] * len(__lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase_ = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase_ = [] for vertex in range(len(__lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowerCAmelCase ) heap.node_position.append(__lowerCAmelCase ) lowerCAmelCase_ = [] lowerCAmelCase_ = 1 lowerCAmelCase_ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase_ = 0 lowerCAmelCase_ = distance heap.heapify(__lowerCAmelCase , __lowerCAmelCase ) for _ in range(1 , len(__lowerCAmelCase ) ): lowerCAmelCase_ = heap.delete_minimum(__lowerCAmelCase , __lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase_ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowerCAmelCase )] ): lowerCAmelCase_ = distance heap.bottom_to_top( __lowerCAmelCase , heap.get_position(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCamelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCamelCase__ = defaultdict(list) for _ in range(edges_number): lowerCamelCase__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
def A(__a: int = 100 ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } lowerCamelCase__ = { '''albert-base-v1''': 5_12, '''albert-large-v1''': 5_12, '''albert-xlarge-v1''': 5_12, '''albert-xxlarge-v1''': 5_12, '''albert-base-v2''': 5_12, '''albert-large-v2''': 5_12, '''albert-xlarge-v2''': 5_12, '''albert-xxlarge-v2''': 5_12, } lowerCamelCase__ = '''▁''' class __magic_name__ (__lowercase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = AlbertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase_ = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = remove_space lowerCAmelCase_ = keep_accents lowerCAmelCase_ = vocab_file lowerCAmelCase_ = False if not self.vocab_file else True def __a ( self , _a , _a = None ) -> List[int]: lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , _a , _a = None ) -> List[int]: lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _a , _a = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCamelCase__ = 5_00_00 lowerCamelCase__ = 50_00 lowerCamelCase__ , lowerCamelCase__ = os.path.split(__file__) lowerCamelCase__ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def A(__a: datasets.Dataset , __a: Union[str, Any] ): for i in range(__a ): lowerCAmelCase_ = dataset[i] @get_duration def A(__a: datasets.Dataset , __a: Optional[Any] , __a: Tuple ): for i in range(0 , len(__a ) , __a ): lowerCAmelCase_ = dataset[i : i + batch_size] @get_duration def A(__a: datasets.Dataset , __a: Tuple , __a: Optional[Any] ): with dataset.formatted_as(type=__a ): for i in range(__a ): lowerCAmelCase_ = dataset[i] @get_duration def A(__a: datasets.Dataset , __a: Any , __a: Any , __a: List[str] ): with dataset.formatted_as(type=__a ): for i in range(0 , __a , __a ): lowerCAmelCase_ = dataset[i : i + batch_size] def A(): lowerCAmelCase_ = {"num examples": SPEED_TEST_N_EXAMPLES} lowerCAmelCase_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] lowerCAmelCase_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) lowerCAmelCase_ = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) lowerCAmelCase_ = generate_example_dataset( os.path.join(__a , "dataset.arrow" ) , __a , num_examples=__a , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(__a ) ) lowerCAmelCase_ = func(__a , **__a ) print("shuffling dataset" ) lowerCAmelCase_ = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(__a ) ) lowerCAmelCase_ = func( __a , **__a ) with open(__a , "wb" ) as f: f.write(json.dumps(__a ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
lowerCamelCase__ = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __magic_name__ (__lowercase ): lowerCamelCase__ = '''openai-gpt''' lowerCamelCase__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _a=40478 , _a=512 , _a=768 , _a=12 , _a=12 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.0_2 , _a="cls_index" , _a=True , _a=None , _a=True , _a=0.1 , **_a , ) -> int: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = n_positions lowerCAmelCase_ = n_embd lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = afn lowerCAmelCase_ = resid_pdrop lowerCAmelCase_ = embd_pdrop lowerCAmelCase_ = attn_pdrop lowerCAmelCase_ = layer_norm_epsilon lowerCAmelCase_ = initializer_range lowerCAmelCase_ = summary_type lowerCAmelCase_ = summary_use_proj lowerCAmelCase_ = summary_activation lowerCAmelCase_ = summary_first_dropout lowerCAmelCase_ = summary_proj_to_labels super().__init__(**_a )
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = ReformerTokenizer lowerCamelCase__ = ReformerTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = True def __a ( self ) -> List[Any]: super().setUp() lowerCAmelCase_ = ReformerTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> int: lowerCAmelCase_ = "<s>" lowerCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __a ( self ) -> int: lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_a ) , 1000 ) def __a ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __a ( self ) -> Dict: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "I was born in 92000, and this is falsé." lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self , _a=15 ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) # Simple input lowerCAmelCase_ = "This is a simple input" lowerCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ = ("This is a simple input", "This is a pair") lowerCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding="max_length" ) # Simple input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding="max_length" ) # Simple input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding="max_length" , ) # Pair input self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding="max_length" ) # Pair input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding="max_length" ) # Pair input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding="max_length" , ) def __a ( self ) -> str: pass def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = ReformerTokenizer(_a , keep_accents=_a ) lowerCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __a ( self ) -> str: return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "Hello World!" lowerCAmelCase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __a ( self ) -> str: lowerCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowerCAmelCase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @require_torch @slow def __a ( self ) -> Tuple: import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowerCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase_ = " ".join(_a ) lowerCAmelCase_ = self.big_tokenizer.encode_plus(_a , return_tensors="pt" ) lowerCAmelCase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) lowerCAmelCase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowerCAmelCase_ = encoded_sequence["input_ids"].shape lowerCAmelCase_ = ReformerModel(_a ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_a ) model(**_a ) @slow def __a ( self ) -> List[str]: # fmt: off lowerCAmelCase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowerCAmelCase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_a , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_a , sequences=_a , )
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
import torch from transformers import AutoModel class __magic_name__ (torch.nn.Module ): def __init__( self , _a="sayef/fsner-bert-base-uncased" ) -> Optional[Any]: super(_a , self ).__init__() lowerCAmelCase_ = AutoModel.from_pretrained(_a , return_dict=_a ) lowerCAmelCase_ = torch.nn.CosineSimilarity(3 , 1E-08 ) lowerCAmelCase_ = torch.nn.Softmax(dim=1 ) def __a ( self , **_a ) -> Dict: return self.bert(**_a ).last_hidden_state def __a ( self , _a ) -> str: return token_embeddings.sum(2 , keepdim=_a ) def __a ( self , _a , _a , _a=1 ) -> Any: return self.softmax(T * self.cos(_a , _a ) ) def __a ( self , _a , _a ) -> Optional[Any]: lowerCAmelCase_ = W_supports["sizes"].tolist() lowerCAmelCase_ = W_supports["start_token_id"].item() lowerCAmelCase_ = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase_ = self.BERT(**_a ) lowerCAmelCase_ = self.BERT(**_a ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = W_supports["input_ids"] == start_token_id lowerCAmelCase_ = W_supports["input_ids"] == end_token_id for i, size in enumerate(_a ): if i == 0: lowerCAmelCase_ = 0 else: lowerCAmelCase_ = support_sizes[i - 1] lowerCAmelCase_ = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase_ = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase_ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase_ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase_ = torch.vstack((p_starts, p_start) ) lowerCAmelCase_ = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase_ = p_start lowerCAmelCase_ = p_end return p_starts, p_ends
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ (__lowercase ): def __a ( self ) -> Dict: lowerCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , "embed_dim" ) ) self.parent.assertTrue(hasattr(_a , "num_heads" ) ) class __magic_name__ : def __init__( self , _a , _a=13 , _a=64 , _a=3 , _a=[16, 48, 96] , _a=[1, 3, 6] , _a=[1, 2, 10] , _a=[7, 3, 3] , _a=[4, 2, 2] , _a=[2, 1, 1] , _a=[2, 2, 2] , _a=[False, False, True] , _a=[0.0, 0.0, 0.0] , _a=0.0_2 , _a=1E-12 , _a=True , _a=True , _a=2 , ) -> List[str]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_sizes lowerCAmelCase_ = patch_stride lowerCAmelCase_ = patch_padding lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = num_heads lowerCAmelCase_ = stride_kv lowerCAmelCase_ = depth lowerCAmelCase_ = cls_token lowerCAmelCase_ = attention_drop_rate lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self ) -> Dict: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __a ( self , _a , _a , _a ) -> Optional[Any]: lowerCAmelCase_ = CvtModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) lowerCAmelCase_ = (self.image_size, self.image_size) lowerCAmelCase_ , lowerCAmelCase_ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __a ( self , _a , _a , _a ) -> str: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = CvtForImageClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> str: lowerCAmelCase_ = CvtModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def __a ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ) -> Tuple: return @unittest.skip(reason="Cvt does not output attentions" ) def __a ( self ) -> Tuple: pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def __a ( self ) -> Tuple: pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def __a ( self ) -> str: pass def __a ( self ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def __a ( self ) -> str: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __a ( self ) -> Union[str, Any]: def check_hidden_states_output(_a , _a , _a ): lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = len(self.model_tester.depth ) self.assertEqual(len(_a ) , _a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(_a , _a , _a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self ) -> List[Any]: pass @slow def __a ( self ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = CvtModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def A(): lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): @cached_property def __a ( self ) -> int: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**_a ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) lowerCAmelCase_ = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ = '''\ ''' lowerCamelCase__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' lowerCamelCase__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def __a ( self , _a , _a , _a = 16 , _a = True , _a=None ) -> Any: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowerCAmelCase_ = "cuda" else: lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(_a ) lowerCAmelCase_ = model.to(_a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowerCAmelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowerCAmelCase_ = model.config.max_length - 1 else: lowerCAmelCase_ = model.config.max_length lowerCAmelCase_ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors="pt" , return_attention_mask=_a , ).to(_a ) lowerCAmelCase_ = encodings["input_ids"] lowerCAmelCase_ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowerCAmelCase_ = [] lowerCAmelCase_ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): lowerCAmelCase_ = min(start_index + batch_size , len(_a ) ) lowerCAmelCase_ = encoded_texts[start_index:end_index] lowerCAmelCase_ = attn_masks[start_index:end_index] if add_start_token: lowerCAmelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) lowerCAmelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowerCAmelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) lowerCAmelCase_ = encoded_batch with torch.no_grad(): lowerCAmelCase_ = model(_a , attention_mask=_a ).logits lowerCAmelCase_ = out_logits[..., :-1, :].contiguous() lowerCAmelCase_ = labels[..., 1:].contiguous() lowerCAmelCase_ = attn_mask[..., 1:].contiguous() lowerCAmelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
from itertools import permutations def A(__a: tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCAmelCase_ = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def A(__a: int = 10 ): return sum( int("".join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def A(__a: List[str]=None ): if subparsers is not None: lowerCAmelCase_ = subparsers.add_parser("tpu-config" , description=_description ) else: lowerCAmelCase_ = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments lowerCAmelCase_ = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=__a , default=__a , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=__a , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=__a , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) lowerCAmelCase_ = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=__a , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def A(__a: str ): lowerCAmelCase_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__a ): lowerCAmelCase_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCAmelCase_ = defaults.command_file if not args.command and defaults.commands is not None: lowerCAmelCase_ = defaults.commands if not args.tpu_name: lowerCAmelCase_ = defaults.tpu_name if not args.tpu_zone: lowerCAmelCase_ = defaults.tpu_zone if args.accelerate_version == "dev": lowerCAmelCase_ = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": lowerCAmelCase_ = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , __a ): lowerCAmelCase_ = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: lowerCAmelCase_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __a ): lowerCAmelCase_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCAmelCase_ = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command lowerCAmelCase_ = "; ".join(__a ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCAmelCase_ = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(__a )}" ) return subprocess.run(__a ) print("Successfully setup pod." ) def A(): lowerCAmelCase_ = tpu_command_parser() lowerCAmelCase_ = parser.parse_args() tpu_command_launcher(__a )
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): def __init__( self , *_a , **_a ) -> None: warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , _a , ) super().__init__(*_a , **_a )
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
lowerCamelCase__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCamelCase__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCamelCase__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __magic_name__ (unittest.TestCase ): def __a ( self ) -> int: lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = BlipImageProcessor() lowerCAmelCase_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) lowerCAmelCase_ = BlipProcessor(_a , _a ) processor.save_pretrained(self.tmpdirname ) def __a ( self , **_a ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer def __a ( self , **_a ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def __a ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self ) -> Any: lowerCAmelCase_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase_ = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) lowerCAmelCase_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = BlipProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(_a , return_tensors="np" ) lowerCAmelCase_ = processor(images=_a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = BlipProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = processor(text=_a ) lowerCAmelCase_ = tokenizer(_a , return_token_type_ids=_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = BlipProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __a ( self ) -> int: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = BlipProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(_a ) lowerCAmelCase_ = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> int: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = BlipProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=_a , images=_a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
import functools from typing import Any def A(__a: str , __a: list[str] ): # Validation if not isinstance(__a , __a ) or len(__a ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__a , __a ) or not all( isinstance(__a , __a ) and len(__a ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie lowerCAmelCase_ = {} lowerCAmelCase_ = "WORD_KEEPER" for word in words: lowerCAmelCase_ = trie for c in word: if c not in trie_node: lowerCAmelCase_ = {} lowerCAmelCase_ = trie_node[c] lowerCAmelCase_ = True lowerCAmelCase_ = len(__a ) # Dynamic programming method @functools.cache def is_breakable(__a: int ) -> bool: if index == len_string: return True lowerCAmelCase_ = trie for i in range(__a , __a ): lowerCAmelCase_ = trie_node.get(string[i] , __a ) if trie_node is None: return False if trie_node.get(__a , __a ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __magic_name__ (__lowercase ): def __init__( self , _a = None , _a = None , _a = None , _a = None , _a = False , _a = False , _a = None , **_a , ) -> Dict: lowerCAmelCase_ = path_or_paths lowerCAmelCase_ = split if split or isinstance(_a , _a ) else "train" lowerCAmelCase_ = features lowerCAmelCase_ = cache_dir lowerCAmelCase_ = keep_in_memory lowerCAmelCase_ = streaming lowerCAmelCase_ = num_proc lowerCAmelCase_ = kwargs @abstractmethod def __a ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class __magic_name__ (__lowercase ): def __init__( self , _a = None , _a = None , _a = False , _a = False , _a = None , **_a , ) -> List[str]: lowerCAmelCase_ = features lowerCAmelCase_ = cache_dir lowerCAmelCase_ = keep_in_memory lowerCAmelCase_ = streaming lowerCAmelCase_ = num_proc lowerCAmelCase_ = kwargs @abstractmethod def __a ( self ) -> Union[Dataset, IterableDataset]: pass
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = LDMTextToImagePipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = False def __a ( self ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ = CLIPTextModel(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def __a ( self , _a , _a=0 ) -> Union[str, Any]: if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = LDMTextToImagePipeline(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = pipe(**_a ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase_ = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a=torch.floataa , _a=0 ) -> int: lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self ) -> str: lowerCAmelCase_ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = pipe(**_a ).images lowerCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase_ = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a=torch.floataa , _a=0 ) -> List[str]: lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = pipe(**_a ).images[0] lowerCAmelCase_ = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) lowerCAmelCase_ = np.abs(expected_image - image ).max() assert max_diff < 1E-3
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ (__lowercase ): lowerCamelCase__ = DistilBertTokenizer lowerCamelCase__ = DistilBertTokenizerFast lowerCamelCase__ = True @slow def __a ( self ) -> Optional[int]: lowerCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
from heapq import heappop, heappush import numpy as np def A(__a: np.ndarray , __a: tuple[int, int] , __a: tuple[int, int] , __a: bool , ): lowerCAmelCase_ , lowerCAmelCase_ = grid.shape lowerCAmelCase_ = [-1, 1, 0, 0] lowerCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCAmelCase_ , lowerCAmelCase_ = [(0, source)], set() lowerCAmelCase_ = np.full((rows, cols) , np.inf ) lowerCAmelCase_ = 0 lowerCAmelCase_ = np.empty((rows, cols) , dtype=__a ) lowerCAmelCase_ = None while queue: ((lowerCAmelCase_) , (lowerCAmelCase_)) = heappop(__a ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) lowerCAmelCase_ , lowerCAmelCase_ = predecessors[x, y] path.append(__a ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__a ) ): lowerCAmelCase_ , lowerCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__a , (dist + 1, (nx, ny)) ) lowerCAmelCase_ = dist + 1 lowerCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = CTRLTokenizer lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] lowerCAmelCase_ = dict(zip(_a , range(len(_a ) ) ) ) lowerCAmelCase_ = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] lowerCAmelCase_ = {"unk_token": "<unk>"} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_a ) ) def __a ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_a ) def __a ( self , _a ) -> List[Any]: lowerCAmelCase_ = "adapt react readapt apt" lowerCAmelCase_ = "adapt react readapt apt" return input_text, output_text def __a ( self ) -> str: lowerCAmelCase_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ = "adapt react readapt apt" lowerCAmelCase_ = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() lowerCAmelCase_ = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase (unittest.TestCase ): @property def __a ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = PNDMScheduler() lowerCAmelCase_ = PNDMPipeline(unet=_a , scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pndm(generator=_a , num_inference_steps=20 , output_type="numpy" ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pndm(generator=_a , num_inference_steps=20 , output_type="numpy" , return_dict=_a )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _UpperCAmelCase (unittest.TestCase ): def __a ( self ) -> List[Any]: lowerCAmelCase_ = "google/ddpm-cifar10-32" lowerCAmelCase_ = UNetaDModel.from_pretrained(_a ) lowerCAmelCase_ = PNDMScheduler() lowerCAmelCase_ = PNDMPipeline(unet=_a , scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pndm(generator=_a , output_type="numpy" ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
from itertools import product def A(__a: int , __a: int ): lowerCAmelCase_ = sides_number lowerCAmelCase_ = max_face_number * dice_number lowerCAmelCase_ = [0] * (max_total + 1) lowerCAmelCase_ = 1 lowerCAmelCase_ = range(__a , max_face_number + 1 ) for dice_numbers in product(__a , repeat=__a ): lowerCAmelCase_ = sum(__a ) totals_frequencies[total] += 1 return totals_frequencies def A(): lowerCAmelCase_ = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCAmelCase_ = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCAmelCase_ = 0 lowerCAmelCase_ = 9 lowerCAmelCase_ = 4 * 9 lowerCAmelCase_ = 6 for peter_total in range(__a , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCAmelCase_ = (4**9) * (6**6) lowerCAmelCase_ = peter_wins_count / total_games_number lowerCAmelCase_ = round(__a , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''input_features'''] def __init__( self , _a=80 , _a=16000 , _a=160 , _a=30 , _a=400 , _a=0.0 , _a=False , **_a , ) -> List[str]: super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , return_attention_mask=_a , **_a , ) lowerCAmelCase_ = n_fft lowerCAmelCase_ = hop_length lowerCAmelCase_ = chunk_length lowerCAmelCase_ = chunk_length * sampling_rate lowerCAmelCase_ = self.n_samples // hop_length lowerCAmelCase_ = sampling_rate lowerCAmelCase_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_a , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_a , norm="slaney" , mel_scale="slaney" , ) def __a ( self , _a ) -> np.ndarray: lowerCAmelCase_ = spectrogram( _a , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowerCAmelCase_ = log_spec[:, :-1] lowerCAmelCase_ = np.maximum(_a , log_spec.max() - 8.0 ) lowerCAmelCase_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _a , _a , _a = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCAmelCase_ = np.array(_a , np.intaa ) lowerCAmelCase_ = [] for vector, length in zip(_a , attention_mask.sum(-1 ) ): lowerCAmelCase_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ = padding_value normed_input_values.append(_a ) else: lowerCAmelCase_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , _a , _a = True , _a = None , _a = None , _a = None , _a = "max_length" , _a = None , _a = None , _a = None , **_a , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowerCAmelCase_ = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): lowerCAmelCase_ = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ = [np.asarray([raw_speech] ).T] lowerCAmelCase_ = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCAmelCase_ = self.pad( _a , padding=_a , max_length=max_length if max_length else self.n_samples , truncation=_a , pad_to_multiple_of=_a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase_ = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowerCAmelCase_ = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowerCAmelCase_ = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowerCAmelCase_ = [self._np_extract_fbank_features(_a ) for waveform in input_features[0]] if isinstance(input_features[0] , _a ): lowerCAmelCase_ = [np.asarray(_a , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase_ = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase_ = padded_inputs.convert_to_tensors(_a ) return padded_inputs def __a ( self ) -> Dict[str, Any]: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ (__lowercase ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class __magic_name__ (__lowercase , __lowercase ): lowerCamelCase__ = 1 @register_to_config def __init__( self , _a = 2000 , _a = 0.1_5 , _a = 0.0_1 , _a = 1348.0 , _a = 1E-5 , _a = 1 , ) -> Tuple: # standard deviation of the initial noise distribution lowerCAmelCase_ = sigma_max # setable values lowerCAmelCase_ = None self.set_sigmas(_a , _a , _a , _a ) def __a ( self , _a , _a = None ) -> torch.FloatTensor: return sample def __a ( self , _a , _a = None , _a = None ) -> Any: lowerCAmelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase_ = torch.linspace(1 , _a , _a , device=_a ) def __a ( self , _a , _a = None , _a = None , _a = None ) -> Optional[int]: lowerCAmelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_a , _a ) lowerCAmelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase_ = torch.exp(torch.linspace(math.log(_a ) , math.log(_a ) , _a ) ) lowerCAmelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __a ( self , _a , _a ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __a ( self , _a , _a , _a , _a = None , _a = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) lowerCAmelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase_ = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase_ = self.get_adjacent_sigma(_a , _a ).to(sample.device ) lowerCAmelCase_ = torch.zeros_like(_a ) lowerCAmelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase_ = diffusion.unsqueeze(-1 ) lowerCAmelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_a , device=sample.device , dtype=sample.dtype ) lowerCAmelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_a , prev_sample_mean=_a ) def __a ( self , _a , _a , _a = None , _a = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_a ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase_ = step_size.unsqueeze(-1 ) lowerCAmelCase_ = sample + step_size * model_output lowerCAmelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __a ( self , _a , _a , _a , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase_ = timesteps.to(original_samples.device ) lowerCAmelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_a ) * sigmas[:, None, None, None] ) lowerCAmelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Union[str, Any]: return self.config.num_train_timesteps
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase__ = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = DDIMPipeline lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ = False def __a ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) lowerCAmelCase_ = DDIMScheduler() lowerCAmelCase_ = {"unet": unet, "scheduler": scheduler} return components def __a ( self , _a , _a=0 ) -> List[Any]: if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = pipe(**_a ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowerCAmelCase_ = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) def __a ( self ) -> Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self ) -> Union[str, Any]: super().test_save_load_local(expected_max_difference=3E-3 ) def __a ( self ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __a ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "google/ddpm-cifar10-32" lowerCAmelCase_ = UNetaDModel.from_pretrained(_a ) lowerCAmelCase_ = DDIMScheduler() lowerCAmelCase_ = DDIMPipeline(unet=_a , scheduler=_a ) ddim.to(_a ) ddim.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = ddim(generator=_a , eta=0.0 , output_type="numpy" ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "google/ddpm-ema-bedroom-256" lowerCAmelCase_ = UNetaDModel.from_pretrained(_a ) lowerCAmelCase_ = DDIMScheduler.from_pretrained(_a ) lowerCAmelCase_ = DDIMPipeline(unet=_a , scheduler=_a ) ddpm.to(_a ) ddpm.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = ddpm(generator=_a , output_type="numpy" ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
def A(__a: int ): lowerCAmelCase_ = int(__a ) if n_element < 1: lowerCAmelCase_ = ValueError("a should be a positive number" ) raise my_error lowerCAmelCase_ = [1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = (0, 0, 0) lowerCAmelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCamelCase__ = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') lowerCamelCase__ = hamming(int(n)) print('''-----------------------------------------------------''') print(F'''The list with nth numbers is: {hamming_numbers}''') print('''-----------------------------------------------------''')
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A(__a: Union[str, Any] , __a: Tuple ): assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A(__a: Any , __a: int , __a: int ): lowerCAmelCase_ = tmp_path / "cache" lowerCAmelCase_ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_ = TextDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_text_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A(__a: Optional[int] , __a: Tuple , __a: List[str] ): lowerCAmelCase_ = tmp_path / "cache" lowerCAmelCase_ = {"text": "string"} lowerCAmelCase_ = features.copy() if features else default_expected_features lowerCAmelCase_ = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = TextDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_text_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A(__a: Optional[Any] , __a: Tuple , __a: Optional[int] ): lowerCAmelCase_ = tmp_path / "cache" lowerCAmelCase_ = {"text": "string"} lowerCAmelCase_ = TextDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_text_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def A(__a: Union[str, Any] , __a: List[Any] , __a: str ): if issubclass(__a , __a ): lowerCAmelCase_ = text_path elif issubclass(__a , __a ): lowerCAmelCase_ = [text_path] lowerCAmelCase_ = tmp_path / "cache" lowerCAmelCase_ = {"text": "string"} lowerCAmelCase_ = TextDatasetReader(__a , cache_dir=__a ).read() _check_text_dataset(__a , __a ) def A(__a: Dict , __a: List[str] , __a: Optional[Any]=("train",) ): assert isinstance(__a , __a ) for split in splits: lowerCAmelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A(__a: Tuple , __a: str , __a: str ): lowerCAmelCase_ = tmp_path / "cache" lowerCAmelCase_ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_ = TextDatasetReader({"train": text_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_text_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A(__a: Any , __a: int , __a: Dict ): lowerCAmelCase_ = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase_ = {"text": "string"} lowerCAmelCase_ = features.copy() if features else default_expected_features lowerCAmelCase_ = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = TextDatasetReader({"train": text_path} , features=__a , cache_dir=__a ).read() _check_text_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A(__a: Any , __a: Union[str, Any] , __a: Union[str, Any] ): if split: lowerCAmelCase_ = {split: text_path} else: lowerCAmelCase_ = "train" lowerCAmelCase_ = {"train": text_path, "test": text_path} lowerCAmelCase_ = tmp_path / "cache" lowerCAmelCase_ = {"text": "string"} lowerCAmelCase_ = TextDatasetReader(__a , cache_dir=__a ).read() _check_text_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = TypeVar('''DatasetType''', Dataset, IterableDataset) def A(__a: List[DatasetType] , __a: Optional[List[float]] = None , __a: Optional[int] = None , __a: Optional[DatasetInfo] = None , __a: Optional[NamedSplit] = None , __a: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " "is an empty dataset dictionary." ) raise ValueError( F"Dataset at position {i} has at least one split: {list(__a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}." ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) else: return _interleave_iterable_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) def A(__a: List[DatasetType] , __a: Optional[DatasetInfo] = None , __a: Optional[NamedSplit] = None , __a: int = 0 , ): if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " "is an empty dataset dictionary." ) raise ValueError( F"Dataset at position {i} has at least one split: {list(__a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}." ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__a , info=__a , split=__a , axis=__a ) else: return _concatenate_iterable_datasets(__a , info=__a , split=__a , axis=__a )
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __magic_name__ (__lowercase ): def __init__( self , _a ) -> Optional[Any]: lowerCAmelCase_ = data def __iter__( self ) -> int: for element in self.data: yield element def A(__a: Union[str, Any]=True ): lowerCAmelCase_ = Accelerator(even_batches=__a ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def A(__a: Accelerator , __a: int , __a: int , __a: bool = False ): if iterable: lowerCAmelCase_ = DummyIterableDataset(torch.as_tensor(range(__a ) ) ) else: lowerCAmelCase_ = TensorDataset(torch.as_tensor(range(__a ) ) ) lowerCAmelCase_ = DataLoader(__a , batch_size=__a ) lowerCAmelCase_ = accelerator.prepare(__a ) return dl def A(__a: Accelerator , __a: int , __a: int , __a: List[int] , __a: List[int] , ): lowerCAmelCase_ = create_dataloader(accelerator=__a , dataset_size=__a , batch_size=__a ) lowerCAmelCase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def A(): lowerCAmelCase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def A(): lowerCAmelCase_ = create_accelerator(even_batches=__a ) verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def A(): lowerCAmelCase_ = create_accelerator(even_batches=__a ) lowerCAmelCase_ = torch.nn.Linear(1 , 1 ) lowerCAmelCase_ = accelerator.prepare(__a ) lowerCAmelCase_ = create_dataloader(__a , dataset_size=3 , batch_size=1 ) lowerCAmelCase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__a ): lowerCAmelCase_ = ddp_model(batch[0].float() ) lowerCAmelCase_ = output.sum() loss.backward() batch_idxs.append(__a ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def A(__a: List[str] ): with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __a ) assert "only supported for multi-GPU" in str(w[-1].message ) def A(): lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = create_accelerator(even_batches=__a ) lowerCAmelCase_ = torch.nn.Linear(1 , 1 ) lowerCAmelCase_ = accelerator.prepare(__a ) lowerCAmelCase_ = create_dataloader(__a , dataset_size=3 , batch_size=1 ) lowerCAmelCase_ = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): lowerCAmelCase_ = train_dl.batch_sampler.even_batches lowerCAmelCase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def A(): lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = create_accelerator(even_batches=__a ) lowerCAmelCase_ = torch.nn.Linear(1 , 1 ) lowerCAmelCase_ = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) lowerCAmelCase_ = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): lowerCAmelCase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def A(): lowerCAmelCase_ = create_accelerator() lowerCAmelCase_ = torch.nn.Linear(1 , 1 ) lowerCAmelCase_ = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): pass assert issubclass(w[-1].category , __a ) assert "only supported for map-style datasets" in str(w[-1].message ) def A(): lowerCAmelCase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowerCAmelCase_ = accelerator.state.distributed_type lowerCAmelCase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__a ) lowerCAmelCase_ = original_state if __name__ == "__main__": main()
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __a ( *_a , **_a ) -> Tuple: pass @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __a ( self , _a , _a , _a ) -> Union[str, Any]: lowerCAmelCase_ = ObjectDetectionPipeline(model=_a , image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __a ( self , _a , _a ) -> Optional[Any]: lowerCAmelCase_ = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { "score": ANY(_a ), "label": ANY(_a ), "box": {"xmin": ANY(_a ), "ymin": ANY(_a ), "xmax": ANY(_a ), "ymax": ANY(_a )}, } , ) import datasets lowerCAmelCase_ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowerCAmelCase_ = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowerCAmelCase_ = object_detector(_a , threshold=0.0 ) self.assertEqual(len(_a ) , len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { "score": ANY(_a ), "label": ANY(_a ), "box": {"xmin": ANY(_a ), "ymin": ANY(_a ), "xmax": ANY(_a ), "ymax": ANY(_a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __a ( self ) -> Union[str, Any]: pass @require_torch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "hf-internal-testing/tiny-detr-mobilenetsv3" lowerCAmelCase_ = AutoModelForObjectDetection.from_pretrained(_a ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(_a ) lowerCAmelCase_ = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __a ( self ) -> int: lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = AutoModelForObjectDetection.from_pretrained(_a ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(_a ) lowerCAmelCase_ = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __a ( self ) -> Tuple: lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = pipeline("object-detection" , model=_a ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = 0.9_9_8_5 lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = pipeline("object-detection" , model=_a ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=_a ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __a ( self ) -> Tuple: lowerCAmelCase_ = "Narsil/layoutlmv3-finetuned-funsd" lowerCAmelCase_ = 0.9_9_9_3 lowerCAmelCase_ = pipeline("object-detection" , model=_a , threshold=_a ) lowerCAmelCase_ = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(R'''digital_image_processing/image_data/lena_small.jpg''') lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def A(): lowerCAmelCase_ = cn.convert_to_negative(__a ) # assert negative_img array for at least one True assert negative_img.any() def A(): with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(__a , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def A(): lowerCAmelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def A(): lowerCAmelCase_ = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase_ = canny.canny(__a ) # assert canny array for at least one True assert canny_array.any() def A(): assert gg.gaussian_filter(__a , 5 , sigma=0.9 ).all() def A(): # laplace diagonals lowerCAmelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase_ = conv.img_convolve(__a , __a ).astype(__a ) assert res.any() def A(): assert med.median_filter(__a , 3 ).any() def A(): lowerCAmelCase_ , lowerCAmelCase_ = sob.sobel_filter(__a ) assert grad.any() and theta.any() def A(): lowerCAmelCase_ = sp.make_sepia(__a , 20 ) assert sepia.all() def A(__a: str = "digital_image_processing/image_data/lena_small.jpg" ): lowerCAmelCase_ = bs.Burkes(imread(__a , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def A(__a: str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCAmelCase_ = rs.NearestNeighbour(imread(__a , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def A(): lowerCAmelCase_ = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. lowerCAmelCase_ = imread(__a , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = image[x_coordinate][y_coordinate] lowerCAmelCase_ = lbp.get_neighbors_pixel( __a , __a , __a , __a ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase_ = lbp.local_binary_value(__a , __a , __a ) assert lbp_image.any()
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=True , _a=False , _a=False , _a=False , _a=2 , _a=99 , _a=0 , _a=32 , _a=5 , _a=4 , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.0_2 , _a=2 , _a=4 , _a="last" , _a=True , _a=None , _a=0 , ) -> Union[str, Any]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_lengths lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = gelu_activation lowerCAmelCase_ = sinusoidal_embeddings lowerCAmelCase_ = causal lowerCAmelCase_ = asm lowerCAmelCase_ = n_langs lowerCAmelCase_ = vocab_size lowerCAmelCase_ = n_special lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = summary_type lowerCAmelCase_ = use_proj lowerCAmelCase_ = scope lowerCAmelCase_ = bos_token_id def __a ( self ) -> Dict: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_input_lengths: lowerCAmelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self ) -> List[str]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]: lowerCAmelCase_ = XLMModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , lengths=_a , langs=_a ) lowerCAmelCase_ = model(_a , langs=_a ) lowerCAmelCase_ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Optional[int]: lowerCAmelCase_ = XLMWithLMHeadModel(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[Any]: lowerCAmelCase_ = XLMForQuestionAnsweringSimple(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) lowerCAmelCase_ = model(_a , start_positions=_a , end_positions=_a ) lowerCAmelCase_ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]: lowerCAmelCase_ = XLMForQuestionAnswering(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) lowerCAmelCase_ = model( _a , start_positions=_a , end_positions=_a , cls_index=_a , is_impossible=_a , p_mask=_a , ) lowerCAmelCase_ = model( _a , start_positions=_a , end_positions=_a , cls_index=_a , is_impossible=_a , ) ((lowerCAmelCase_ ) , ) = result_with_labels.to_tuple() lowerCAmelCase_ = model(_a , start_positions=_a , end_positions=_a ) ((lowerCAmelCase_ ) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int: lowerCAmelCase_ = XLMForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) lowerCAmelCase_ = model(_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Any: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = XLMForTokenClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Tuple: lowerCAmelCase_ = self.num_choices lowerCAmelCase_ = XLMForMultipleChoice(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class __magic_name__ (__lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCamelCase__ = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self , _a , _a , _a , _a , _a ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self , _a , _a , _a=False ) -> str: lowerCAmelCase_ = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = XLMModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , emb_dim=37 ) def __a ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_a ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_a ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_a ) def __a ( self , _a , _a , _a , _a , _a , _a=False , _a=1 ) -> List[str]: self.assertIsInstance(_a , _a ) self.assertListEqual( [isinstance(_a , _a ) for iter_attentions in attentions] , [True] * len(_a ) ) self.assertEqual(len(_a ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_a ): # adds PAD dummy token lowerCAmelCase_ = min_length + idx + 1 lowerCAmelCase_ = min_length + idx + 1 lowerCAmelCase_ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_a ) ) def __a ( self , _a , _a , _a , _a , _a , _a=False , _a=1 ) -> str: self.assertIsInstance(_a , _a ) self.assertListEqual( [isinstance(_a , _a ) for iter_hidden_states in hidden_states] , [True] * len(_a ) , ) self.assertEqual(len(_a ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_a ): # adds PAD dummy token lowerCAmelCase_ = min_length + idx + 1 lowerCAmelCase_ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_a ) , ) pass @slow def __a ( self ) -> Dict: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = XLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __magic_name__ (unittest.TestCase ): @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_a ) lowerCAmelCase_ = torch.tensor([[14, 447]] , dtype=torch.long , device=_a ) # the president lowerCAmelCase_ = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowerCAmelCase_ = model.generate(_a , do_sample=_a ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _a )
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = RobertaTokenizer lowerCamelCase__ = RobertaTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {'''cls_token''': '''<s>'''} def __a ( self ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCAmelCase_ = dict(zip(_a , range(len(_a ) ) ) ) lowerCAmelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ = {"unk_token": "<unk>"} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_a ) ) def __a ( self , **_a ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def __a ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __a ( self , _a ) -> Dict: lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = "lower newer" return input_text, output_text def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ = tokenizer.tokenize(_a ) # , add_prefix_space=True) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def __a ( self ) -> int: lowerCAmelCase_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=_a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=_a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def __a ( self ) -> int: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("roberta-base" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode( "sequence builders" , add_special_tokens=_a , add_prefix_space=_a ) lowerCAmelCase_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=_a , add_prefix_space=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = "Encode this sequence." lowerCAmelCase_ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_a , _a ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_a , _a ) # Testing spaces after special tokens lowerCAmelCase_ = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(_a , lstrip=_a , rstrip=_a )} ) # mask token has a left space lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(_a ) lowerCAmelCase_ = "Encode <mask> sequence" lowerCAmelCase_ = "Encode <mask>sequence" lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = encoded.index(_a ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = encoded.index(_a ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_a , _a ) def __a ( self ) -> Any: pass def __a ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = "A, <mask> AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) lowerCAmelCase_ = tokenizer_p.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( _a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __a ( self ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCAmelCase_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , _a ) self.assertEqual(post_processor_state["add_prefix_space"] , _a ) self.assertEqual(post_processor_state["trim_offsets"] , _a ) def __a ( self ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase_ = f"{text_of_1_token} {text_of_1_token}" lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCAmelCase_ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCAmelCase_ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCAmelCase_ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ), len(_a ) + 1 + len(_a )) , ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCAmelCase_ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ), len(_a ) + 1 + len(_a )) , ) lowerCAmelCase_ = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCAmelCase_ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCAmelCase_ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) , ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCAmelCase_ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) , )
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = BarthezTokenizer lowerCamelCase__ = BarthezTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __a ( self ) -> List[str]: super().setUp() lowerCAmelCase_ = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_a ) lowerCAmelCase_ = tokenizer def __a ( self ) -> Any: lowerCAmelCase_ = "<pad>" lowerCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __a ( self ) -> List[str]: lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_a ) , 101122 ) def __a ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def __a ( self ) -> int: lowerCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCAmelCase_ = [0, 57, 3018, 70307, 91, 2] lowerCAmelCase_ = self.tokenizer( _a , max_length=len(_a ) , padding=_a , truncation=_a , return_tensors="pt" ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(_a , _a ) def __a ( self ) -> int: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "I was born in 92000, and this is falsé." lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) @slow def __a ( self ) -> Dict: # fmt: off lowerCAmelCase_ = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCAmelCase_ = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_a , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=_a , )
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): def __init__( self , *_a , **_a ) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , _a , ) super().__init__(*_a , **_a )
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
lowerCamelCase__ = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def A(__a: float ): assert type(__a ) in (int, float) and decimal == int(__a ) lowerCAmelCase_ = int(__a ) lowerCAmelCase_ = "" lowerCAmelCase_ = False if decimal < 0: lowerCAmelCase_ = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ = divmod(__a , 16 ) lowerCAmelCase_ = values[remainder] + hexadecimal lowerCAmelCase_ = "0x" + hexadecimal if negative: lowerCAmelCase_ = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __magic_name__ (unittest.TestCase ): def __init__( self , _a ) -> Any: lowerCAmelCase_ = parent def __a ( self ) -> Tuple: return {} def A(): lowerCAmelCase_ = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" lowerCAmelCase_ = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MarkupLMFeatureExtractor if is_bsa_available() else None def __a ( self ) -> List[str]: lowerCAmelCase_ = MarkupLMFeatureExtractionTester(self ) @property def __a ( self ) -> Optional[int]: return self.feature_extract_tester.prepare_feat_extract_dict() def __a ( self ) -> Dict: # Initialize feature_extractor lowerCAmelCase_ = self.feature_extraction_class() # Test not batched input lowerCAmelCase_ = get_html_strings()[0] lowerCAmelCase_ = feature_extractor(_a ) # fmt: off lowerCAmelCase_ = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] lowerCAmelCase_ = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , _a ) self.assertEqual(encoding.xpaths , _a ) # Test batched lowerCAmelCase_ = get_html_strings() lowerCAmelCase_ = feature_extractor(_a ) # fmt: off lowerCAmelCase_ = expected_nodes + [["My First Heading", "My first paragraph."]] lowerCAmelCase_ = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _a ) self.assertEqual(encoding.xpaths , _a )
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase (__lowercase ): lowerCamelCase__ = '''encoder-decoder''' lowerCamelCase__ = True def __init__( self , **_a ) -> Union[str, Any]: super().__init__(**_a ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCAmelCase_ = kwargs.pop("encoder" ) lowerCAmelCase_ = encoder_config.pop("model_type" ) lowerCAmelCase_ = kwargs.pop("decoder" ) lowerCAmelCase_ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ = AutoConfig.for_model(_a , **_a ) lowerCAmelCase_ = AutoConfig.for_model(_a , **_a ) lowerCAmelCase_ = True @classmethod def __a ( cls , _a , _a , **_a ) -> PretrainedConfig: logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowerCAmelCase_ = True lowerCAmelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.encoder.to_dict() lowerCAmelCase_ = self.decoder.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def A(__a: Any , __a: Optional[int] ): lowerCAmelCase_ = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) lowerCAmelCase_ = DatasetInfosDict.from_directory(__a ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ), ] , ) def A(__a: List[Any] , __a: DatasetInfo ): lowerCAmelCase_ = str(__a ) dataset_info.write_to_directory(__a ) lowerCAmelCase_ = DatasetInfo.from_directory(__a ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__a , "dataset_info.json" ) ) def A(): lowerCAmelCase_ = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowerCAmelCase_ = dataset_info._to_yaml_dict() assert sorted(__a ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase_ = yaml.safe_dump(__a ) lowerCAmelCase_ = yaml.safe_load(__a ) assert dataset_info_yaml_dict == reloaded def A(): lowerCAmelCase_ = DatasetInfo() lowerCAmelCase_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1337 ), } ), ] , ) def A(__a: List[str] , __a: DatasetInfosDict ): lowerCAmelCase_ = str(__a ) dataset_infos_dict.write_to_directory(__a ) lowerCAmelCase_ = DatasetInfosDict.from_directory(__a ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__a , "README.md" ) )
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
def A(__a: int = 100_0000 ): lowerCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __a ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __magic_name__ (__lowercase ): lowerCamelCase__ = '''''' lowerCamelCase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase__ = None # compression type in fsspec. ex: "gzip" lowerCamelCase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _a = "" , _a = None , _a = None , **_a ) -> str: super().__init__(self , **_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase_ = fsspec.open( _a , mode="rb" , protocol=_a , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCAmelCase_ = os.path.basename(self.file.path.split("::" )[0] ) lowerCAmelCase_ = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) lowerCAmelCase_ = None @classmethod def __a ( cls , _a ) -> Optional[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_a ).lstrip("/" ) def __a ( self ) -> Tuple: if self.dir_cache is None: lowerCAmelCase_ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} lowerCAmelCase_ = {f["name"]: f} def __a ( self , _a ) -> List[str]: return self.file.open().read() def __a ( self , _a , _a = "rb" , _a=None , _a=True , _a=None , **_a , ) -> str: lowerCAmelCase_ = self._strip_protocol(_a ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bz2''' lowerCamelCase__ = '''bz2''' lowerCamelCase__ = '''.bz2''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''gzip''' lowerCamelCase__ = '''gzip''' lowerCamelCase__ = '''.gz''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''lz4''' lowerCamelCase__ = '''lz4''' lowerCamelCase__ = '''.lz4''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''xz''' lowerCamelCase__ = '''xz''' lowerCamelCase__ = '''.xz''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''zstd''' lowerCamelCase__ = '''zstd''' lowerCamelCase__ = '''.zst''' def __init__( self , _a , _a = "rb" , _a = None , _a = None , _a = DEFAULT_BLOCK_SIZE , **_a , ) -> Optional[Any]: super().__init__( fo=_a , mode=_a , target_protocol=_a , target_options=_a , block_size=_a , **_a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase_ = self.file.__enter__ class __magic_name__ : def __init__( self , _a ) -> int: lowerCAmelCase_ = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self , *_a , **_a ) -> Dict: self._file.__exit__(*_a , **_a ) def __iter__( self ) -> Optional[Any]: return iter(self._file ) def __a ( self ) -> Optional[int]: return next(self._file ) def __getattr__( self , _a ) -> Union[str, Any]: return getattr(self._file , _a ) def fixed_enter(*_a , **_a ): return WrappedFile(_enter(*_a , **_a ) ) lowerCAmelCase_ = fixed_enter
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
def A(__a: str , __a: str ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = [] for i in range(len(__a ) - pat_len + 1 ): lowerCAmelCase_ = True for j in range(__a ): if s[i + j] != pattern[j]: lowerCAmelCase_ = False break if match_found: position.append(__a ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = '''pytorch_model.bin''' @dataclasses.dataclass class __magic_name__ : lowerCamelCase__ = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) lowerCamelCase__ = dataclasses.field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class __magic_name__ : lowerCamelCase__ = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) lowerCamelCase__ = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) lowerCamelCase__ = dataclasses.field( default=__lowercase , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) lowerCamelCase__ = dataclasses.field( default=__lowercase , metadata={'''help''': '''The name of the task to train on.'''} , ) lowerCamelCase__ = dataclasses.field( default=__lowercase , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class __magic_name__ : lowerCamelCase__ = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) lowerCamelCase__ = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) lowerCamelCase__ = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) lowerCamelCase__ = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) lowerCamelCase__ = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) lowerCamelCase__ = dataclasses.field( default=__lowercase , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) lowerCamelCase__ = dataclasses.field( default=__lowercase , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) lowerCamelCase__ = dataclasses.field( default=__lowercase , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) lowerCamelCase__ = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) lowerCamelCase__ = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) lowerCamelCase__ = dataclasses.field( default=__lowercase , metadata={'''help''': '''Random seed for initialization.'''} , ) def A(__a: Optional[int] , __a: Tuple , __a: Any , __a: Tuple , __a: int , __a: Any ): lowerCAmelCase_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: lowerCAmelCase_ = dataset.filter(lambda __a : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowerCAmelCase_ = int(eval_result * len(__a ) ) print(__a ) lowerCAmelCase_ = dataset.sort("probability" , reverse=__a ) lowerCAmelCase_ = dataset.select(range(__a ) ) lowerCAmelCase_ = dataset.remove_columns(["label", "probability"] ) lowerCAmelCase_ = dataset.rename_column("prediction" , "label" ) lowerCAmelCase_ = dataset.map(lambda __a : {"label": idalabel[example["label"]]} ) lowerCAmelCase_ = dataset.shuffle(seed=args.seed ) lowerCAmelCase_ = os.path.join(__a , F"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(__a , index=__a ) else: dataset.to_json(__a ) def A(__a: List[Any] , __a: str , __a: Dict , __a: str , **__a: Union[str, Any] ): lowerCAmelCase_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowerCAmelCase_ = STModelArguments(model_name_or_path=__a ) lowerCAmelCase_ = STDataArguments(train_file=__a , infer_file=__a ) lowerCAmelCase_ = STTrainingArguments(output_dir=__a ) lowerCAmelCase_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__a ).items(): setattr(__a , __a , __a ) for key, value in kwargs.items(): if hasattr(__a , __a ): setattr(__a , __a , __a ) # Sanity checks lowerCAmelCase_ = {} lowerCAmelCase_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowerCAmelCase_ = args.train_file lowerCAmelCase_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowerCAmelCase_ = args.eval_file for key in data_files: lowerCAmelCase_ = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: lowerCAmelCase_ = extension else: assert extension == args.data_file_extension, F"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), F"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) lowerCAmelCase_ = F"{args.output_dir}/self-train_iter-{{}}".format lowerCAmelCase_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__a ) os.makedirs(__a , exist_ok=__a ) accelerator.wait_for_everyone() lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = 0 lowerCAmelCase_ = False # Show the progress bar lowerCAmelCase_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): lowerCAmelCase_ = data_dir_format(__a ) assert os.path.exists(__a ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowerCAmelCase_ = os.path.join(__a , "stage-1" ) lowerCAmelCase_ = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__a , __a ): arguments_dict.update({key: value} ) lowerCAmelCase_ = os.path.join(__a , "best-checkpoint" , __a ) if os.path.exists(__a ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __a , __a , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __a ) finetune(**__a ) accelerator.wait_for_everyone() assert os.path.exists(__a ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __a ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowerCAmelCase_ = os.path.join(__a , "best-checkpoint" ) lowerCAmelCase_ = os.path.join(__a , "stage-2" ) # Update arguments_dict lowerCAmelCase_ = model_path lowerCAmelCase_ = data_files["train"] lowerCAmelCase_ = current_output_dir lowerCAmelCase_ = os.path.join(__a , "best-checkpoint" , __a ) if os.path.exists(__a ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __a , __a , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __a ) finetune(**__a ) accelerator.wait_for_everyone() assert os.path.exists(__a ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __a ) lowerCAmelCase_ = iteration lowerCAmelCase_ = data_dir_format(iteration + 1 ) lowerCAmelCase_ = AutoConfig.from_pretrained(os.path.join(__a , "best-checkpoint" ) ) lowerCAmelCase_ = config.idalabel lowerCAmelCase_ = os.path.join(__a , "eval_results_best-checkpoint.json" ) lowerCAmelCase_ = os.path.join(__a , "test_results_best-checkpoint.json" ) assert os.path.exists(__a ) with open(__a , "r" ) as f: lowerCAmelCase_ = float(json.load(__a )[args.eval_metric] ) lowerCAmelCase_ = os.path.join(__a , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__a ) # Loading the dataset from local csv or json files. lowerCAmelCase_ = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] lowerCAmelCase_ = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__a , exist_ok=__a ) shutil.copy(__a , os.path.join(__a , F"eval_results_iter-{iteration}.json" ) ) if os.path.exists(__a ): shutil.copy(__a , os.path.join(__a , F"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(__a , __a , __a , __a , __a , __a ) accelerator.wait_for_everyone() lowerCAmelCase_ = os.path.join(__a , F"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: lowerCAmelCase_ = eval_result if best_iteration is None: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result lowerCAmelCase_ = 0 else: if new_eval_result == best_eval_result: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowerCAmelCase_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __a ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__a , F"eval_results_iter-{iteration}.json" ) , os.path.join(__a , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__a , F"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(__a , "eval_results_best-iteration.json" ) , )
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
from ..utils import DummyObject, requires_backends class __magic_name__ (metaclass=__lowercase ): lowerCamelCase__ = ['''note_seq'''] def __init__( self , *_a , **_a ) -> Optional[Any]: requires_backends(self , ["note_seq"] ) @classmethod def __a ( cls , *_a , **_a ) -> List[str]: requires_backends(cls , ["note_seq"] ) @classmethod def __a ( cls , *_a , **_a ) -> List[Any]: requires_backends(cls , ["note_seq"] )
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def A(__a: int , __a: Any=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def A(__a: int , __a: Tuple=0 ): lowerCAmelCase_ = [] for old_item in old_list: lowerCAmelCase_ = old_item.replace("in_layers.0" , "norm1" ) lowerCAmelCase_ = new_item.replace("in_layers.2" , "conv1" ) lowerCAmelCase_ = new_item.replace("out_layers.0" , "norm2" ) lowerCAmelCase_ = new_item.replace("out_layers.3" , "conv2" ) lowerCAmelCase_ = new_item.replace("emb_layers.1" , "time_emb_proj" ) lowerCAmelCase_ = new_item.replace("skip_connection" , "conv_shortcut" ) lowerCAmelCase_ = shave_segments(__a , n_shave_prefix_segments=__a ) mapping.append({"old": old_item, "new": new_item} ) return mapping def A(__a: int , __a: Union[str, Any]=0 ): lowerCAmelCase_ = [] for old_item in old_list: lowerCAmelCase_ = old_item lowerCAmelCase_ = new_item.replace("norm.weight" , "group_norm.weight" ) lowerCAmelCase_ = new_item.replace("norm.bias" , "group_norm.bias" ) lowerCAmelCase_ = new_item.replace("proj_out.weight" , "proj_attn.weight" ) lowerCAmelCase_ = new_item.replace("proj_out.bias" , "proj_attn.bias" ) lowerCAmelCase_ = shave_segments(__a , n_shave_prefix_segments=__a ) mapping.append({"old": old_item, "new": new_item} ) return mapping def A(__a: Optional[int] , __a: Any , __a: str , __a: List[Any]=None , __a: List[Any]=None , __a: Union[str, Any]=None ): assert isinstance(__a , __a ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowerCAmelCase_ = old_checkpoint[path] lowerCAmelCase_ = old_tensor.shape[0] // 3 lowerCAmelCase_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowerCAmelCase_ = old_tensor.shape[0] // config["num_head_channels"] // 3 lowerCAmelCase_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = old_tensor.split(channels // num_heads , dim=1 ) lowerCAmelCase_ = query.reshape(__a ) lowerCAmelCase_ = key.reshape(__a ) lowerCAmelCase_ = value.reshape(__a ) for path in paths: lowerCAmelCase_ = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowerCAmelCase_ = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) lowerCAmelCase_ = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) lowerCAmelCase_ = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: lowerCAmelCase_ = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowerCAmelCase_ = old_checkpoint[path["old"]][:, :, 0] else: lowerCAmelCase_ = old_checkpoint[path["old"]] def A(__a: Tuple , __a: str ): lowerCAmelCase_ = {} lowerCAmelCase_ = checkpoint["time_embed.0.weight"] lowerCAmelCase_ = checkpoint["time_embed.0.bias"] lowerCAmelCase_ = checkpoint["time_embed.2.weight"] lowerCAmelCase_ = checkpoint["time_embed.2.bias"] lowerCAmelCase_ = checkpoint["input_blocks.0.0.weight"] lowerCAmelCase_ = checkpoint["input_blocks.0.0.bias"] lowerCAmelCase_ = checkpoint["out.0.weight"] lowerCAmelCase_ = checkpoint["out.0.bias"] lowerCAmelCase_ = checkpoint["out.2.weight"] lowerCAmelCase_ = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the middle blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the output blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(__a ) } for i in range(1 , __a ): lowerCAmelCase_ = (i - 1) // (config["num_res_blocks"] + 1) lowerCAmelCase_ = (i - 1) % (config["num_res_blocks"] + 1) lowerCAmelCase_ = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] lowerCAmelCase_ = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: lowerCAmelCase_ = checkpoint[ F"input_blocks.{i}.0.op.weight" ] lowerCAmelCase_ = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue lowerCAmelCase_ = renew_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"input_blocks.{i}.0", "new": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} lowerCAmelCase_ = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path, resnet_op] , config=__a ) if len(__a ): lowerCAmelCase_ = renew_attention_paths(__a ) lowerCAmelCase_ = { "old": F"input_blocks.{i}.1", "new": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } lowerCAmelCase_ = { F"input_blocks.{i}.1.qkv.bias": { "key": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { "key": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path] , attention_paths_to_split=__a , config=__a , ) lowerCAmelCase_ = middle_blocks[0] lowerCAmelCase_ = middle_blocks[1] lowerCAmelCase_ = middle_blocks[2] lowerCAmelCase_ = renew_resnet_paths(__a ) assign_to_checkpoint(__a , __a , __a , config=__a ) lowerCAmelCase_ = renew_resnet_paths(__a ) assign_to_checkpoint(__a , __a , __a , config=__a ) lowerCAmelCase_ = renew_attention_paths(__a ) lowerCAmelCase_ = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( __a , __a , __a , attention_paths_to_split=__a , config=__a ) for i in range(__a ): lowerCAmelCase_ = i // (config["num_res_blocks"] + 1) lowerCAmelCase_ = i % (config["num_res_blocks"] + 1) lowerCAmelCase_ = [shave_segments(__a , 2 ) for name in output_blocks[i]] lowerCAmelCase_ = {} for layer in output_block_layers: lowerCAmelCase_ , lowerCAmelCase_ = layer.split("." )[0], shave_segments(__a , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__a ) else: lowerCAmelCase_ = [layer_name] if len(__a ) > 1: lowerCAmelCase_ = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] lowerCAmelCase_ = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] lowerCAmelCase_ = renew_resnet_paths(__a ) lowerCAmelCase_ = renew_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"output_blocks.{i}.0", "new": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowerCAmelCase_ = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) lowerCAmelCase_ = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] lowerCAmelCase_ = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(__a ) == 2: lowerCAmelCase_ = [] if len(__a ): lowerCAmelCase_ = renew_attention_paths(__a ) lowerCAmelCase_ = { "old": F"output_blocks.{i}.1", "new": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } lowerCAmelCase_ = { F"output_blocks.{i}.1.qkv.bias": { "key": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { "key": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=__a , ) else: lowerCAmelCase_ = renew_resnet_paths(__a , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowerCAmelCase_ = ".".join(["output_blocks", str(__a ), path["old"]] ) lowerCAmelCase_ = ".".join(["up_blocks", str(__a ), "resnets", str(__a ), path["new"]] ) lowerCAmelCase_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowerCamelCase__ = json.loads(f.read()) lowerCamelCase__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowerCamelCase__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowerCamelCase__ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) lowerCamelCase__ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) lowerCamelCase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (__lowercase ): lowerCamelCase__ = '''Speech2TextFeatureExtractor''' lowerCamelCase__ = '''Speech2TextTokenizer''' def __init__( self , _a , _a ) -> List[str]: super().__init__(_a , _a ) lowerCAmelCase_ = self.feature_extractor lowerCAmelCase_ = False def __call__( self , *_a , **_a ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCAmelCase_ = kwargs.pop("raw_speech" ) else: lowerCAmelCase_ = kwargs.pop("audio" , _a ) lowerCAmelCase_ = kwargs.pop("sampling_rate" , _a ) lowerCAmelCase_ = kwargs.pop("text" , _a ) if len(_a ) > 0: lowerCAmelCase_ = args[0] lowerCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCAmelCase_ = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , **_a ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase_ = encodings["input_ids"] return inputs def __a ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @contextmanager def __a ( self ) -> Optional[int]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer yield lowerCAmelCase_ = self.feature_extractor lowerCAmelCase_ = False
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCamelCase__ = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def A(__a: Any ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model lowerCAmelCase_ = list(s_dict.keys() ) for key in keys: lowerCAmelCase_ = r".*/layers_(\d+)" lowerCAmelCase_ = key if re.match(__a , __a ): lowerCAmelCase_ = re.sub(r"layers_(\d+)" , r"block/\1/layer" , __a ) lowerCAmelCase_ = r"(encoder|decoder)\/" if re.match(__a , __a ): lowerCAmelCase_ = re.match(__a , __a ).groups() if groups[0] == "encoder": lowerCAmelCase_ = re.sub(r"/mlp/" , r"/1/mlp/" , __a ) lowerCAmelCase_ = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , __a ) elif groups[0] == "decoder": lowerCAmelCase_ = re.sub(r"/mlp/" , r"/2/mlp/" , __a ) lowerCAmelCase_ = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , __a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCAmelCase_ = new_key.replace(__a , __a ) print(F"{key} -> {new_key}" ) lowerCAmelCase_ = s_dict.pop(__a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase_ = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase_ = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCAmelCase_ = s_dict[key].shape[0] lowerCAmelCase_ = s_dict[key] for idx in range(__a ): lowerCAmelCase_ = expert_weihts[idx] print(F"{key} -> {key.replace('expert/' , 'nested fstring' )}" ) s_dict.pop(__a ) return s_dict lowerCamelCase__ = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def A(__a: Optional[int] , __a: Union[str, Any] ): # Convert a google style config to the hugging face fromat import regex as re with open(__a , "r" ) as f: lowerCAmelCase_ = f.read() lowerCAmelCase_ = re.findall(r"(.*) = ([0-9.]*)" , __a ) lowerCAmelCase_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCAmelCase_ = float(__a ) if "." in value else int(__a ) lowerCAmelCase_ = re.findall(r"(.*activations) = \(\'(.*)\',\)" , __a )[0] lowerCAmelCase_ = str(activation[1] ) lowerCAmelCase_ = num_experts lowerCAmelCase_ = SwitchTransformersConfig(**__a ) return config def A(__a: List[Any] , __a: int , __a: Union[str, Any]=None , __a: Union[str, Any]="./" , __a: Dict=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) lowerCAmelCase_ = checkpoints.load_tax_checkpoint(__a ) if gin_file is not None: lowerCAmelCase_ = convert_gin_to_config(__a , __a ) else: lowerCAmelCase_ = SwitchTransformersConfig.from_pretrained(__a ) lowerCAmelCase_ = SwitchTransformersForConditionalGeneration(__a ) lowerCAmelCase_ = flax_params["target"] lowerCAmelCase_ = flatten_dict(__a , sep="/" ) lowerCAmelCase_ = rename_keys(__a ) lowerCAmelCase_ = unflatten_dict(__a , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__a , __a ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') lowerCamelCase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''trocr''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _a=50265 , _a=1024 , _a=12 , _a=16 , _a=4096 , _a="gelu" , _a=512 , _a=0.1 , _a=0.0 , _a=0.0 , _a=2 , _a=0.0_2 , _a=0.0 , _a=True , _a=False , _a=True , _a=True , _a=1 , _a=0 , _a=2 , **_a , ) -> Dict: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = d_model lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = activation_function lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = init_std lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = use_cache lowerCAmelCase_ = scale_embedding lowerCAmelCase_ = use_learned_position_embeddings lowerCAmelCase_ = layernorm_embedding super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
from __future__ import annotations def A(__a: str , __a: list[str] | None = None ): lowerCAmelCase_ = word_bank or [] # create a table lowerCAmelCase_ = len(__a ) + 1 lowerCAmelCase_ = [] for _ in range(__a ): table.append([] ) # seed value lowerCAmelCase_ = [[]] # because empty string has empty combination # iterate through the indices for i in range(__a ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__a )] == word: lowerCAmelCase_ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__a )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__a )]: combination.reverse() return table[len(__a )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
def A(__a: int ): if isinstance(__a , __a ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(__a , __a ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" lowerCAmelCase_ = False if num < 0: lowerCAmelCase_ = True lowerCAmelCase_ = -num lowerCAmelCase_ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__a ) for e in binary ) return "0b" + "".join(str(__a ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''deta''' lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _a=None , _a=900 , _a=2048 , _a=6 , _a=2048 , _a=8 , _a=6 , _a=1024 , _a=8 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.0_2 , _a=1.0 , _a=True , _a=False , _a="sine" , _a=5 , _a=4 , _a=4 , _a=True , _a=300 , _a=True , _a=True , _a=1 , _a=5 , _a=2 , _a=1 , _a=1 , _a=5 , _a=2 , _a=0.1 , _a=0.2_5 , **_a , ) -> List[Any]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase_ = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(_a , _a ): lowerCAmelCase_ = backbone_config.pop("model_type" ) lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ = config_class.from_dict(_a ) lowerCAmelCase_ = backbone_config lowerCAmelCase_ = num_queries lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = init_xavier_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = auxiliary_loss lowerCAmelCase_ = position_embedding_type # deformable attributes lowerCAmelCase_ = num_feature_levels lowerCAmelCase_ = encoder_n_points lowerCAmelCase_ = decoder_n_points lowerCAmelCase_ = two_stage lowerCAmelCase_ = two_stage_num_proposals lowerCAmelCase_ = with_box_refine lowerCAmelCase_ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher lowerCAmelCase_ = class_cost lowerCAmelCase_ = bbox_cost lowerCAmelCase_ = giou_cost # Loss coefficients lowerCAmelCase_ = mask_loss_coefficient lowerCAmelCase_ = dice_loss_coefficient lowerCAmelCase_ = bbox_loss_coefficient lowerCAmelCase_ = giou_loss_coefficient lowerCAmelCase_ = eos_coefficient lowerCAmelCase_ = focal_alpha super().__init__(is_encoder_decoder=_a , **_a ) @property def __a ( self ) -> int: return self.encoder_attention_heads @property def __a ( self ) -> int: return self.d_model def __a ( self ) -> Tuple: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.backbone_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''align_text_model''' def __init__( self , _a=30522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.0_2 , _a=1E-12 , _a=0 , _a="absolute" , _a=True , **_a , ) -> List[str]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = pad_token_id @classmethod def __a ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowerCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''align_vision_model''' def __init__( self , _a = 3 , _a = 600 , _a = 2.0 , _a = 3.1 , _a = 8 , _a = [3, 3, 5, 3, 5, 5, 3] , _a = [32, 16, 24, 40, 80, 112, 192] , _a = [16, 24, 40, 80, 112, 192, 320] , _a = [] , _a = [1, 2, 2, 2, 1, 2, 1] , _a = [1, 2, 2, 3, 3, 4, 1] , _a = [1, 6, 6, 6, 6, 6, 6] , _a = 0.2_5 , _a = "swish" , _a = 2560 , _a = "mean" , _a = 0.0_2 , _a = 0.0_0_1 , _a = 0.9_9 , _a = 0.2 , **_a , ) -> int: super().__init__(**_a ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = width_coefficient lowerCAmelCase_ = depth_coefficient lowerCAmelCase_ = depth_divisor lowerCAmelCase_ = kernel_sizes lowerCAmelCase_ = in_channels lowerCAmelCase_ = out_channels lowerCAmelCase_ = depthwise_padding lowerCAmelCase_ = strides lowerCAmelCase_ = num_block_repeats lowerCAmelCase_ = expand_ratios lowerCAmelCase_ = squeeze_expansion_ratio lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dim lowerCAmelCase_ = pooling_type lowerCAmelCase_ = initializer_range lowerCAmelCase_ = batch_norm_eps lowerCAmelCase_ = batch_norm_momentum lowerCAmelCase_ = drop_connect_rate lowerCAmelCase_ = sum(_a ) * 4 @classmethod def __a ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowerCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self , _a=None , _a=None , _a=640 , _a=1.0 , _a=0.0_2 , **_a , ) -> Any: super().__init__(**_a ) if text_config is None: lowerCAmelCase_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: lowerCAmelCase_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) lowerCAmelCase_ = AlignTextConfig(**_a ) lowerCAmelCase_ = AlignVisionConfig(**_a ) lowerCAmelCase_ = projection_dim lowerCAmelCase_ = temperature_init_value lowerCAmelCase_ = initializer_range @classmethod def __a ( cls , _a , _a , **_a ) -> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.text_config.to_dict() lowerCAmelCase_ = self.vision_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase__ = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __magic_name__ (tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Union[str, Any]: super().__init__() lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = max_length lowerCAmelCase_ = vocab lowerCAmelCase_ = merges lowerCAmelCase_ = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def __a ( cls , _a , *_a , **_a ) -> List[Any]: lowerCAmelCase_ = [" ".join(_a ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase_ = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def __a ( cls , _a , *_a , **_a ) -> List[str]: lowerCAmelCase_ = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def __a ( cls , _a ) -> Tuple: return cls(**_a ) def __a ( self ) -> List[str]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __a ( self , _a , _a = None ) -> List[str]: lowerCAmelCase_ = self.tf_tokenizer(_a ) lowerCAmelCase_ = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase_ , lowerCAmelCase_ = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def A(__a: Dict , __a: Optional[Any] , __a: Union[str, Any] ): # Initialise PyTorch model lowerCAmelCase_ = MobileBertConfig.from_json_file(__a ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase_ = MobileBertForPreTraining(__a ) # Load weights from tf checkpoint lowerCAmelCase_ = load_tf_weights_in_mobilebert(__a , __a , __a ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
lowerCamelCase__ = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) lowerCamelCase__ = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def A(__a: float , __a: str , __a: str ): lowerCAmelCase_ = from_type.lower().strip("s" ) lowerCAmelCase_ = to_type.lower().strip("s" ) lowerCAmelCase_ = UNIT_SYMBOL.get(__a , __a ) lowerCAmelCase_ = UNIT_SYMBOL.get(__a , __a ) if from_sanitized not in METRIC_CONVERSION: lowerCAmelCase_ = ( F"Invalid 'from_type' value: {from_type!r}.\n" F"Conversion abbreviations are: {', '.join(__a )}" ) raise ValueError(__a ) if to_sanitized not in METRIC_CONVERSION: lowerCAmelCase_ = ( F"Invalid 'to_type' value: {to_type!r}.\n" F"Conversion abbreviations are: {', '.join(__a )}" ) raise ValueError(__a ) lowerCAmelCase_ = METRIC_CONVERSION[from_sanitized] lowerCAmelCase_ = METRIC_CONVERSION[to_sanitized] lowerCAmelCase_ = 1 if from_exponent > to_exponent: lowerCAmelCase_ = from_exponent - to_exponent else: lowerCAmelCase_ = -(to_exponent - from_exponent) return value * pow(10 , __a ) if __name__ == "__main__": from doctest import testmod testmod()
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
import argparse import json from tqdm import tqdm def A(): lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__a , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__a , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__a , help="where to store parsed gold_data_path file" , ) lowerCAmelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: lowerCAmelCase_ = json.load(__a ) for dpr_record in tqdm(__a ): lowerCAmelCase_ = dpr_record["question"] lowerCAmelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__a ) + "\n" ) if __name__ == "__main__": main()
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''unispeech''' def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.1 , _a=0.1 , _a=0.0_2 , _a=1E-5 , _a="group" , _a="gelu" , _a=(512, 512, 512, 512, 512, 512, 512) , _a=(5, 2, 2, 2, 2, 2, 2) , _a=(10, 3, 3, 3, 3, 2, 2) , _a=False , _a=128 , _a=16 , _a=False , _a=True , _a=0.0_5 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a=320 , _a=2 , _a=0.1 , _a=100 , _a=256 , _a=256 , _a=0.1 , _a="mean" , _a=False , _a=False , _a=256 , _a=80 , _a=0 , _a=1 , _a=2 , _a=0.5 , **_a , ) -> Dict: super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = feat_extract_norm lowerCAmelCase_ = feat_extract_activation lowerCAmelCase_ = list(_a ) lowerCAmelCase_ = list(_a ) lowerCAmelCase_ = list(_a ) lowerCAmelCase_ = conv_bias lowerCAmelCase_ = num_conv_pos_embeddings lowerCAmelCase_ = num_conv_pos_embedding_groups lowerCAmelCase_ = len(self.conv_dim ) lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = feat_proj_dropout lowerCAmelCase_ = final_dropout lowerCAmelCase_ = layerdrop lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_ctc_classes lowerCAmelCase_ = vocab_size lowerCAmelCase_ = do_stable_layer_norm lowerCAmelCase_ = use_weighted_layer_sum lowerCAmelCase_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ = apply_spec_augment lowerCAmelCase_ = mask_time_prob lowerCAmelCase_ = mask_time_length lowerCAmelCase_ = mask_time_min_masks lowerCAmelCase_ = mask_feature_prob lowerCAmelCase_ = mask_feature_length lowerCAmelCase_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase_ = num_codevectors_per_group lowerCAmelCase_ = num_codevector_groups lowerCAmelCase_ = contrastive_logits_temperature lowerCAmelCase_ = feat_quantizer_dropout lowerCAmelCase_ = num_negatives lowerCAmelCase_ = codevector_dim lowerCAmelCase_ = proj_codevector_dim lowerCAmelCase_ = diversity_loss_weight # ctc loss lowerCAmelCase_ = ctc_loss_reduction lowerCAmelCase_ = ctc_zero_infinity # pretraining loss lowerCAmelCase_ = replace_prob @property def __a ( self ) -> str: return functools.reduce(operator.mul , self.conv_stride , 1 )
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
import colorsys from PIL import Image # type: ignore def A(__a: float , __a: float , __a: int ): lowerCAmelCase_ = x lowerCAmelCase_ = y for step in range(__a ): # noqa: B007 lowerCAmelCase_ = a * a - b * b + x lowerCAmelCase_ = 2 * a * b + y lowerCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A(__a: float ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A(__a: float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(__a , 1 , 1 ) ) def A(__a: int = 800 , __a: int = 600 , __a: float = -0.6 , __a: float = 0 , __a: float = 3.2 , __a: int = 50 , __a: bool = True , ): lowerCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) lowerCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(__a ): for image_y in range(__a ): # determine the figure-coordinates based on the image-coordinates lowerCAmelCase_ = figure_width / image_width * image_height lowerCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCAmelCase_ = get_distance(__a , __a , __a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCAmelCase_ = get_color_coded_rgb(__a ) else: lowerCAmelCase_ = get_black_and_white_rgb(__a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase__ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''YolosFeatureExtractor'''] lowerCamelCase__ = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
from __future__ import annotations def A(__a: float , __a: float , __a: float ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def A(__a: float , __a: float , __a: float , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def A(__a: float , __a: float , __a: float , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( __a , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __magic_name__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , ) -> List[Any]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope def __a ( self ) -> int: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self ) -> Tuple: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: lowerCAmelCase_ = LlamaModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a ) lowerCAmelCase_ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[Any]: lowerCAmelCase_ = True lowerCAmelCase_ = LlamaModel(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) lowerCAmelCase_ = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) lowerCAmelCase_ = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> str: lowerCAmelCase_ = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int: lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass lowerCAmelCase_ = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) lowerCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase_ = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["hidden_states"][0] lowerCAmelCase_ = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["hidden_states"][0] # select random slice lowerCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ (__lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowerCamelCase__ = (LlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> Optional[int]: lowerCAmelCase_ = LlamaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , hidden_size=37 ) def __a ( self ) -> int: self.config_tester.run_common_tests() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __a ( self ) -> int: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*_a ) def __a ( self ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = input_dict["input_ids"] lowerCAmelCase_ = input_ids.ne(1 ).to(_a ) lowerCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = "single_label_classification" lowerCAmelCase_ = input_dict["input_ids"] lowerCAmelCase_ = input_ids.ne(1 ).to(_a ) lowerCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = "multi_label_classification" lowerCAmelCase_ = input_dict["input_ids"] lowerCAmelCase_ = input_ids.ne(1 ).to(_a ) lowerCAmelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase_ = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def __a ( self ) -> Tuple: pass @parameterized.expand([("linear",), ("dynamic",)] ) def __a ( self , _a ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = LlamaModel(_a ) original_model.to(_a ) original_model.eval() lowerCAmelCase_ = original_model(_a ).last_hidden_state lowerCAmelCase_ = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = {"type": scaling_type, "factor": 10.0} lowerCAmelCase_ = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() lowerCAmelCase_ = scaled_model(_a ).last_hidden_state lowerCAmelCase_ = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a , _a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_a , _a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a , _a , atol=1E-5 ) ) @require_torch class __magic_name__ (unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __a ( self ) -> Any: lowerCAmelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCAmelCase_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) lowerCAmelCase_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase_ = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase_ = torch.tensor([-12.8281, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -12.8281, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __a ( self ) -> Any: lowerCAmelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCAmelCase_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) lowerCAmelCase_ = model(torch.tensor(_a ) ) # Expected mean on dim = -1 lowerCAmelCase_ = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase_ = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCAmelCase_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) lowerCAmelCase_ = model(torch.tensor(_a ) ) # Expected mean on dim = -1 lowerCAmelCase_ = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase_ = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def __a ( self ) -> Dict: lowerCAmelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCAmelCase_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) lowerCAmelCase_ = model(torch.tensor(_a ) ) lowerCAmelCase_ = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase_ = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" lowerCAmelCase_ = "Simply put, the theory of relativity states that " lowerCAmelCase_ = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) lowerCAmelCase_ = tokenizer.encode(_a , return_tensors="pt" ) lowerCAmelCase_ = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=_a ) # greedy generation outputs lowerCAmelCase_ = model.generate(_a , max_new_tokens=64 , top_p=_a , temperature=1 , do_sample=_a ) lowerCAmelCase_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=_a ) self.assertEqual(_a , _a )
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(__lowercase ) class __magic_name__ (__lowercase ): def __init__( self , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __a ( self , **_a ) -> Optional[Any]: lowerCAmelCase_ = {} if "threshold" in kwargs: lowerCAmelCase_ = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self , *_a , **_a ) -> Union[Predictions, List[Prediction]]: return super().__call__(*_a , **_a ) def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = load_image(_a ) lowerCAmelCase_ = torch.IntTensor([[image.height, image.width]] ) lowerCAmelCase_ = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: lowerCAmelCase_ = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) lowerCAmelCase_ = target_size return inputs def __a ( self , _a ) -> List[Any]: lowerCAmelCase_ = model_inputs.pop("target_size" ) lowerCAmelCase_ = self.model(**_a ) lowerCAmelCase_ = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: lowerCAmelCase_ = model_inputs["bbox"] return model_outputs def __a ( self , _a , _a=0.9 ) -> List[Any]: lowerCAmelCase_ = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCAmelCase_ , lowerCAmelCase_ = target_size[0].tolist() def unnormalize(_a ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowerCAmelCase_ , lowerCAmelCase_ = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCAmelCase_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCAmelCase_ = [unnormalize(_a ) for bbox in model_outputs["bbox"].squeeze(0 )] lowerCAmelCase_ = ["score", "label", "box"] lowerCAmelCase_ = [dict(zip(_a , _a ) ) for vals in zip(scores.tolist() , _a , _a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCAmelCase_ = self.image_processor.post_process_object_detection(_a , _a , _a ) lowerCAmelCase_ = raw_annotations[0] lowerCAmelCase_ = raw_annotation["scores"] lowerCAmelCase_ = raw_annotation["labels"] lowerCAmelCase_ = raw_annotation["boxes"] lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = [self.model.config.idalabel[label.item()] for label in labels] lowerCAmelCase_ = [self._get_bounding_box(_a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCAmelCase_ = ["score", "label", "box"] lowerCAmelCase_ = [ dict(zip(_a , _a ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def __a ( self , _a ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = box.int().tolist() lowerCAmelCase_ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} lowerCamelCase__ = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } lowerCamelCase__ = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A(): lowerCAmelCase_ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCAmelCase_ = bs[:] lowerCAmelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__a ) cs.append(2**8 + n ) n += 1 lowerCAmelCase_ = [chr(__a ) for n in cs] return dict(zip(__a , __a ) ) def A(__a: Optional[Any] ): lowerCAmelCase_ = set() lowerCAmelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase_ = char return pairs class __magic_name__ (__lowercase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self , _a , _a , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , **_a , ) -> Tuple: lowerCAmelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token lowerCAmelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token lowerCAmelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token lowerCAmelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token lowerCAmelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token lowerCAmelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( errors=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , **_a , ) with open(_a , encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ = json.load(_a ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ = errors # how to handle errors in decoding lowerCAmelCase_ = bytes_to_unicode() lowerCAmelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(_a , encoding="utf-8" ) as merges_handle: lowerCAmelCase_ = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ = dict(zip(_a , range(len(_a ) ) ) ) lowerCAmelCase_ = {} lowerCAmelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __a ( self ) -> Optional[int]: return len(self.encoder ) def __a ( self ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self , _a ) -> int: if token in self.cache: return self.cache[token] lowerCAmelCase_ = tuple(_a ) lowerCAmelCase_ = get_pairs(_a ) if not pairs: return token while True: lowerCAmelCase_ = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ = bigram lowerCAmelCase_ = [] lowerCAmelCase_ = 0 while i < len(_a ): try: lowerCAmelCase_ = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ = tuple(_a ) lowerCAmelCase_ = new_word if len(_a ) == 1: break else: lowerCAmelCase_ = get_pairs(_a ) lowerCAmelCase_ = " ".join(_a ) lowerCAmelCase_ = word return word def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = [] for token in re.findall(self.pat , _a ): lowerCAmelCase_ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_a ).split(" " ) ) return bpe_tokens def __a ( self , _a ) -> int: return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def __a ( self , _a ) -> Any: return self.decoder.get(_a ) def __a ( self , _a ) -> List[Any]: lowerCAmelCase_ = "".join(_a ) lowerCAmelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __a ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + "\n" ) lowerCAmelCase_ = 0 with open(_a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ = token_index writer.write(" ".join(_a ) + "\n" ) index += 1 return vocab_file, merge_file def __a ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __a ( self , _a , _a = None ) -> List[int]: lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self , _a , _a=False , **_a ) -> Tuple: lowerCAmelCase_ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_a ) > 0 and not text[0].isspace()): lowerCAmelCase_ = " " + text return (text, kwargs)
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __magic_name__ : @property def __a ( self ) -> int: return self.get_dummy_input() @property def __a ( self ) -> str: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def __a ( self , _a=True , _a=False , _a=False , _a=False , ) -> List[Any]: lowerCAmelCase_ = 4 lowerCAmelCase_ = 32 lowerCAmelCase_ = (32, 32) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = torch.device(_a ) lowerCAmelCase_ = (batch_size, num_channels) + sizes lowerCAmelCase_ = randn_tensor(_a , generator=_a , device=_a ) lowerCAmelCase_ = {"hidden_states": hidden_states} if include_temb: lowerCAmelCase_ = 128 lowerCAmelCase_ = randn_tensor((batch_size, temb_channels) , generator=_a , device=_a ) if include_res_hidden_states_tuple: lowerCAmelCase_ = torch.manual_seed(1 ) lowerCAmelCase_ = (randn_tensor(_a , generator=_a , device=_a ),) if include_encoder_hidden_states: lowerCAmelCase_ = floats_tensor((batch_size, 32, 32) ).to(_a ) if include_skip_sample: lowerCAmelCase_ = randn_tensor(((batch_size, 3) + sizes) , generator=_a , device=_a ) return dummy_input def __a ( self ) -> List[str]: lowerCAmelCase_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": lowerCAmelCase_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) lowerCAmelCase_ = self.dummy_input return init_dict, inputs_dict def __a ( self , _a ) -> Optional[int]: lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = self.block_class(**_a ) unet_block.to(_a ) unet_block.eval() with torch.no_grad(): lowerCAmelCase_ = unet_block(**_a ) if isinstance(_a , _a ): lowerCAmelCase_ = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCAmelCase_ = output[0, -1, -3:, -3:] lowerCAmelCase_ = torch.tensor(_a ).to(_a ) assert torch_all_close(output_slice.flatten() , _a , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __a ( self ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = self.block_class(**_a ) model.to(_a ) model.train() lowerCAmelCase_ = model(**_a ) if isinstance(_a , _a ): lowerCAmelCase_ = output[0] lowerCAmelCase_ = torch.device(_a ) lowerCAmelCase_ = randn_tensor(output.shape , device=_a ) lowerCAmelCase_ = torch.nn.functional.mse_loss(_a , _a ) loss.backward()
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : def __init__( self , _a ) -> Optional[Any]: lowerCAmelCase_ = data lowerCAmelCase_ = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0] @staticmethod def __a ( _a , _a ) -> List[str]: return ((n << b) | (n >> (32 - b))) & 0xffffffff def __a ( self ) -> Optional[int]: lowerCAmelCase_ = b"\x80" + b"\x00" * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase_ = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def __a ( self ) -> Tuple: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __a ( self , _a ) -> Optional[Any]: lowerCAmelCase_ = list(struct.unpack(">16L" , _a ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __a ( self ) -> Dict: lowerCAmelCase_ = self.padding() lowerCAmelCase_ = self.split_blocks() for block in self.blocks: lowerCAmelCase_ = self.expand_block(_a ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase_ = (b & c) | ((~b) & d) lowerCAmelCase_ = 0x5a827999 elif 20 <= i < 40: lowerCAmelCase_ = b ^ c ^ d lowerCAmelCase_ = 0x6ed9eba1 elif 40 <= i < 60: lowerCAmelCase_ = (b & c) | (b & d) | (c & d) lowerCAmelCase_ = 0x8f1bbcdc elif 60 <= i < 80: lowerCAmelCase_ = b ^ c ^ d lowerCAmelCase_ = 0xca62c1d6 lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = ( self.rotate(_a , 5 ) + f + e + k + expanded_block[i] & 0xffffffff, a, self.rotate(_a , 30 ), c, d, ) lowerCAmelCase_ = ( self.h[0] + a & 0xffffffff, self.h[1] + b & 0xffffffff, self.h[2] + c & 0xffffffff, self.h[3] + d & 0xffffffff, self.h[4] + e & 0xffffffff, ) return ("{:08x}" * 5).format(*self.h ) def A(): lowerCAmelCase_ = b"Test String" assert SHAaHash(__a ).final_hash() == hashlib.shaa(__a ).hexdigest() # noqa: S324 def A(): lowerCAmelCase_ = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: lowerCAmelCase_ = f.read() else: lowerCAmelCase_ = bytes(__a , "utf-8" ) print(SHAaHash(__a ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Tuple ): lowerCAmelCase_ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) lowerCAmelCase_ = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , __a ) if matches: lowerCAmelCase_ = float(matches[1] ) lowerCAmelCase_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowerCAmelCase_ = 1001 lowerCAmelCase_ = "imagenet-1k-id2label.json" lowerCAmelCase_ = "huggingface/label-files" lowerCAmelCase_ = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCAmelCase_ = {int(__a ) + 1: v for k, v in idalabel.items()} lowerCAmelCase_ = "background" lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} return config def A(): lowerCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase_ = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def A(__a: List[Any] , __a: Dict , __a: Dict , __a: int=False ): lowerCAmelCase_ = get_mobilenet_va_config(__a ) # Load 🤗 model lowerCAmelCase_ = MobileNetVaForImageClassification(__a ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__a , __a , __a ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowerCAmelCase_ = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) lowerCAmelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCAmelCase_ = model(**__a ) lowerCAmelCase_ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowerCAmelCase_ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": lowerCAmelCase_ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: lowerCAmelCase_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __a , atol=1E-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__a ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) if push_to_hub: print("Pushing to the hub..." ) lowerCAmelCase_ = "google/" + model_name image_processor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''OwlViTFeatureExtractor'''] lowerCamelCase__ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __magic_name__ (__lowercase ): @require_torch def __a ( self ) -> Dict: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowerCAmelCase_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " lowerCAmelCase_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " lowerCAmelCase_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache lowerCAmelCase_ = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(_a ) BertModel.from_pretrained(_a ) BertTokenizer.from_pretrained(_a ) pipeline(task="fill-mask" , model=_a ) # baseline - just load from_pretrained with normal network lowerCAmelCase_ = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed lowerCAmelCase_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCAmelCase_ = "1" lowerCAmelCase_ = subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def __a ( self ) -> List[str]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowerCAmelCase_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " lowerCAmelCase_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " lowerCAmelCase_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache lowerCAmelCase_ = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(_a ) BertModel.from_pretrained(_a ) BertTokenizer.from_pretrained(_a ) pipeline(task="fill-mask" , model=_a ) # baseline - just load from_pretrained with normal network lowerCAmelCase_ = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed lowerCAmelCase_ = self.get_env() lowerCAmelCase_ = subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def __a ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowerCAmelCase_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " lowerCAmelCase_ = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " lowerCAmelCase_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network lowerCAmelCase_ = [sys.executable, "-c", "\n".join([load, run] )] # should succeed lowerCAmelCase_ = self.get_env() lowerCAmelCase_ = subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network lowerCAmelCase_ = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCAmelCase_ = "1" lowerCAmelCase_ = subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "\nfrom transformers import pipeline\n " lowerCAmelCase_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " lowerCAmelCase_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " lowerCAmelCase_ = self.get_env() lowerCAmelCase_ = "1" lowerCAmelCase_ = [sys.executable, "-c", "\n".join([load, mock, run] )] lowerCAmelCase_ = subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "\nfrom transformers import AutoModel\n " lowerCAmelCase_ = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network lowerCAmelCase_ = [sys.executable, "-c", "\n".join([load, run] )] # should succeed lowerCAmelCase_ = self.get_env() lowerCAmelCase_ = subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCAmelCase_ = "1" lowerCAmelCase_ = subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = DownBlockaD # noqa F405 lowerCamelCase__ = '''down''' def __a ( self ) -> Dict: lowerCAmelCase_ = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = ResnetDownsampleBlockaD # noqa F405 lowerCamelCase__ = '''down''' def __a ( self ) -> Optional[int]: lowerCAmelCase_ = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = AttnDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' def __a ( self ) -> Optional[int]: lowerCAmelCase_ = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = CrossAttnDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' def __a ( self ) -> int: lowerCAmelCase_ , lowerCAmelCase_ = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = 32 return init_dict, inputs_dict def __a ( self ) -> Tuple: lowerCAmelCase_ = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __a ( self ) -> Any: return super().get_dummy_input(include_encoder_hidden_states=_a ) def __a ( self ) -> int: lowerCAmelCase_ , lowerCAmelCase_ = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = SkipDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __a ( self ) -> Optional[int]: return super().get_dummy_input(include_skip_sample=_a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = AttnSkipDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __a ( self ) -> Any: return super().get_dummy_input(include_skip_sample=_a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = DownEncoderBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __a ( self ) -> Union[str, Any]: return super().get_dummy_input(include_temb=_a ) def __a ( self ) -> Dict: lowerCAmelCase_ = { "in_channels": 32, "out_channels": 32, } lowerCAmelCase_ = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> Dict: lowerCAmelCase_ = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = AttnDownEncoderBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __a ( self ) -> List[Any]: return super().get_dummy_input(include_temb=_a ) def __a ( self ) -> Dict: lowerCAmelCase_ = { "in_channels": 32, "out_channels": 32, } lowerCAmelCase_ = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = UNetMidBlockaD # noqa F405 lowerCamelCase__ = '''mid''' def __a ( self ) -> Optional[int]: lowerCAmelCase_ = { "in_channels": 32, "temb_channels": 128, } lowerCAmelCase_ = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> List[str]: lowerCAmelCase_ = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = UNetMidBlockaDCrossAttn # noqa F405 lowerCamelCase__ = '''mid''' def __a ( self ) -> int: lowerCAmelCase_ , lowerCAmelCase_ = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = 32 return init_dict, inputs_dict def __a ( self ) -> Tuple: lowerCAmelCase_ = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCamelCase__ = '''mid''' @property def __a ( self ) -> Dict: return super().get_dummy_input(include_encoder_hidden_states=_a ) def __a ( self ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = 32 return init_dict, inputs_dict def __a ( self ) -> Optional[int]: lowerCAmelCase_ = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = UpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = ResnetUpsampleBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = CrossAttnUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __a ( self ) -> Tuple: lowerCAmelCase_ , lowerCAmelCase_ = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = 32 return init_dict, inputs_dict def __a ( self ) -> Optional[int]: lowerCAmelCase_ = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> Union[str, Any]: return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ , lowerCAmelCase_ = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = 32 return init_dict, inputs_dict def __a ( self ) -> Dict: lowerCAmelCase_ = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = AttnUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def __a ( self ) -> Any: lowerCAmelCase_ = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = SkipUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __a ( self ) -> Tuple: lowerCAmelCase_ = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = AttnSkipUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __a ( self ) -> Any: lowerCAmelCase_ = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = UpDecoderBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> int: return super().get_dummy_input(include_temb=_a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = {"in_channels": 32, "out_channels": 32} lowerCAmelCase_ = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> int: lowerCAmelCase_ = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(_a ) class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = AttnUpDecoderBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __a ( self ) -> Tuple: return super().get_dummy_input(include_temb=_a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = {"in_channels": 32, "out_channels": 32} lowerCAmelCase_ = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(_a )
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''timesformer''' def __init__( self , _a=224 , _a=16 , _a=3 , _a=8 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.0_2 , _a=1E-6 , _a=True , _a="divided_space_time" , _a=0 , **_a , ) -> Any: super().__init__(**_a ) lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_frames lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = attention_type lowerCAmelCase_ = drop_path_rate
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __magic_name__ (__lowercase ): def __a ( self ) -> List[str]: lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __a ( self ) -> int: with self.assertRaises(_a ): lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __a ( self ) -> Optional[int]: with self.assertRaises(_a ): lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def __a ( self ) -> Any: lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __a ( self ) -> Optional[int]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCAmelCase_ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def __a ( self ) -> Dict: lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __a ( self ) -> int: lowerCAmelCase_ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def __a ( self ) -> Tuple: lowerCAmelCase_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __a ( self ) -> Optional[Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCAmelCase_ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __a ( self ) -> int: import PIL.Image lowerCAmelCase_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=_a ) as mock_cast_to_python_objects: lowerCAmelCase_ = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) lowerCAmelCase_ , lowerCAmelCase_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , _a ) self.assertFalse(kwargs["optimize_list_casting"] ) def A(__a: Optional[Any] , __a: int ): lowerCAmelCase_ = pa.BufferReader(__a ) if isinstance(__a , pa.Buffer ) else pa.memory_map(__a ) lowerCAmelCase_ = pa.ipc.open_stream(__a ) lowerCAmelCase_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A(__a: int , __a: int ): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A(): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=__a , features=__a ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCAmelCase_ = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ = pa.ipc.open_stream(__a ) lowerCAmelCase_ = f.read_all() lowerCAmelCase_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__a ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def A(__a: int ): lowerCAmelCase_ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def A(__a: Any ): lowerCAmelCase_ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def A(__a: int ): lowerCAmelCase_ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A(__a: List[str] , __a: int ): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A(__a: Union[str, Any] , __a: List[Any] ): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A(__a: Dict , __a: Dict ): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A(): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} lowerCAmelCase_ = os.path.join(__a , "test.arrow" ) with ArrowWriter(path=__a , schema=pa.schema(__a ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(__a , 1 ) def A(__a: str ): if pa.types.is_list(__a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def A(__a: Tuple , __a: Any ): if isinstance(lst[0] , __a ): change_first_primitive_element_in_list(lst[0] , __a ) else: lowerCAmelCase_ = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A(__a: Any , __a: str , __a: int ): lowerCAmelCase_ = pa.array(TypedSequence(__a , optimized_int_type=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A(__a: Tuple , __a: str , __a: Optional[int] ): # in range lowerCAmelCase_ = pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCAmelCase_ = copy.deepcopy(__a ) lowerCAmelCase_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__a , __a ) lowerCAmelCase_ = pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def A(__a: Dict , __a: List[str] ): lowerCAmelCase_ = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=__a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def A(__a: Union[str, Any] ): lowerCAmelCase_ = "mock://dataset-train.arrow" with ArrowWriter(path=__a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__a ) def A(): lowerCAmelCase_ = pa.BufferOutputStream() with ParquetWriter(stream=__a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCAmelCase_ = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ = pq.read_table(__a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def A(__a: Tuple , __a: Dict ): import PIL.Image lowerCAmelCase_ = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__a , format="png" ) lowerCAmelCase_ = pa.BufferOutputStream() with ParquetWriter( stream=__a , features=Features({"image": Image()} ) , embed_local_files=__a ) as writer: writer.write({"image": image_path} ) writer.finalize() lowerCAmelCase_ = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ = pq.read_table(__a ) lowerCAmelCase_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , __a ) with open(__a , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def A(): lowerCAmelCase_ = pa.schema([pa.field("col_1" , pa.string() , nullable=__a )] ) lowerCAmelCase_ = pa.BufferOutputStream() with ArrowWriter(stream=__a ) as writer: writer._build_writer(inferred_schema=__a ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
from collections.abc import Callable def A(__a: Callable[[float], float] , __a: float , __a: float ): lowerCAmelCase_ = a lowerCAmelCase_ = b if function(__a ) == 0: # one of the a or b is a root for the function return a elif function(__a ) == 0: return b elif ( function(__a ) * function(__a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: lowerCAmelCase_ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__a ) == 0: return mid elif function(__a ) * function(__a ) < 0: lowerCAmelCase_ = mid else: lowerCAmelCase_ = mid lowerCAmelCase_ = start + (end - start) / 2.0 return mid def A(__a: float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
def A(__a: int ): if not isinstance(__a , __a ): lowerCAmelCase_ = F"Input value of [number={number}] must be an integer" raise TypeError(__a ) if number < 0: return False lowerCAmelCase_ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase__ = 2 class __magic_name__ : def __init__( self , *, # begin keyword-only arguments _a="<s>" , _a="<pad>" , _a="</s>" , _a="<unk>" , _a=None , ) -> int: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = bos, unk, pad, eos lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = {} lowerCAmelCase_ = self.add_symbol(_a ) lowerCAmelCase_ = self.add_symbol(_a ) lowerCAmelCase_ = self.add_symbol(_a ) lowerCAmelCase_ = self.add_symbol(_a ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_a ) lowerCAmelCase_ = len(self.symbols ) def __eq__( self , _a ) -> Dict: return self.indices == other.indices def __getitem__( self , _a ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> List[str]: return len(self.symbols ) def __contains__( self , _a ) -> str: return sym in self.indices @classmethod def __a ( cls , _a ) -> List[str]: lowerCAmelCase_ = cls() d.add_from_file(_a ) return d def __a ( self , _a , _a=1 , _a=False ) -> List[Any]: if word in self.indices and not overwrite: lowerCAmelCase_ = self.indices[word] lowerCAmelCase_ = self.count[idx] + n return idx else: lowerCAmelCase_ = len(self.symbols ) lowerCAmelCase_ = idx self.symbols.append(_a ) self.count.append(_a ) return idx def __a ( self , _a ) -> str: return 0 def __a ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): try: with open(_a , "r" , encoding="utf-8" ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(_a ) ) return lowerCAmelCase_ = f.readlines() lowerCAmelCase_ = self._load_meta(_a ) for line in lines[indices_start_line:]: try: lowerCAmelCase_ , lowerCAmelCase_ = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": lowerCAmelCase_ = True lowerCAmelCase_ , lowerCAmelCase_ = line.rsplit(" " , 1 ) else: lowerCAmelCase_ = False lowerCAmelCase_ = int(_a ) lowerCAmelCase_ = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(_a ) ) self.add_symbol(_a , n=_a , overwrite=_a ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def A(__a: List[Any] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCAmelCase_ = dict((re.sub(r"@@$" , "" , __a ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , __a ), v) for k, v in d.items() ) lowerCAmelCase_ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"{k}</w>"] lowerCAmelCase_ = d[k] # restore return da def A(__a: Optional[Any] , __a: Dict ): # prep if not os.path.exists(__a ): raise ValueError(F"path {biogpt_checkpoint_path} does not exist!" ) os.makedirs(__a , exist_ok=__a ) print(F"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models lowerCAmelCase_ = os.path.join(__a , "checkpoint.pt" ) if not os.path.isfile(__a ): raise ValueError(F"path to the file {checkpoint_file} does not exist!" ) lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = chkpt["cfg"]["model"] # dicts lowerCAmelCase_ = os.path.join(__a , "dict.txt" ) if not os.path.isfile(__a ): raise ValueError(F"path to the file {dict_file} does not exist!" ) lowerCAmelCase_ = Dictionary.load(__a ) lowerCAmelCase_ = rewrite_dict_keys(src_dict.indices ) lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) print(F"Generating {src_vocab_file} of {src_vocab_size} records" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__a , ensure_ascii=__a , indent=__a ) ) # merges_file (bpecodes) lowerCAmelCase_ = os.path.join(__a , "bpecodes" ) if not os.path.isfile(__a ): raise ValueError(F"path to the file {bpecodes_file} does not exist!" ) lowerCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(__a , __a ) # model config lowerCAmelCase_ = os.path.join(__a , "config.json" ) lowerCAmelCase_ = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"Generating {biogpt_model_config_file}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__a , ensure_ascii=__a , indent=__a ) ) # tokenizer config lowerCAmelCase_ = os.path.join(__a , __a ) lowerCAmelCase_ = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"Generating {biogpt_tokenizer_config_file}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__a , ensure_ascii=__a , indent=__a ) ) # model lowerCAmelCase_ = chkpt["model"] # remove unneeded keys lowerCAmelCase_ = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(__a , __a ) lowerCAmelCase_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): lowerCAmelCase_ = model_state_dict.pop(__a ) else: lowerCAmelCase_ = model_state_dict.pop(__a ) lowerCAmelCase_ = BioGptConfig.from_pretrained(__a ) lowerCAmelCase_ = BioGptForCausalLM(__a ) # check that it loads ok model_new.load_state_dict(__a ) # save lowerCAmelCase_ = os.path.join(__a , __a ) print(F"Generating {pytorch_weights_dump_path}" ) torch.save(__a , __a ) print("Conversion is done!" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0