code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=lowercase_ , ) assert hasattr(self , "env" ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings UpperCAmelCase_ : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowercase_ , instance_count=lowercase_ , instance_type=self.instance_type , debugger_hook_config=lowercase_ , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowercase_ , py_version="py36" , ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" TrainingJobAnalytics(lowercase_ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.create_estimator(lowercase_ ) # run training estimator.fit() # result dataframe UpperCAmelCase_ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase_ : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCAmelCase_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ : Optional[int] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , lowercase_ )
357
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
0
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = 10 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = [1, 2, 3, 4] UpperCAmelCase_ : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." UpperCAmelCase_ : Optional[int] = process_story(lowercase_ ) self.assertEqual(lowercase_ , [] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : Optional[int] = process_story(lowercase_ ) self.assertEqual(lowercase_ , [] ) self.assertEqual(lowercase_ , [] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) UpperCAmelCase_ : Optional[int] = process_story(lowercase_ ) UpperCAmelCase_ : str = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : str = ["It was the best of times."] self.assertEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase_ : List[str] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase_ , 0 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase_ : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase_ , 23 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase_ , 1 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = 101 UpperCAmelCase_ : Tuple = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase_ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase_ : Optional[int] = compute_token_type_ids(lowercase_ , lowercase_ ) np.testing.assert_array_equal(lowercase_ , lowercase_ )
358
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
0
from __future__ import annotations def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = get_failure_array(__lowerCamelCase ) # 2) Step through text searching for pattern UpperCAmelCase_ : Union[str, Any] = 0, 0 # index into text, pattern while i < len(__lowerCamelCase ): if pattern[j] == text[i]: if j == (len(__lowerCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase_ : str = failure[j - 1] continue i += 1 return False def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = [0] UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Dict = 1 while j < len(__lowerCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase_ : Any = failure[i - 1] continue j += 1 failure.append(__lowerCamelCase ) return failure if __name__ == "__main__": # Test 1) _a = 'abc1abc12' _a = 'alskfjaldsabc1abc1abc12k23adsfabcabc' _a = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _a = 'ABABX' _a = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) _a = 'AAAB' _a = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) _a = 'abcdabcy' _a = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) _a = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
359
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = """sew-d""" def __init__( self , lowercase_=32 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_=2 , lowercase_=512 , lowercase_=256 , lowercase_=True , lowercase_=True , lowercase_=("p2c", "c2p") , lowercase_="layer_norm" , lowercase_="gelu_python" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.02 , lowercase_=1E-7 , lowercase_=1E-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase_=False , lowercase_=128 , lowercase_=16 , lowercase_=True , lowercase_=0.05 , lowercase_=10 , lowercase_=2 , lowercase_=0.0 , lowercase_=10 , lowercase_=0 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=256 , lowercase_=0 , lowercase_=1 , lowercase_=2 , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Dict = feat_extract_norm UpperCAmelCase_ : Tuple = feat_extract_activation UpperCAmelCase_ : str = list(lowercase_ ) UpperCAmelCase_ : Tuple = list(lowercase_ ) UpperCAmelCase_ : List[str] = list(lowercase_ ) UpperCAmelCase_ : Dict = conv_bias UpperCAmelCase_ : int = num_conv_pos_embeddings UpperCAmelCase_ : str = num_conv_pos_embedding_groups UpperCAmelCase_ : int = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Tuple = squeeze_factor UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Tuple = position_buckets UpperCAmelCase_ : Optional[int] = share_att_key UpperCAmelCase_ : Dict = relative_attention UpperCAmelCase_ : List[Any] = norm_rel_ebd UpperCAmelCase_ : Optional[int] = list(lowercase_ ) UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout UpperCAmelCase_ : Optional[int] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Tuple = feat_proj_dropout UpperCAmelCase_ : Optional[int] = final_dropout UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = feature_layer_norm_eps UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[int] = apply_spec_augment UpperCAmelCase_ : Dict = mask_time_prob UpperCAmelCase_ : Optional[Any] = mask_time_length UpperCAmelCase_ : List[str] = mask_time_min_masks UpperCAmelCase_ : Dict = mask_feature_prob UpperCAmelCase_ : int = mask_feature_length UpperCAmelCase_ : Any = mask_feature_min_masks # ctc loss UpperCAmelCase_ : Tuple = ctc_loss_reduction UpperCAmelCase_ : Tuple = ctc_zero_infinity # sequence classification UpperCAmelCase_ : Any = use_weighted_layer_sum UpperCAmelCase_ : Union[str, Any] = classifier_proj_size @property def UpperCamelCase__ ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
0
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
361
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
0
def __a ( __lowerCamelCase ): if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) UpperCAmelCase_ : Tuple = sum(__lowerCamelCase ) / len(__lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule _a = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __a ( __lowerCamelCase, __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = tmp_path / "cache" UpperCAmelCase_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : str = JsonDatasetReader(__lowerCamelCase, cache_dir=__lowerCamelCase, keep_in_memory=__lowerCamelCase ).read() _check_json_dataset(__lowerCamelCase, __lowerCamelCase ) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = tmp_path / "cache" UpperCAmelCase_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : int = features.copy() if features else default_expected_features UpperCAmelCase_ : Optional[Any] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Any = JsonDatasetReader(__lowerCamelCase, features=__lowerCamelCase, cache_dir=__lowerCamelCase ).read() _check_json_dataset(__lowerCamelCase, __lowerCamelCase ) @pytest.mark.parametrize( "features", [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ], ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = tmp_path / "cache" UpperCAmelCase_ : Dict = {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase_ : Any = features.copy() if features else default_expected_features UpperCAmelCase_ : Dict = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Dict = JsonDatasetReader(__lowerCamelCase, features=__lowerCamelCase, cache_dir=__lowerCamelCase ).read() assert isinstance(__lowerCamelCase, __lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __a ( __lowerCamelCase, __lowerCamelCase ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase_ : str = {"col_2": "int64", "col_3": "float64", "col_1": "string"} UpperCAmelCase_ : str = features.copy() UpperCAmelCase_ : Union[str, Any] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Any = tmp_path / "cache" UpperCAmelCase_ : str = JsonDatasetReader(__lowerCamelCase, features=__lowerCamelCase, cache_dir=__lowerCamelCase ).read() assert isinstance(__lowerCamelCase, __lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split", [None, NamedSplit("train" ), "train", "test"] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = tmp_path / "cache" UpperCAmelCase_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : Dict = JsonDatasetReader(__lowerCamelCase, cache_dir=__lowerCamelCase, split=__lowerCamelCase ).read() _check_json_dataset(__lowerCamelCase, __lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = jsonl_path elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = [jsonl_path] UpperCAmelCase_ : str = tmp_path / "cache" UpperCAmelCase_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : str = JsonDatasetReader(__lowerCamelCase, cache_dir=__lowerCamelCase ).read() _check_json_dataset(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=("train",) ): assert isinstance(__lowerCamelCase, __lowerCamelCase ) for split in splits: UpperCAmelCase_ : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = tmp_path / "cache" UpperCAmelCase_ : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : List[str] = JsonDatasetReader({"train": jsonl_path}, cache_dir=__lowerCamelCase, keep_in_memory=__lowerCamelCase ).read() _check_json_datasetdict(__lowerCamelCase, __lowerCamelCase ) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = tmp_path / "cache" UpperCAmelCase_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : Any = features.copy() if features else default_expected_features UpperCAmelCase_ : Union[str, Any] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Optional[Any] = JsonDatasetReader({"train": jsonl_path}, features=__lowerCamelCase, cache_dir=__lowerCamelCase ).read() _check_json_datasetdict(__lowerCamelCase, __lowerCamelCase ) @pytest.mark.parametrize("split", [None, NamedSplit("train" ), "train", "test"] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if split: UpperCAmelCase_ : Dict = {split: jsonl_path} else: UpperCAmelCase_ : Any = "train" UpperCAmelCase_ : Union[str, Any] = {"train": jsonl_path, "test": jsonl_path} UpperCAmelCase_ : Any = tmp_path / "cache" UpperCAmelCase_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : Dict = JsonDatasetReader(__lowerCamelCase, cache_dir=__lowerCamelCase ).read() _check_json_datasetdict(__lowerCamelCase, __lowerCamelCase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __a ( __lowerCamelCase ): return json.load(__lowerCamelCase ) def __a ( __lowerCamelCase ): return [json.loads(__lowerCamelCase ) for line in buffer] class A_ : '''simple docstring''' @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ ).write() buffer.seek(0 ) UpperCAmelCase_ : Dict = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ ).write() buffer.seek(0 ) UpperCAmelCase_ : Optional[Any] = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase_ : Optional[Any] = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase_ : List[Any] = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" with pytest.raises(lowercase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp("data" ) / F"""test.json.{extension}""" UpperCAmelCase_ : str = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(lowercase_ , lowercase_ , compression=lowercase_ ).write() with fsspec.open(lowercase_ , "rb" , compression="infer" ) as f: UpperCAmelCase_ : List[str] = f.read() with fsspec.open(lowercase_ , "rb" , compression="infer" ) as f: UpperCAmelCase_ : Dict = f.read() assert exported_content == original_content
364
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = DownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[Any] = """down""" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ResnetDownsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : int = """down""" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = AttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[str] = """down""" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = CrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[str] = """down""" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = 32 return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = SimpleCrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Dict = """down""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Dict = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = SkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Optional[Any] = """down""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_skip_sample=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : int = """down""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_skip_sample=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = DownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Any = """down""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_temb=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = { "in_channels": 32, "out_channels": 32, } UpperCAmelCase_ : Tuple = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = AttnDownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Tuple = """down""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_temb=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = { "in_channels": 32, "out_channels": 32, } UpperCAmelCase_ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = UNetMidBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = """mid""" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = { "in_channels": 32, "temb_channels": 128, } UpperCAmelCase_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = UNetMidBlockaDCrossAttn # noqa F405 SCREAMING_SNAKE_CASE__ : Dict = """mid""" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = 32 return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = UNetMidBlockaDSimpleCrossAttn # noqa F405 SCREAMING_SNAKE_CASE__ : Union[str, Any] = """mid""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Any = 32 return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = UpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Optional[int] = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ResnetUpsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[str] = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = CrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Tuple = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : int = 32 return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = SimpleCrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Optional[int] = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ , include_encoder_hidden_states=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = 32 return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = AttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Dict = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = SkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = AttnSkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Optional[Any] = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = UpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Tuple = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_temb=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = {"in_channels": 32, "out_channels": 32} UpperCAmelCase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(lowercase_ ) class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = AttnUpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = """up""" @property def UpperCamelCase__ ( self ): """simple docstring""" return super().get_dummy_input(include_temb=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = {"in_channels": 32, "out_channels": 32} UpperCAmelCase_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(lowercase_ )
365
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_ : str = quote(__lowerCamelCase ) return hfh.hf_hub_url(__lowerCamelCase, __lowerCamelCase, repo_type="dataset", revision=__lowerCamelCase )
366
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ) -> int: UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> List[Any]: UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ) -> List[str]: UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
369
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """mra""" def __init__( self , lowercase_=5_0265 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=1 , lowercase_=0.02 , lowercase_=1E-5 , lowercase_="absolute" , lowercase_=4 , lowercase_="full" , lowercase_=0 , lowercase_=0 , lowercase_=1 , lowercase_=0 , lowercase_=2 , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : str = position_embedding_type UpperCAmelCase_ : int = block_per_row UpperCAmelCase_ : Optional[int] = approx_mode UpperCAmelCase_ : int = initial_prior_first_n_blocks UpperCAmelCase_ : Optional[int] = initial_prior_diagonal_n_blocks
370
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
0
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_="" , lowercase_="train" ): """simple docstring""" assert os.path.isdir(lowercase_ ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = os.listdir(lowercase_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCAmelCase_ : Union[str, Any] = os.path.join(lowercase_ , lowercase_ ) if not os.path.isfile(lowercase_ ): continue self.documents.append(lowercase_ ) def __len__( self ): """simple docstring""" return len(self.documents ) def __getitem__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.documents[idx] UpperCAmelCase_ : Dict = document_path.split("/" )[-1] with open(lowercase_ , encoding="utf-8" ) as source: UpperCAmelCase_ : Union[str, Any] = source.read() UpperCAmelCase_ : Any = process_story(lowercase_ ) return document_name, story_lines, summary_lines def __a ( __lowerCamelCase ) -> List[Any]: UpperCAmelCase_ : Dict = list(filter(lambda __lowerCamelCase : len(__lowerCamelCase ) != 0, [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it UpperCAmelCase_ : List[Any] = [_add_missing_period(__lowerCamelCase ) for line in nonempty_lines] # gather article lines UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = deque(__lowerCamelCase ) while True: try: UpperCAmelCase_ : List[str] = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(__lowerCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCAmelCase_ : int = list(filter(lambda __lowerCamelCase : not t.startswith("@highlight" ), __lowerCamelCase ) ) return story_lines, summary_lines def __a ( __lowerCamelCase ) -> List[str]: UpperCAmelCase_ : List[Any] = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> Union[str, Any]: if len(__lowerCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowerCamelCase )) ) return sequence def __a ( __lowerCamelCase, __lowerCamelCase ) -> List[str]: UpperCAmelCase_ : int = torch.ones_like(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = sequence == pad_token_id UpperCAmelCase_ : Any = 0 return mask def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : int = [tokenizer.encode(__lowerCamelCase ) for line in story_lines] UpperCAmelCase_ : Optional[Any] = [token for sentence in story_lines_token_ids for token in sentence] UpperCAmelCase_ : Optional[Any] = [tokenizer.encode(__lowerCamelCase ) for line in summary_lines] UpperCAmelCase_ : str = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __a ( __lowerCamelCase, __lowerCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = [] for sequence in batch: UpperCAmelCase_ : Dict = -1 UpperCAmelCase_ : Any = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowerCamelCase ) return torch.tensor(__lowerCamelCase )
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example _a = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _a = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = [] for i in range(len(__lowerCamelCase ) ): UpperCAmelCase_ : Tuple = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCAmelCase_ : int = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__lowerCamelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__lowerCamelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__lowerCamelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCAmelCase_ : Optional[Any] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__lowerCamelCase ) return next_generation def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = [] for _ in range(__lowerCamelCase ): # Create output image UpperCAmelCase_ : str = Image.new("RGB", (len(cells[0] ), len(__lowerCamelCase )) ) UpperCAmelCase_ : str = img.load() # Save cells to image for x in range(len(__lowerCamelCase ) ): for y in range(len(cells[0] ) ): UpperCAmelCase_ : Union[str, Any] = 255 - cells[y][x] * 255 UpperCAmelCase_ : List[Any] = (colour, colour, colour) # Save image images.append(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = new_generation(__lowerCamelCase ) return images if __name__ == "__main__": _a = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
350
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" import sys from collections import defaultdict class A_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = [] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.node_position[vertex] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = pos def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase_ : List[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase_ : Dict = 2 * start + 1 else: UpperCAmelCase_ : List[str] = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase_ : Tuple = heap[smallest_child], positions[smallest_child] UpperCAmelCase_ : List[str] = ( heap[start], positions[start], ) UpperCAmelCase_ : int = temp, tempa UpperCAmelCase_ : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowercase_ ) self.top_to_bottom(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = position[index] while index != 0: UpperCAmelCase_ : str = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase_ : Any = heap[parent] UpperCAmelCase_ : Tuple = position[parent] self.set_position(position[parent] , lowercase_ ) else: UpperCAmelCase_ : Optional[int] = val UpperCAmelCase_ : Tuple = temp self.set_position(lowercase_ , lowercase_ ) break UpperCAmelCase_ : Dict = parent else: UpperCAmelCase_ : Optional[Any] = val UpperCAmelCase_ : Tuple = temp self.set_position(lowercase_ , 0 ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = len(lowercase_ ) // 2 - 1 for i in range(lowercase_ , -1 , -1 ): self.top_to_bottom(lowercase_ , lowercase_ , len(lowercase_ ) , lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = positions[0] UpperCAmelCase_ : Dict = sys.maxsize self.top_to_bottom(lowercase_ , 0 , len(lowercase_ ) , lowercase_ ) return temp def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = Heap() UpperCAmelCase_ : List[str] = [0] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [-1] * len(__lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase_ : Any = [] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase_ : Optional[Any] = [] for vertex in range(len(__lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowerCamelCase ) heap.node_position.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Tuple = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = distance heap.heapify(__lowerCamelCase, __lowerCamelCase ) for _ in range(1, len(__lowerCamelCase ) ): UpperCAmelCase_ : List[str] = heap.delete_minimum(__lowerCamelCase, __lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase_ : Optional[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowerCamelCase )] ): UpperCAmelCase_ : Any = distance heap.bottom_to_top( __lowerCamelCase, heap.get_position(__lowerCamelCase ), __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Tuple = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _a = int(input('Enter number of edges: ').strip()) _a = defaultdict(list) for _ in range(edges_number): _a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _a = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __a ( __lowerCamelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return max(metric_fn(__lowerCamelCase, __lowerCamelCase ) for gt in ground_truths ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : int = [] if args.gold_data_mode == "qa": UpperCAmelCase_ : str = pd.read_csv(__lowerCamelCase, sep="\t", header=__lowerCamelCase ) for answer_list in data[1]: UpperCAmelCase_ : int = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: UpperCAmelCase_ : Tuple = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Optional[int] = [[reference] for reference in references] UpperCAmelCase_ : List[str] = 0 for prediction, ground_truths in zip(__lowerCamelCase, __lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = 100.0 * em / total UpperCAmelCase_ : Dict = 100.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = args.k UpperCAmelCase_ : str = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : int = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Union[str, Any] = 0 for hypo, reference in zip(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = set(hypo.split("\t" )[:k] ) UpperCAmelCase_ : Optional[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase_ : Optional[Any] = 100.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): def strip_title(__lowerCamelCase ): if title.startswith("\"" ): UpperCAmelCase_ : Union[str, Any] = title[1:] if title.endswith("\"" ): UpperCAmelCase_ : List[str] = title[:-1] return title UpperCAmelCase_ : Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase, )["input_ids"].to(args.device ) UpperCAmelCase_ : Optional[int] = rag_model.rag.question_encoder(__lowerCamelCase ) UpperCAmelCase_ : Dict = question_enc_outputs[0] UpperCAmelCase_ : str = rag_model.retriever( __lowerCamelCase, question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) UpperCAmelCase_ : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase_ : Tuple = [] for docs in all_docs: UpperCAmelCase_ : Optional[int] = [strip_title(__lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__lowerCamelCase ) ) return provenance_strings def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with torch.no_grad(): UpperCAmelCase_ : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase ) UpperCAmelCase_ : Tuple = inputs_dict.input_ids.to(args.device ) UpperCAmelCase_ : Any = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase_ : Any = rag_model.generate( # rag_model overwrites generate __lowerCamelCase, attention_mask=__lowerCamelCase, num_beams=args.num_beams, min_length=args.min_length, max_length=args.max_length, early_stopping=__lowerCamelCase, num_return_sequences=1, bad_words_ids=[[0, 0]], ) UpperCAmelCase_ : Tuple = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase, skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase, __lowerCamelCase ): logger.info("Q: {} - A: {}".format(__lowerCamelCase, __lowerCamelCase ) ) return answers def __a ( ): UpperCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart"], type=__lowerCamelCase, help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--index_name", default=__lowerCamelCase, choices=["exact", "compressed", "legacy"], type=__lowerCamelCase, help="RAG model retriever type", ) parser.add_argument( "--index_path", default=__lowerCamelCase, type=__lowerCamelCase, help="Path to the retrieval index", ) parser.add_argument("--n_docs", default=5, type=__lowerCamelCase, help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to pretrained checkpoints or model identifier from huggingface.co/models", ) parser.add_argument( "--eval_mode", choices=["e2e", "retrieval"], default="e2e", type=__lowerCamelCase, help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ), ) parser.add_argument("--k", default=1, type=__lowerCamelCase, help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a file containing evaluation samples", ) parser.add_argument( "--gold_data_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a tab-separated file with gold samples", ) parser.add_argument( "--gold_data_mode", default="qa", type=__lowerCamelCase, choices=["qa", "ans"], help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ), ) parser.add_argument( "--predictions_path", type=__lowerCamelCase, default="predictions.txt", help="Name of the predictions file, to be stored in the checkpoints directory", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--eval_batch_size", default=8, type=__lowerCamelCase, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--recalculate", help="Recalculate predictions even if the prediction file exists", action="store_true", ) parser.add_argument( "--num_beams", default=4, type=__lowerCamelCase, help="Number of beams to be used when generating answers", ) parser.add_argument("--min_length", default=1, type=__lowerCamelCase, help="Min length of the generated answers" ) parser.add_argument("--max_length", default=50, type=__lowerCamelCase, help="Max length of the generated answers" ) parser.add_argument( "--print_predictions", action="store_true", help="If True, prints predictions while evaluating.", ) parser.add_argument( "--print_docs", action="store_true", help="If True, prints docs retried while generating.", ) UpperCAmelCase_ : List[str] = parser.parse_args() UpperCAmelCase_ : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = {} if args.model_type is None: UpperCAmelCase_ : Union[str, Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCAmelCase_ : List[Any] = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCAmelCase_ : str = args.n_docs if args.index_name is not None: UpperCAmelCase_ : Optional[Any] = args.index_name if args.index_path is not None: UpperCAmelCase_ : Dict = args.index_path else: UpperCAmelCase_ : Tuple = BartForConditionalGeneration UpperCAmelCase_ : List[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s", __lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCAmelCase_ : Tuple = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__lowerCamelCase ) ) logger.info(" Batch size = %d", args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCAmelCase_ : Union[str, Any] = RagRetriever.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) UpperCAmelCase_ : Any = model_class.from_pretrained(__lowerCamelCase, retriever=__lowerCamelCase, **__lowerCamelCase ) model.retriever.init_retrieval() else: UpperCAmelCase_ : int = model_class.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set, "r" ) as eval_file, open(args.predictions_path, "w" ) as preds_file: UpperCAmelCase_ : List[Any] = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: UpperCAmelCase_ : Optional[int] = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) + "\n" ) preds_file.flush() UpperCAmelCase_ : List[str] = [] if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : List[Any] = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) if __name__ == "__main__": _a = get_args() main(args)
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ): if isinstance(__lowerCamelCase, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""pixel_values"""] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : str = size if size is not None else {"shortest_edge": 256} UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase_ : str = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : List[str] = get_size_dict(lowercase_ , param_name="crop_size" ) UpperCAmelCase_ : Any = do_resize UpperCAmelCase_ : Union[str, Any] = size UpperCAmelCase_ : Any = do_center_crop UpperCAmelCase_ : Optional[Any] = crop_size UpperCAmelCase_ : Any = resample UpperCAmelCase_ : int = do_rescale UpperCAmelCase_ : List[Any] = rescale_factor UpperCAmelCase_ : Optional[int] = offset UpperCAmelCase_ : Optional[Any] = do_normalize UpperCAmelCase_ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" in size: UpperCAmelCase_ : Tuple = get_resize_output_image_size(lowercase_ , size["shortest_edge"] , default_to_square=lowercase_ ) elif "height" in size and "width" in size: UpperCAmelCase_ : Any = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = True , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = image.astype(np.floataa ) if offset: UpperCAmelCase_ : Any = image - (scale / 2) return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : str = to_numpy_array(lowercase_ ) if do_resize: UpperCAmelCase_ : Any = self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) if do_center_crop: UpperCAmelCase_ : Any = self.center_crop(lowercase_ , size=lowercase_ ) if do_rescale: UpperCAmelCase_ : str = self.rescale(image=lowercase_ , scale=lowercase_ , offset=lowercase_ ) if do_normalize: UpperCAmelCase_ : List[str] = self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) UpperCAmelCase_ : Any = to_channel_dimension_format(lowercase_ , lowercase_ ) return image def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Tuple = resample if resample is not None else self.resample UpperCAmelCase_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Any = offset if offset is not None else self.offset UpperCAmelCase_ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Tuple = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = size if size is not None else self.size UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : str = get_size_dict(lowercase_ , param_name="crop_size" ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ : Optional[Any] = make_batched(lowercase_ ) UpperCAmelCase_ : List[Any] = [ [ self._preprocess_image( image=lowercase_ , do_resize=lowercase_ , size=lowercase_ , resample=lowercase_ , do_center_crop=lowercase_ , crop_size=lowercase_ , do_rescale=lowercase_ , rescale_factor=lowercase_ , offset=lowercase_ , do_normalize=lowercase_ , image_mean=lowercase_ , image_std=lowercase_ , data_format=lowercase_ , ) for img in video ] for video in videos ] UpperCAmelCase_ : Tuple = {"pixel_values": videos} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
353
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
0
"""simple docstring""" def __a ( __lowerCamelCase ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [] for part_id in partition_order: UpperCAmelCase_ : int = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__lowerCamelCase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : List[str] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : Union[str, Any] = spark.range(100 ).repartition(1 ) UpperCAmelCase_ : Union[str, Any] = Spark(__lowerCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : Union[str, Any] = spark.range(10 ).repartition(2 ) UpperCAmelCase_ : List[Any] = [1, 0] UpperCAmelCase_ : Optional[Any] = _generate_iterable_examples(__lowerCamelCase, __lowerCamelCase ) # Reverse the partitions. UpperCAmelCase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase, __lowerCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : List[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : str = spark.range(10 ).repartition(1 ) UpperCAmelCase_ : Any = SparkExamplesIterable(__lowerCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : str = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : List[str] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: UpperCAmelCase_ : Any = lambda __lowerCamelCase : x.reverse() UpperCAmelCase_ : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase, [2, 1, 0] ) UpperCAmelCase_ : Optional[int] = SparkExamplesIterable(__lowerCamelCase ).shuffle_data_sources(__lowerCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): UpperCAmelCase_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : Union[str, Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase_ : List[Any] = SparkExamplesIterable(__lowerCamelCase ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase, [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): UpperCAmelCase_ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase_ : List[Any] = SparkExamplesIterable(__lowerCamelCase ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase_ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase, [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): UpperCAmelCase_ : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): UpperCAmelCase_ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase_ : List[str] = spark.range(100 ).repartition(1 ) UpperCAmelCase_ : List[str] = Spark(__lowerCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
355
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _a = logging.get_logger(__name__) class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str SCREAMING_SNAKE_CASE__ : str = None @staticmethod def UpperCamelCase__ ( ): """simple docstring""" raise NotImplementedError def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" raise NotImplementedError def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" raise NotImplementedError def UpperCamelCase__ ( self ): """simple docstring""" if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" return F"""`pip install {cls.pip_package or cls.name}`""" class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = """optuna""" @staticmethod def UpperCamelCase__ ( ): """simple docstring""" return is_optuna_available() def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" return run_hp_search_optuna(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return default_hp_space_optuna(lowercase_ ) class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = """ray""" SCREAMING_SNAKE_CASE__ : List[Any] = """'ray[tune]'""" @staticmethod def UpperCamelCase__ ( ): """simple docstring""" return is_ray_available() def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" return run_hp_search_ray(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return default_hp_space_ray(lowercase_ ) class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = """sigopt""" @staticmethod def UpperCamelCase__ ( ): """simple docstring""" return is_sigopt_available() def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" return run_hp_search_sigopt(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return default_hp_space_sigopt(lowercase_ ) class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = """wandb""" @staticmethod def UpperCamelCase__ ( ): """simple docstring""" return is_wandb_available() def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" return run_hp_search_wandb(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return default_hp_space_wandb(lowercase_ ) _a = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __a ( ): UpperCAmelCase_ : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : Tuple = available_backends[0].name if len(__lowerCamelCase ) > 1: logger.info( f"""{len(__lowerCamelCase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
356
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig _a = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """tapas""" def __init__( self , lowercase_=3_0522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1024 , lowercase_=[3, 256, 256, 2, 256, 256, 10] , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=0 , lowercase_=10.0 , lowercase_=0 , lowercase_=1.0 , lowercase_=None , lowercase_=1.0 , lowercase_=False , lowercase_=None , lowercase_=1.0 , lowercase_=1.0 , lowercase_=False , lowercase_=False , lowercase_="ratio" , lowercase_=None , lowercase_=None , lowercase_=64 , lowercase_=32 , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , **lowercase_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : str = type_vocab_sizes UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : List[Any] = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase_ : Any = positive_label_weight UpperCAmelCase_ : List[Any] = num_aggregation_labels UpperCAmelCase_ : Any = aggregation_loss_weight UpperCAmelCase_ : Optional[Any] = use_answer_as_supervision UpperCAmelCase_ : Optional[int] = answer_loss_importance UpperCAmelCase_ : str = use_normalized_answer_loss UpperCAmelCase_ : Dict = huber_loss_delta UpperCAmelCase_ : List[str] = temperature UpperCAmelCase_ : Union[str, Any] = aggregation_temperature UpperCAmelCase_ : List[Any] = use_gumbel_for_cells UpperCAmelCase_ : Tuple = use_gumbel_for_aggregation UpperCAmelCase_ : str = average_approximation_function UpperCAmelCase_ : Dict = cell_selection_preference UpperCAmelCase_ : Optional[Any] = answer_loss_cutoff UpperCAmelCase_ : Optional[int] = max_num_rows UpperCAmelCase_ : Optional[Any] = max_num_columns UpperCAmelCase_ : Union[str, Any] = average_logits_per_cell UpperCAmelCase_ : int = select_one_column UpperCAmelCase_ : List[str] = allow_empty_column_selection UpperCAmelCase_ : Tuple = init_cell_selection_weights_to_zero UpperCAmelCase_ : int = reset_position_index_per_cell UpperCAmelCase_ : Optional[int] = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase_ : int = aggregation_labels UpperCAmelCase_ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase_ ): UpperCAmelCase_ : str = {int(lowercase_ ): v for k, v in aggregation_labels.items()}
357
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure)
358
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
359
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
0
"""simple docstring""" import random def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = [], [], [] for element in data: if element < pivot: less.append(__lowerCamelCase ) elif element > pivot: greater.append(__lowerCamelCase ) else: equal.append(__lowerCamelCase ) return less, equal, greater def __a ( __lowerCamelCase, __lowerCamelCase ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__lowerCamelCase ) or index < 0: return None UpperCAmelCase_ : int = items[random.randint(0, len(__lowerCamelCase ) - 1 )] UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Dict = _partition(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : int = len(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = len(__lowerCamelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__lowerCamelCase, __lowerCamelCase ) # must be in larger else: return quick_select(__lowerCamelCase, index - (m + count) )
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
0
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A_ (lowercase__ ): '''simple docstring''' def __init__( self ): """simple docstring""" UpperCAmelCase_ : Dict = [] def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_init_end" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_train_begin" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_train_end" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_epoch_begin" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_epoch_end" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_step_begin" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_step_end" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_evaluate" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_predict" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_save" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_log" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" self.events.append("on_prediction_step" ) @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.output_dir ) def UpperCamelCase__ ( self , lowercase_=0 , lowercase_=0 , lowercase_=64 , lowercase_=64 , lowercase_=None , lowercase_=False , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = RegressionDataset(length=lowercase_ ) UpperCAmelCase_ : List[str] = RegressionDataset(length=lowercase_ ) UpperCAmelCase_ : Optional[int] = RegressionModelConfig(a=lowercase_ , b=lowercase_ ) UpperCAmelCase_ : Optional[Any] = RegressionPreTrainedModel(lowercase_ ) UpperCAmelCase_ : Dict = TrainingArguments(self.output_dir , disable_tqdm=lowercase_ , report_to=[] , **lowercase_ ) return Trainer( lowercase_ , lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , callbacks=lowercase_ , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) # Order doesn't matter UpperCAmelCase_ : Optional[int] = sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ ) UpperCAmelCase_ : Union[str, Any] = sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase_ , lowercase_ ): if isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ) and not isinstance(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , cba.__class__ ) elif not isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ): self.assertEqual(cba.__class__ , lowercase_ ) else: self.assertEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = ["on_init_end", "on_train_begin"] UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : str = len(trainer.get_eval_dataloader() ) UpperCAmelCase_ : str = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(lowercase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.get_trainer() UpperCAmelCase_ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase_ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase_ : Any = self.get_trainer(disable_tqdm=lowercase_ ) UpperCAmelCase_ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase_ : List[Any] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase_ ) expected_callbacks.remove(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) UpperCAmelCase_ : Dict = self.get_trainer() UpperCAmelCase_ : List[Any] = trainer.pop_callback(lowercase_ ) self.assertEqual(cb.__class__ , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) trainer.add_callback(lowercase_ ) expected_callbacks.insert(0 , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # We can also add, pop, or remove by instance UpperCAmelCase_ : List[Any] = self.get_trainer() UpperCAmelCase_ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase_ ) expected_callbacks.remove(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) UpperCAmelCase_ : Dict = self.get_trainer() UpperCAmelCase_ : str = trainer.callback_handler.callbacks[0] UpperCAmelCase_ : List[str] = trainer.pop_callback(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) trainer.add_callback(lowercase_ ) expected_callbacks.insert(0 , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=lowercase_ ) UpperCAmelCase_ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase_ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # Independent log/save/eval UpperCAmelCase_ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() UpperCAmelCase_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) UpperCAmelCase_ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() UpperCAmelCase_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) UpperCAmelCase_ : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() UpperCAmelCase_ : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) UpperCAmelCase_ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() UpperCAmelCase_ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # A bit of everything UpperCAmelCase_ : int = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() UpperCAmelCase_ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: UpperCAmelCase_ : int = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowercase_ ) in warn_mock.call_args[0][0]
361
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
0
import math import sys def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = "" try: with open(__lowerCamelCase, "rb" ) as binary_file: UpperCAmelCase_ : Union[str, Any] = binary_file.read() for dat in data: UpperCAmelCase_ : List[str] = f"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = {"0": "0", "1": "1"} UpperCAmelCase_ : Optional[int] = "", "" UpperCAmelCase_ : str = len(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ : Optional[Any] = lexicon[curr_string] result += last_match_id UpperCAmelCase_ : Union[str, Any] = last_match_id + "0" if math.loga(__lowerCamelCase ).is_integer(): UpperCAmelCase_ : Optional[int] = {} for curr_key in list(__lowerCamelCase ): UpperCAmelCase_ : Dict = lexicon.pop(__lowerCamelCase ) UpperCAmelCase_ : int = new_lex UpperCAmelCase_ : List[str] = last_match_id + "1" index += 1 UpperCAmelCase_ : str = "" return result def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = 8 try: with open(__lowerCamelCase, "wb" ) as opened_file: UpperCAmelCase_ : Optional[Any] = [ to_write[i : i + byte_length] for i in range(0, len(__lowerCamelCase ), __lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowerCamelCase, 2 ).to_bytes(1, byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase_ : int = data_bits[counter:] UpperCAmelCase_ : Optional[int] = data_bits[counter + 1 :] return data_bits def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = read_file_binary(__lowerCamelCase ) UpperCAmelCase_ : str = remove_prefix(__lowerCamelCase ) UpperCAmelCase_ : Any = decompress_data(__lowerCamelCase ) write_file_binary(__lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Optional[Any] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : int = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase_ : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Optional[int] = OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) UpperCAmelCase_ : Optional[int] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : str = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Optional[int] = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass UpperCAmelCase_ : int = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) UpperCAmelCase_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )["hidden_states"][0] UpperCAmelCase_ : List[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )["hidden_states"][0] # select random slice UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : int = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Optional[Any] = config_and_inputs UpperCAmelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[int] = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Any = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : List[Any] = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = OpenLlamaModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Optional[Any] = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = 3 UpperCAmelCase_ : Optional[Any] = input_dict["input_ids"] UpperCAmelCase_ : Union[str, Any] = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : str = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : int = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : str = 3 UpperCAmelCase_ : str = "single_label_classification" UpperCAmelCase_ : Any = input_dict["input_ids"] UpperCAmelCase_ : int = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = 3 UpperCAmelCase_ : Union[str, Any] = "multi_label_classification" UpperCAmelCase_ : Dict = input_dict["input_ids"] UpperCAmelCase_ : Tuple = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : List[str] = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase_ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Union[str, Any] = OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() UpperCAmelCase_ : Optional[int] = original_model(lowercase_ ).last_hidden_state UpperCAmelCase_ : Optional[int] = original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Optional[int] = {"type": scaling_type, "factor": 10.0} UpperCAmelCase_ : List[Any] = OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() UpperCAmelCase_ : Tuple = scaled_model(lowercase_ ).last_hidden_state UpperCAmelCase_ : Any = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) )
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
364
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
365
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" from __future__ import annotations from cmath import sqrt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) UpperCAmelCase_ : Tuple = b * b - 4 * a * c UpperCAmelCase_ : List[Any] = (-b + sqrt(__lowerCamelCase )) / (2 * a) UpperCAmelCase_ : Tuple = (-b - sqrt(__lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): UpperCAmelCase_ : Optional[Any] = quadratic_roots(a=5, b=6, c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
366
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
0
"""simple docstring""" import cmath import math def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = math.radians(__lowerCamelCase ) UpperCAmelCase_ : Tuple = math.radians(__lowerCamelCase ) # Convert voltage and current to rectangular form UpperCAmelCase_ : Optional[Any] = cmath.rect(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = cmath.rect(__lowerCamelCase, __lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
import enum import shutil import sys _a , _a = shutil.get_terminal_size() _a = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class A_ (enum.Enum ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 def __a ( __lowerCamelCase, __lowerCamelCase="" ): sys.stdout.write(str(__lowerCamelCase ) + end ) sys.stdout.flush() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="" ): forceWrite(f"""\u001b[{color}m{content}\u001b[0m""", __lowerCamelCase ) def __a ( ): forceWrite("\r" ) def __a ( __lowerCamelCase, __lowerCamelCase ): forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def __a ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _a = { 'camembert-base': 512, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ : str = CamembertTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=["<s>NOTUSED", "</s>NOTUSED"] , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : str = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( lowercase_ , tokenizer_file=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : int = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : str = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Any = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
369
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
0
"""simple docstring""" import os import sys import unittest _a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a = os.path.join(git_repo_path, 'src', 'diffusers') class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = find_backend(" if not is_torch_available():" ) self.assertEqual(lowercase_ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCAmelCase_ : List[str] = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(lowercase_ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCAmelCase_ : Any = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(lowercase_ , "torch_and_transformers_and_onnx" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowercase_ ) self.assertIn("torch_and_transformers" , lowercase_ ) self.assertIn("flax_and_transformers" , lowercase_ ) self.assertIn("torch_and_transformers_and_onnx" , lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowercase_ , "\nCONSTANT = None\n" ) UpperCAmelCase_ : Union[str, Any] = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowercase_ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCAmelCase_ : List[Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" UpperCAmelCase_ : List[str] = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCAmelCase_ : int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowercase_ )
370
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['GLPNFeatureExtractor'] _a = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): requires_backends(__lowerCamelCase, ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ["""torch"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["torch"] )
350
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ (unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.dummy_uncond_unet UpperCAmelCase_ : Union[str, Any] = PNDMScheduler() UpperCAmelCase_ : Any = PNDMPipeline(unet=lowercase_ , scheduler=lowercase_ ) pndm.to(lowercase_ ) pndm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pndm(generator=lowercase_ , num_inference_steps=20 , output_type="numpy" ).images UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pndm(generator=lowercase_ , num_inference_steps=20 , output_type="numpy" , return_dict=lowercase_ )[0] UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Tuple = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = "google/ddpm-cifar10-32" UpperCAmelCase_ : Optional[Any] = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase_ : List[str] = PNDMScheduler() UpperCAmelCase_ : Optional[int] = PNDMPipeline(unet=lowercase_ , scheduler=lowercase_ ) pndm.to(lowercase_ ) pndm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = pndm(generator=lowercase_ , output_type="numpy" ).images UpperCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
"""simple docstring""" from manim import * class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : List[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : List[str] = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[int] = Text("CPU" , font_size=24 ) UpperCAmelCase_ : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : Optional[int] = [mem.copy() for i in range(4 )] UpperCAmelCase_ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Any = Text("GPU" , font_size=24 ) UpperCAmelCase_ : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : int = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[int] = Text("Model" , font_size=24 ) UpperCAmelCase_ : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : Dict = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase_ : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) UpperCAmelCase_ : Dict = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase_ : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase_ : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ : Dict = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase_ : Union[str, Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : str = [] for i, rect in enumerate(lowercase_ ): UpperCAmelCase_ : int = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) UpperCAmelCase_ : str = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A_ (unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=4 , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : str = use_attention_mask UpperCAmelCase_ : List[Any] = use_token_type_ids UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : str = num_choices def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_attention_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : List[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : List[str] = config_and_inputs UpperCAmelCase_ : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : str = config_and_inputs UpperCAmelCase_ : int = True UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = True SCREAMING_SNAKE_CASE__ : Dict = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase_ : str = model_class_name.from_pretrained("roberta-base" , from_pt=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ )
353
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
0
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = JukeboxTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch UpperCAmelCase_ : Any = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) UpperCAmelCase_ : str = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCAmelCase_ : Any = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch UpperCAmelCase_ : Dict = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) UpperCAmelCase_ : Any = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCAmelCase_ : Tuple = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
354
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ : Dict = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ : str = 0.01 with locka.acquire(): with pytest.raises(__lowerCamelCase ): UpperCAmelCase_ : str = time.time() locka.acquire(__lowerCamelCase ) assert time.time() - _start > timeout def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = "a" * 1000 + ".lock" UpperCAmelCase_ : Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__lowerCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ : Tuple = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCamelCase ): locka.acquire(0 )
355
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
356
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """trocr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , lowercase_=5_0265 , lowercase_=1024 , lowercase_=12 , lowercase_=16 , lowercase_=4096 , lowercase_="gelu" , lowercase_=512 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=2 , lowercase_=0.02 , lowercase_=0.0 , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Optional[Any] = d_model UpperCAmelCase_ : Optional[int] = decoder_layers UpperCAmelCase_ : Any = decoder_attention_heads UpperCAmelCase_ : Optional[int] = decoder_ffn_dim UpperCAmelCase_ : Any = activation_function UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : List[Any] = activation_dropout UpperCAmelCase_ : List[str] = init_std UpperCAmelCase_ : Tuple = decoder_layerdrop UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : Union[str, Any] = scale_embedding UpperCAmelCase_ : Dict = use_learned_position_embeddings UpperCAmelCase_ : List[str] = layernorm_embedding super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
357
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github _a = [ 'good first issue', 'feature request', 'wip', ] def __a ( ): UpperCAmelCase_ : Optional[Any] = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase_ : List[Any] = g.get_repo("huggingface/accelerate" ) UpperCAmelCase_ : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()], key=lambda __lowerCamelCase : i.created_at, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = comments[0] if len(__lowerCamelCase ) > 0 else None UpperCAmelCase_ : Optional[Any] = dt.utcnow() UpperCAmelCase_ : Optional[int] = (current_time - issue.updated_at).days UpperCAmelCase_ : str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
358
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = StableUnCLIPImgaImgPipeline SCREAMING_SNAKE_CASE__ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS SCREAMING_SNAKE_CASE__ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ : Optional[Any] = frozenset([] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = 32 UpperCAmelCase_ : Dict = embedder_hidden_size # image encoding components UpperCAmelCase_ : List[str] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) UpperCAmelCase_ : str = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowercase_ , projection_dim=lowercase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) UpperCAmelCase_ : int = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase_ : int = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = AutoencoderKL() UpperCAmelCase_ : List[Any] = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 , lowercase_=True ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if pil_image: UpperCAmelCase_ : Any = input_image * 0.5 + 0.5 UpperCAmelCase_ : str = input_image.clamp(0 , 1 ) UpperCAmelCase_ : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ : Optional[Any] = DiffusionPipeline.numpy_to_pil(lowercase_ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[Any] = self.get_dummy_components() UpperCAmelCase_ : Union[str, Any] = StableUnCLIPImgaImgPipeline(**lowercase_ ) UpperCAmelCase_ : Tuple = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Dict = self.get_dummy_inputs(lowercase_ ) inputs.update({"image_embeds": None} ) UpperCAmelCase_ : List[str] = sd_pipe(**lowercase_ ).images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Optional[int] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowercase_ ) @slow @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : Any = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pipe(lowercase_ , "anime turle" , generator=lowercase_ , output_type="np" ) UpperCAmelCase_ : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : Any = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe(lowercase_ , "anime turle" , generator=lowercase_ , output_type="np" ) UpperCAmelCase_ : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) UpperCAmelCase_ : str = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : List[str] = pipe( lowercase_ , "anime turtle" , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
359
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '▁' _a = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } _a = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } _a = { 'facebook/s2t-small-librispeech-asr': 1_024, } _a = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] _a = {'mustc': MUSTC_LANGS} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[Any] = MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE__ : Dict = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self , lowercase_ , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<pad>" , lowercase_="<unk>" , lowercase_=False , lowercase_=False , lowercase_=None , lowercase_=None , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , do_upper_case=lowercase_ , do_lower_case=lowercase_ , tgt_lang=lowercase_ , lang_codes=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase_ : Optional[int] = do_upper_case UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : Optional[int] = load_json(lowercase_ ) UpperCAmelCase_ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Dict = spm_file UpperCAmelCase_ : Dict = load_spm(lowercase_ , self.sp_model_kwargs ) if lang_codes is not None: UpperCAmelCase_ : str = lang_codes UpperCAmelCase_ : str = LANGUAGES[lang_codes] UpperCAmelCase_ : List[Any] = [F"""<lang:{lang}>""" for lang in self.langs] UpperCAmelCase_ : int = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} UpperCAmelCase_ : Dict = self.lang_tokens UpperCAmelCase_ : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCAmelCase_ : Optional[int] = {} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.encoder ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.lang_code_to_id[tgt_lang] UpperCAmelCase_ : List[Any] = [lang_code_id] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.encoder.get(lowercase_ , self.encoder[self.unk_token] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ , self.unk_token ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCAmelCase_ : Any = self.sp_model.decode(lowercase_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCAmelCase_ : str = [] else: current_sub_tokens.append(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.sp_model.decode(lowercase_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[int] = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" UpperCAmelCase_ : str = self.__dict__.copy() UpperCAmelCase_ : Dict = None return state def __setstate__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : int = Path(lowercase_ ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" UpperCAmelCase_ : Optional[int] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) UpperCAmelCase_ : List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowercase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase_ ) elif not os.path.isfile(self.spm_file ): with open(lowercase_ , "wb" ) as fi: UpperCAmelCase_ : Any = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (str(lowercase_ ), str(lowercase_ )) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def __a ( __lowerCamelCase ): with open(__lowerCamelCase, "r" ) as f: return json.load(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): with open(__lowerCamelCase, "w" ) as f: json.dump(__lowerCamelCase, __lowerCamelCase, indent=2 )
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } _a = { 'junnyu/roformer_chinese_small': 1_536, 'junnyu/roformer_chinese_base': 1_536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } _a = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : List[str] = RoFormerTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ): """simple docstring""" super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , lowercase_ ) != do_lower_case or pre_tok_state.get("strip_accents" , lowercase_ ) != strip_accents ): UpperCAmelCase_ : List[str] = getattr(lowercase_ , pre_tok_state.pop("type" ) ) UpperCAmelCase_ : Union[str, Any] = do_lower_case UpperCAmelCase_ : Union[str, Any] = strip_accents UpperCAmelCase_ : int = pre_tok_class(**lowercase_ ) UpperCAmelCase_ : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCAmelCase_ : Any = self.__dict__.copy() UpperCAmelCase_ : Tuple = BertPreTokenizer() return state def __setstate__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = d UpperCAmelCase_ : Optional[Any] = self.__dict__["_tokenizer"].get_vocab() UpperCAmelCase_ : Tuple = PreTokenizer.custom(JiebaPreTokenizer(lowercase_ ) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : int = [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=False , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Dict = BertPreTokenizer() return super().save_pretrained(lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
361
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = XLMProphetNetTokenizer SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : Optional[int] = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "[PAD]" UpperCAmelCase_ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase_ ) , 1012 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_ ) UpperCAmelCase_ : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ : Dict = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = "Hello World!" UpperCAmelCase_ : Optional[Any] = [3_5389, 6672, 49, 2] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = {"input_ids": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def __a ( __lowerCamelCase, __lowerCamelCase = True, __lowerCamelCase = math.inf, __lowerCamelCase = -math.inf, __lowerCamelCase = math.inf, __lowerCamelCase = -math.inf, __lowerCamelCase = False, __lowerCamelCase = 100, __lowerCamelCase = 0.01, __lowerCamelCase = 1, ): UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Any = search_prob UpperCAmelCase_ : Any = start_temperate UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[int] = None while not search_end: UpperCAmelCase_ : int = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase_ : Union[str, Any] = current_state scores.append(__lowerCamelCase ) iterations += 1 UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[int] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase_ : List[str] = random.randint(0, len(__lowerCamelCase ) - 1 ) # picking a random neighbor UpperCAmelCase_ : List[Any] = neighbors.pop(__lowerCamelCase ) UpperCAmelCase_ : Dict = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase_ : Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase_ : Optional[Any] = picked_neighbor else: UpperCAmelCase_ : str = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase_ : str = picked_neighbor UpperCAmelCase_ : List[str] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase_ : Optional[int] = True else: UpperCAmelCase_ : List[str] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__lowerCamelCase ), __lowerCamelCase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def __a ( __lowerCamelCase, __lowerCamelCase ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _a = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _a = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) _a = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _a = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def __a ( __lowerCamelCase, __lowerCamelCase ): return (3 * x**2) - (6 * y) _a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _a = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" ) _a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _a = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" )
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } _a = { 'facebook/mbart-large-en-ro': 1_024, 'facebook/mbart-large-cc25': 1_024, } # fmt: off _a = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ : Any = MBartTokenizer SCREAMING_SNAKE_CASE__ : List[int] = [] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( vocab_file=lowercase_ , tokenizer_file=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : Dict = False if not self.vocab_file else True UpperCAmelCase_ : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) UpperCAmelCase_ : List[str] = { lang_code: self.convert_tokens_to_ids(lowercase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ : Optional[Any] = src_lang if src_lang is not None else "en_XX" UpperCAmelCase_ : Any = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase_ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ : str = src_lang UpperCAmelCase_ : Optional[Any] = self(lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = self.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = tgt_lang_id return inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_ = "en_XX" , lowercase_ = None , lowercase_ = "ro_RO" , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = src_lang UpperCAmelCase_ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(lowercase_ , lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Dict = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase_ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = self.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Dict = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCAmelCase_ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
364
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase=False ): UpperCAmelCase_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : int = "" else: UpperCAmelCase_ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : str = in_proj_bias[-config.hidden_size :] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : Tuple = val def __a ( ): UpperCAmelCase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = int(deit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ : Any = 192 UpperCAmelCase_ : Union[str, Any] = 768 UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : int = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : List[str] = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ : int = 1024 UpperCAmelCase_ : List[Any] = 4096 UpperCAmelCase_ : Optional[int] = 24 UpperCAmelCase_ : int = 16 # load original model from timm UpperCAmelCase_ : Union[str, Any] = timm.create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[Any] = timm_model.state_dict() UpperCAmelCase_ : Tuple = create_rename_keys(__lowerCamelCase, __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # load HuggingFace model UpperCAmelCase_ : str = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ : Optional[Any] = DeiTImageProcessor(size=__lowerCamelCase, crop_size=config.image_size ) UpperCAmelCase_ : Any = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase_ : int = encoding["pixel_values"] UpperCAmelCase_ : Optional[Any] = model(__lowerCamelCase ) UpperCAmelCase_ : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
23
0
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) _a = None _a = { '7B': 11_008, '13B': 13_824, '30B': 17_920, '65B': 22_016, '70B': 28_672, } _a = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def __a ( __lowerCamelCase, __lowerCamelCase=1, __lowerCamelCase=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __a ( __lowerCamelCase ): with open(__lowerCamelCase, "r" ) as f: return json.load(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): with open(__lowerCamelCase, "w" ) as f: json.dump(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ): os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = os.path.join(__lowerCamelCase, "tmp" ) os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) UpperCAmelCase_ : List[Any] = read_json(os.path.join(__lowerCamelCase, "params.json" ) ) UpperCAmelCase_ : str = NUM_SHARDS[model_size] UpperCAmelCase_ : Union[str, Any] = params["n_layers"] UpperCAmelCase_ : Union[str, Any] = params["n_heads"] UpperCAmelCase_ : Union[str, Any] = n_heads // num_shards UpperCAmelCase_ : int = params["dim"] UpperCAmelCase_ : Tuple = dim // n_heads UpperCAmelCase_ : Any = 1_0000.0 UpperCAmelCase_ : Optional[int] = 1.0 / (base ** (torch.arange(0, __lowerCamelCase, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase_ : List[str] = params["n_kv_heads"] # for GQA / MQA UpperCAmelCase_ : List[Any] = n_heads_per_shard // num_key_value_heads UpperCAmelCase_ : List[str] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase_ : Dict = n_heads UpperCAmelCase_ : List[Any] = n_heads_per_shard UpperCAmelCase_ : Any = dim # permute for sliced rotary def permute(__lowerCamelCase, __lowerCamelCase=n_heads, __lowerCamelCase=dim, __lowerCamelCase=dim ): return w.view(__lowerCamelCase, dima // n_heads // 2, 2, __lowerCamelCase ).transpose(1, 2 ).reshape(__lowerCamelCase, __lowerCamelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase_ : Dict = torch.load(os.path.join(__lowerCamelCase, "consolidated.00.pth" ), map_location="cpu" ) else: # Sharded UpperCAmelCase_ : List[Any] = [ torch.load(os.path.join(__lowerCamelCase, f"""consolidated.{i:02d}.pth""" ), map_location="cpu" ) for i in range(__lowerCamelCase ) ] UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[int] = {"weight_map": {}} for layer_i in range(__lowerCamelCase ): UpperCAmelCase_ : List[str] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase_ : List[Any] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase_ : Union[str, Any] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase_ : Dict = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for i in range(__lowerCamelCase ) ], dim=0, ).reshape(__lowerCamelCase, __lowerCamelCase ) ) UpperCAmelCase_ : List[str] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for i in range(__lowerCamelCase ) ], dim=0, ).reshape(__lowerCamelCase, __lowerCamelCase ), __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ) UpperCAmelCase_ : int = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for i in range(__lowerCamelCase ) ], dim=0, ).reshape(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[str] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(__lowerCamelCase )], dim=1 ) UpperCAmelCase_ : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(__lowerCamelCase )], dim=0 ) UpperCAmelCase_ : Dict = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(__lowerCamelCase )], dim=1 ) UpperCAmelCase_ : Optional[Any] = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(__lowerCamelCase )], dim=0 ) UpperCAmelCase_ : List[Any] = inv_freq for k, v in state_dict.items(): UpperCAmelCase_ : List[str] = filename param_count += v.numel() torch.save(__lowerCamelCase, os.path.join(__lowerCamelCase, __lowerCamelCase ) ) UpperCAmelCase_ : str = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase_ : List[Any] = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: UpperCAmelCase_ : Tuple = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(__lowerCamelCase )], dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(__lowerCamelCase )], dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase_ : Dict = filename param_count += v.numel() torch.save(__lowerCamelCase, os.path.join(__lowerCamelCase, __lowerCamelCase ) ) # Write configs UpperCAmelCase_ : Optional[Any] = {"total_size": param_count * 2} write_json(__lowerCamelCase, os.path.join(__lowerCamelCase, "pytorch_model.bin.index.json" ) ) UpperCAmelCase_ : Optional[Any] = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 UpperCAmelCase_ : List[str] = params["multiple_of"] if "multiple_of" in params else 256 UpperCAmelCase_ : str = LlamaConfig( hidden_size=__lowerCamelCase, intermediate_size=compute_intermediate_size(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=__lowerCamelCase, ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) UpperCAmelCase_ : Tuple = LlamaForCausalLM.from_pretrained(__lowerCamelCase, torch_dtype=torch.floataa, low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(__lowerCamelCase, safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): # Initialize the tokenizer based on the `spm` model UpperCAmelCase_ : Any = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase_ : List[Any] = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of LLaMA weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"], ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=__lowerCamelCase, help="Whether or not to save using `safetensors`." ) UpperCAmelCase_ : Dict = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) UpperCAmelCase_ : str = os.path.join(args.input_dir, "tokenizer.model" ) write_tokenizer(args.output_dir, __lowerCamelCase ) if __name__ == "__main__": main()
365
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) UpperCAmelCase_ : List[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] UpperCAmelCase_ : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) UpperCAmelCase_ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = jax.device_count() UpperCAmelCase_ : Optional[int] = num_samples * [prompt] UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) UpperCAmelCase_ : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[str] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : int = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) UpperCAmelCase_ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : str = jax.random.PRNGKey(0 ) UpperCAmelCase_ : str = 50 UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Any = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Dict = replicate(lowercase_ ) UpperCAmelCase_ : str = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Optional[int] = 50 UpperCAmelCase_ : Optional[int] = jax.device_count() UpperCAmelCase_ : str = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : Union[str, Any] = replicate(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) UpperCAmelCase_ : List[Any] = scheduler.create_state() UpperCAmelCase_ : int = scheduler_state UpperCAmelCase_ : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase_ : int = 50 UpperCAmelCase_ : str = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : int = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng UpperCAmelCase_ : int = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = jax.random.split(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = shard(lowercase_ ) UpperCAmelCase_ : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ : List[str] = jax.device_count() UpperCAmelCase_ : List[Any] = num_samples * [prompt] UpperCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) UpperCAmelCase_ : Any = replicate(lowercase_ ) UpperCAmelCase_ : List[str] = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : List[str] = shard(lowercase_ ) UpperCAmelCase_ : List[Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : int = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) UpperCAmelCase_ : str = replicate(lowercase_ ) UpperCAmelCase_ : str = pipeline.prepare_inputs(lowercase_ ) UpperCAmelCase_ : Optional[int] = shard(lowercase_ ) UpperCAmelCase_ : str = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file UpperCAmelCase_ : Tuple = TapasConfig.from_json_file(__lowerCamelCase ) # set absolute/relative position embeddings parameter UpperCAmelCase_ : Union[str, Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": UpperCAmelCase_ : str = TapasForQuestionAnswering(config=__lowerCamelCase ) elif task == "WTQ": # run_task_main.py hparams UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Dict = True # hparam_utils.py hparams UpperCAmelCase_ : Optional[int] = 0.66_4694 UpperCAmelCase_ : List[str] = 0.20_7951 UpperCAmelCase_ : Union[str, Any] = 0.12_1194 UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : str = 0.035_2513 UpperCAmelCase_ : List[Any] = TapasForQuestionAnswering(config=__lowerCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : Union[str, Any] = False # hparam_utils.py hparams UpperCAmelCase_ : Optional[int] = 36.4519 UpperCAmelCase_ : List[Any] = 0.90_3421 UpperCAmelCase_ : Union[str, Any] = 222.088 UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Any = True UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = 0.76_3141 UpperCAmelCase_ : Dict = TapasForQuestionAnswering(config=__lowerCamelCase ) elif task == "TABFACT": UpperCAmelCase_ : List[str] = TapasForSequenceClassification(config=__lowerCamelCase ) elif task == "MLM": UpperCAmelCase_ : Optional[int] = TapasForMaskedLM(config=__lowerCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": UpperCAmelCase_ : Any = TapasModel(config=__lowerCamelCase ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCamelCase ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) UpperCAmelCase_ : Dict = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512 ) tokenizer.save_pretrained(__lowerCamelCase ) print("Used relative position embeddings:", model.config.reset_position_index_per_cell ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
366
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
0
"""simple docstring""" import os import sys import transformers _a = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
from __future__ import annotations from typing import Any class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = num_of_nodes UpperCAmelCase_ : list[list[int]] = [] UpperCAmelCase_ : dict[int, int] = {} def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase_ : Optional[int] = self.find_component(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: UpperCAmelCase_ : Optional[Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_ ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase_ : Optional[Any] = self.find_component(lowercase_ ) component_size[u_node] += component_size[v_node] self.set_component(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase_ : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase_ : str = edge UpperCAmelCase_ : Dict = self.m_component[u] UpperCAmelCase_ : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase_ : List[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Tuple = edge UpperCAmelCase_ : List[Any] = self.m_component[u] UpperCAmelCase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 UpperCAmelCase_ : List[Any] = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __a ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
"""simple docstring""" def __a ( __lowerCamelCase ) -> Tuple: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence UpperCAmelCase_ : Dict = gray_code_sequence_string(__lowerCamelCase ) # # convert them to integers for i in range(len(__lowerCamelCase ) ): UpperCAmelCase_ : str = int(sequence[i], 2 ) return sequence def __a ( __lowerCamelCase ) -> Tuple: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Dict = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : int = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : Dict = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : List[Any] = "0" + smaller_sequence[i] sequence.append(__lowerCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Union[str, Any] = "1" + smaller_sequence[i] sequence.append(__lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: UpperCAmelCase_ : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: UpperCAmelCase_ : str = [file for file in files if n_ not in file] else: UpperCAmelCase_ : Any = [file for file in files if n_identifier not in file] UpperCAmelCase_ : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase_ ) if only_modules: UpperCAmelCase_ : str = file.split("." )[0] try: UpperCAmelCase_ : str = getattr(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = doctest.DocTestSuite(lowercase_ ) UpperCAmelCase_ : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase_ : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Path("src/transformers" ) UpperCAmelCase_ : str = "modeling" UpperCAmelCase_ : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = Path("src/transformers" ) UpperCAmelCase_ : Any = "tokenization" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = "configuration" self.analyze_directory(lowercase_ , identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Path("src/transformers" ) UpperCAmelCase_ : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Path("docs/source" ) UpperCAmelCase_ : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
23
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""pixel_values"""] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PIL.Image.BICUBIC , lowercase_ = True , lowercase_ = None , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : List[Any] = size if size is not None else {"height": 256, "width": 256} UpperCAmelCase_ : Dict = get_size_dict(lowercase_ ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : List[str] = get_size_dict(lowercase_ , param_name="crop_size" ) UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : int = size UpperCAmelCase_ : str = resample UpperCAmelCase_ : str = do_center_crop UpperCAmelCase_ : Dict = crop_size UpperCAmelCase_ : Dict = do_rescale UpperCAmelCase_ : str = rescale_factor UpperCAmelCase_ : List[Any] = do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PIL.Image.BICUBIC , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( lowercase_ , size=(size["height"], size["width"]) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Dict = resample if resample is not None else self.resample UpperCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Optional[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Tuple = size if size is not None else self.size UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ ) UpperCAmelCase_ : Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ , param_name="crop_size" ) UpperCAmelCase_ : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Dict = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase_ : Dict = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Dict = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase_ : str = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase_ : List[str] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase_ : Tuple = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase_ : List[str] = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
370
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) return (preds == labels).mean() def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Optional[Any] = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) UpperCAmelCase_ : Any = pearsonr(__lowerCamelCase, __lowerCamelCase )[0] UpperCAmelCase_ : Optional[Any] = spearmanr(__lowerCamelCase, __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase, __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase, __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): warnings.warn(__lowerCamelCase, __lowerCamelCase ) requires_backends(__lowerCamelCase, "sklearn" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
23
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] SCREAMING_SNAKE_CASE__ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ : ClassVar[Any] = None SCREAMING_SNAKE_CASE__ : str = field(default="""Translation""" ,init=lowercase__ ,repr=lowercase__ ) def __call__( self ): """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCamelCase__ ( self ): """simple docstring""" from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[List] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ : ClassVar[Any] = None SCREAMING_SNAKE_CASE__ : str = field(default="""TranslationVariableLanguages""" ,init=lowercase__ ,repr=lowercase__ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase_ : List[str] = len(self.languages ) if self.languages else None def __call__( self ): """simple docstring""" return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = set(self.languages ) if self.languages and set(lowercase_ ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(lowercase_ ) - lang_set ) )}) are not in valid set ({", ".join(lowercase_ )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase_ : Optional[Any] = [] for lang, text in translation_dict.items(): if isinstance(lowercase_ , lowercase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase_ : Union[str, Any] = zip(*sorted(lowercase_ ) ) return {"language": languages, "translation": translations} def UpperCamelCase__ ( self ): """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
371
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE : Optional[Any] = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ["""DPTFeatureExtractor"""] SCREAMING_SNAKE_CASE : Any = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE : Optional[int] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowercase ( _snake_case : list[list[int]] , _snake_case : list[int] , _snake_case : list[int] , _snake_case : int , _snake_case : list[list[int]] , ) ->tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_snake_case ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_snake_case ) ) ] # the action grid __snake_case : Tuple = init[0] __snake_case : str = init[1] __snake_case : List[str] = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Tuple = [[f, g, x, y]] __snake_case : Union[str, Any] = False # flag that is set when search is complete __snake_case : Optional[Any] = False # flag set if we can't find expand while not found and not resign: if len(_snake_case ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Dict = cell.pop() __snake_case : Optional[Any] = next_cell[2] __snake_case : Tuple = next_cell[3] __snake_case : Tuple = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Dict = True else: for i in range(len(_snake_case ) ): # to try out different valid actions __snake_case : int = x + DIRECTIONS[i][0] __snake_case : int = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_snake_case ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : Optional[Any] = g + cost __snake_case : str = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Union[str, Any] = i __snake_case : str = [] __snake_case : List[Any] = goal[0] __snake_case : str = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : List[Any] = x - DIRECTIONS[action[x][y]][0] __snake_case : List[str] = y - DIRECTIONS[action[x][y]][1] __snake_case : Dict = xa __snake_case : Union[str, Any] = ya invpath.append([x, y] ) __snake_case : Union[str, Any] = [] for i in range(len(_snake_case ) ): path.append(invpath[len(_snake_case ) - 1 - i] ) return path, action if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] SCREAMING_SNAKE_CASE : List[Any] = [0, 0] # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE : Optional[int] = [len(grid) - 1, len(grid[0]) - 1] SCREAMING_SNAKE_CASE : Any = 1 # the cost map which pushes the path closer to the goal SCREAMING_SNAKE_CASE : Dict = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): SCREAMING_SNAKE_CASE : List[Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map SCREAMING_SNAKE_CASE : Optional[int] = 99 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
24
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" import json import sys def lowercase ( _snake_case : Optional[int] , _snake_case : Optional[int] ) ->List[str]: """simple docstring""" with open(_snake_case , encoding='''utf-8''' ) as f: __snake_case : Optional[int] = json.load(_snake_case ) __snake_case : Optional[int] = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(_snake_case ): __snake_case : List[str] = results[benchmark_name] __snake_case : List[str] = benchmark_name.split('''/''' )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) __snake_case : Optional[int] = '''| metric |''' __snake_case : Any = '''|--------|''' __snake_case : Dict = '''| new / old (diff) |''' for metric_name in sorted(_snake_case ): __snake_case : List[Any] = benchmark_res[metric_name] __snake_case : Any = metric_vals['''new'''] __snake_case : str = metric_vals.get('''old''' , _snake_case ) __snake_case : Tuple = metric_vals.get('''diff''' , _snake_case ) __snake_case : Any = f""" {new_val:f}""" if isinstance(_snake_case , (int, float) ) else '''None''' if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(_snake_case , (int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(_snake_case , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(_snake_case ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = sys.argv[1] SCREAMING_SNAKE_CASE : Dict = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ ='hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def SCREAMING_SNAKE_CASE (self , a_=0 ): '''simple docstring''' __snake_case : Tuple = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(a_ ) ) __snake_case : Optional[int] = np.random.RandomState(a_ ) __snake_case : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[int] = self.get_dummy_inputs() __snake_case : List[Any] = pipe(**a_ ).images __snake_case : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) __snake_case : str = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Union[str, Any] = self.get_dummy_inputs() __snake_case : Optional[int] = pipe(**a_ ).images __snake_case : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __snake_case : Optional[Any] = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) # warmup pass to apply optimizations __snake_case : Optional[int] = pipe(**self.get_dummy_inputs() ) __snake_case : Optional[int] = self.get_dummy_inputs() __snake_case : Any = pipe(**a_ ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __snake_case : List[str] = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[int] = self.get_dummy_inputs() __snake_case : Any = pipe(**a_ ).images __snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __snake_case : Dict = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Union[str, Any] = self.get_dummy_inputs() __snake_case : Optional[Any] = pipe(**a_ ).images __snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __snake_case : Optional[Any] = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[int] = self.get_dummy_inputs() __snake_case : int = pipe(**a_ ).images __snake_case : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __snake_case : Dict = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = ort.SessionOptions() __snake_case : Dict = False return options def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case : Any = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default __snake_case : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Tuple = '''A fantasy landscape, trending on artstation''' __snake_case : List[Any] = np.random.RandomState(0 ) __snake_case : int = pipe( prompt=a_ , image=a_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type='''np''' , ) __snake_case : List[Any] = output.images __snake_case : Dict = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __snake_case : int = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case : List[Any] = init_image.resize((7_68, 5_12) ) __snake_case : Any = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : str = '''A fantasy landscape, trending on artstation''' __snake_case : Union[str, Any] = np.random.RandomState(0 ) __snake_case : List[str] = pipe( prompt=a_ , image=a_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=a_ , output_type='''np''' , ) __snake_case : List[str] = output.images __snake_case : Union[str, Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __snake_case : Optional[int] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
1
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE : Optional[int] = list[list[int]] # assigning initial values to the grid SCREAMING_SNAKE_CASE : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution SCREAMING_SNAKE_CASE : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase ( _snake_case : Matrix , _snake_case : int , _snake_case : int , _snake_case : int ) ->bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase ( _snake_case : Matrix ) ->tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase ( _snake_case : Matrix ) ->Matrix | None: """simple docstring""" if location := find_empty_location(_snake_case ): __snake_case , __snake_case : List[str] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_snake_case , _snake_case , _snake_case , _snake_case ): __snake_case : Any = digit if sudoku(_snake_case ) is not None: return grid __snake_case : List[Any] = 0 return None def lowercase ( _snake_case : Matrix ) ->None: """simple docstring""" for row in grid: for cell in row: print(_snake_case , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") SCREAMING_SNAKE_CASE : Tuple = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=32 , a_=3 , a_=4 , a_=[10, 20, 30, 40] , a_=[2, 2, 3, 2] , a_=True , a_=True , a_=37 , a_="gelu" , a_=10 , a_=0.02 , a_=["stage2", "stage3", "stage4"] , a_=[2, 3, 4] , a_=None , ): '''simple docstring''' __snake_case : Dict = parent __snake_case : Tuple = batch_size __snake_case : Optional[int] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = num_stages __snake_case : int = hidden_sizes __snake_case : List[str] = depths __snake_case : Any = is_training __snake_case : int = use_labels __snake_case : List[str] = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Dict = num_labels __snake_case : List[Any] = initializer_range __snake_case : Optional[Any] = out_features __snake_case : Union[str, Any] = out_indices __snake_case : Dict = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Tuple = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = ConvNextModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : str = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = ConvNextForImageClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = ConvNextBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : List[str] = None __snake_case : str = ConvNextBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCamelCase__ =( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ConvNextModelTester(self ) __snake_case : str = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(a_ ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : str = [*signature.parameters.keys()] __snake_case : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' def check_hidden_states_output(a_ , a_ , a_ ): __snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Dict = True check_hidden_states_output(a_ , a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = ConvNextModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase ( ) ->Dict: """simple docstring""" __snake_case : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a_ ) __snake_case : Tuple = self.default_image_processor __snake_case : int = prepare_img() __snake_case : Union[str, Any] = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __snake_case : str = model(**a_ ) # verify the logits __snake_case : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case : int = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1E-4 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase, __snake_case ): '''simple docstring''' lowerCamelCase__ =(ConvNextBackbone,) if is_torch_available() else () lowerCamelCase__ =ConvNextConfig lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = ConvNextModelTester(self )
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
"""simple docstring""" def lowercase ( _snake_case : int = 200 ) ->int: """simple docstring""" __snake_case : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __snake_case : Tuple = [0] * (pence + 1) __snake_case : List[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_snake_case , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE : List[Any] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : Optional[int] = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") SCREAMING_SNAKE_CASE : Any = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowercase ( _snake_case : str ) ->Dict: """simple docstring""" __snake_case : Optional[Any] = None # source code of `config_class` __snake_case : Optional[Any] = inspect.getsource(_snake_case ) __snake_case : Dict = _re_checkpoint.findall(_snake_case ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __snake_case : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __snake_case : Tuple = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __snake_case : List[str] = ckpt_name break return checkpoint def lowercase ( ) ->List[str]: """simple docstring""" __snake_case : Tuple = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __snake_case : List[str] = get_checkpoint_from_config_class(_snake_case ) __snake_case : Optional[Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_snake_case ) if len(_snake_case ) > 0: __snake_case : Union[str, Any] = '''\n'''.join(sorted(_snake_case ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
24
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
1
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) def lowercase ( _snake_case : Any ) ->List[str]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(_snake_case : Optional[Any] , _snake_case : str="" , _snake_case : List[str]="." ): __snake_case : Dict = [] for k, v in d.items(): __snake_case : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(_snake_case , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_snake_case , _snake_case , sep=_snake_case ).items() ) else: items.append((new_key, v) ) return dict(_snake_case ) __snake_case : Dict = argparse.Namespace() with open(_snake_case , '''r''' ) as yaml_file: try: __snake_case : Dict = yaml.load(_snake_case , Loader=yaml.FullLoader ) __snake_case : List[Any] = flatten_yaml_as_dict(_snake_case ) for k, v in flat_cfg.items(): setattr(_snake_case , _snake_case , _snake_case ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(_snake_case , str(_snake_case ) ) ) return config def lowercase ( _snake_case : int , _snake_case : Optional[int] ) ->List[str]: """simple docstring""" __snake_case : Tuple = MobileViTVaConfig() __snake_case : Any = False # dataset if task_name.startswith('''imagenet1k_''' ): __snake_case : str = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __snake_case : Optional[Any] = 384 else: __snake_case : Optional[int] = 256 __snake_case : Optional[int] = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __snake_case : Any = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __snake_case : Dict = 384 else: __snake_case : Tuple = 256 __snake_case : str = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __snake_case : int = 151 __snake_case : List[str] = 512 __snake_case : int = '''ade20k-id2label.json''' __snake_case : Optional[Any] = True elif task_name.startswith('''voc_''' ): __snake_case : Optional[Any] = 21 __snake_case : Union[str, Any] = 512 __snake_case : Union[str, Any] = '''pascal-voc-id2label.json''' __snake_case : Dict = True # orig_config __snake_case : Union[str, Any] = load_orig_config_file(_snake_case ) assert getattr(_snake_case , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __snake_case : Any = getattr(_snake_case , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(_snake_case , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __snake_case : List[Any] = getattr(_snake_case , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __snake_case : Tuple = getattr(_snake_case , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: __snake_case : Dict = getattr(_snake_case , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) __snake_case : Tuple = getattr(_snake_case , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) __snake_case : Dict = getattr(_snake_case , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __snake_case : Any = '''huggingface/label-files''' __snake_case : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) __snake_case : str = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Optional[int] = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} return config def lowercase ( _snake_case : List[Any] , _snake_case : str , _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : Dict = dct.pop(_snake_case ) __snake_case : str = val def lowercase ( _snake_case : Optional[int] , _snake_case : Dict=False ) ->Tuple: """simple docstring""" if base_model: __snake_case : int = '''''' else: __snake_case : Optional[Any] = '''mobilevitv2.''' __snake_case : Any = [] for k in state_dict.keys(): if k[:8] == "encoder.": __snake_case : int = k[8:] else: __snake_case : Optional[Any] = k if ".block." in k: __snake_case : Optional[int] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __snake_case : List[Any] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __snake_case : Optional[Any] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __snake_case : str = k_new.replace('''conv_1.''' , f"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if f"""layer_{i}.""" in k: __snake_case : List[Any] = k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: __snake_case : Optional[int] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __snake_case : Any = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: __snake_case : Dict = k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if f"""layer_{i}.1.local_rep.0.""" in k: __snake_case : Optional[int] = k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if f"""layer_{i}.1.local_rep.1.""" in k: __snake_case : Union[str, Any] = k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: __snake_case : List[str] = [0, 1] elif i == 4: __snake_case : Optional[int] = [0, 1, 2, 3] elif i == 5: __snake_case : Dict = [0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: __snake_case : Any = k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if f"""layer_{i}.1.global_rep.{j+1}.""" in k: __snake_case : Optional[int] = k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if f"""layer_{i}.1.conv_proj.""" in k: __snake_case : int = k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: __snake_case : Any = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __snake_case : str = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __snake_case : Dict = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __snake_case : Optional[int] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __snake_case : Optional[int] = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __snake_case : Any = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __snake_case : List[Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __snake_case : Dict = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __snake_case : Optional[Any] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def lowercase ( _snake_case : str ) ->List[str]: """simple docstring""" __snake_case : Union[str, Any] = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(_snake_case ) for k in keys_to_ignore: state_dict.pop(_snake_case , _snake_case ) def lowercase ( ) ->str: """simple docstring""" __snake_case : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __snake_case : List[Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowercase ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : int ) ->List[str]: """simple docstring""" __snake_case : List[Any] = get_mobilevitva_config(_snake_case , _snake_case ) # load original state_dict __snake_case : Tuple = torch.load(_snake_case , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __snake_case : Dict = MobileViTVaForSemanticSegmentation(_snake_case ).eval() __snake_case : str = False else: __snake_case : Optional[int] = MobileViTVaForImageClassification(_snake_case ).eval() __snake_case : int = False # remove and rename some keys of load the original model __snake_case : str = checkpoint remove_unused_keys(_snake_case ) __snake_case : List[str] = create_rename_keys(_snake_case , base_model=_snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) # load modified state_dict model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor __snake_case : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __snake_case : Dict = image_processor(images=prepare_img() , return_tensors='''pt''' ) __snake_case : Union[str, Any] = model(**_snake_case ) # verify classification model if task_name.startswith('''imagenet''' ): __snake_case : Optional[Any] = outputs.logits __snake_case : Dict = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , _snake_case , atol=1e-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : int = 4 ) ->list[list[int]]: """simple docstring""" __snake_case : str = abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : List[str] = [list(_snake_case ) for x in zip(*_snake_case )] return matrix def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : List[str] = matrix[::-1] return matrix def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : Dict = [x[::-1] for x in matrix] return matrix def lowercase ( _snake_case : list[list[int]] ) ->None: """simple docstring""" for i in matrix: print(*_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE : Dict = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE : Tuple = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
1
"""simple docstring""" from __future__ import annotations from random import random class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ = None ): '''simple docstring''' __snake_case : List[str] = value __snake_case : List[str] = random() __snake_case : Node | None = None __snake_case : Node | None = None def __repr__(self ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__(self ): '''simple docstring''' __snake_case : Tuple = str(self.value ) + ''' ''' __snake_case : Tuple = str(self.left or '''''' ) __snake_case : Union[str, Any] = str(self.right or '''''' ) return value + left + right def lowercase ( _snake_case : Node | None , _snake_case : int ) ->tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __snake_case , __snake_case : Dict = split(root.left , _snake_case ) return left, root else: __snake_case , __snake_case : int = split(root.right , _snake_case ) return root, right def lowercase ( _snake_case : Node | None , _snake_case : Node | None ) ->Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __snake_case : str = merge(left.right , _snake_case ) return left else: __snake_case : Any = merge(_snake_case , right.left ) return right def lowercase ( _snake_case : Node | None , _snake_case : int ) ->Node | None: """simple docstring""" __snake_case : List[str] = Node(_snake_case ) __snake_case , __snake_case : Union[str, Any] = split(_snake_case , _snake_case ) return merge(merge(_snake_case , _snake_case ) , _snake_case ) def lowercase ( _snake_case : Node | None , _snake_case : int ) ->Node | None: """simple docstring""" __snake_case , __snake_case : List[str] = split(_snake_case , value - 1 ) __snake_case , __snake_case : Any = split(_snake_case , _snake_case ) return merge(_snake_case , _snake_case ) def lowercase ( _snake_case : Node | None ) ->None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowercase ( _snake_case : Node | None , _snake_case : str ) ->Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": __snake_case : Optional[Any] = insert(_snake_case , int(arg[1:] ) ) elif arg[0] == "-": __snake_case : Tuple = erase(_snake_case , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowercase ( ) ->None: """simple docstring""" __snake_case : int = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) __snake_case : Any = input() while args != "q": __snake_case : Optional[Any] = interact_treap(_snake_case , _snake_case ) print(_snake_case ) __snake_case : str = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
1
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=4 , ): '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : List[Any] = batch_size __snake_case : List[Any] = seq_length __snake_case : str = is_training __snake_case : Dict = use_attention_mask __snake_case : Optional[Any] = use_token_type_ids __snake_case : str = use_labels __snake_case : Optional[int] = vocab_size __snake_case : Tuple = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : str = num_choices def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Tuple = None if self.use_attention_mask: __snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None if self.use_token_type_ids: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : str = config_and_inputs __snake_case : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : Optional[Any] = True __snake_case : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =True lowerCamelCase__ =( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Union[str, Any] = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a_ ) __snake_case : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a_ ) __snake_case : Dict = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __snake_case : Optional[Any] = model(a_ )[0] __snake_case : Tuple = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , a_ ) # compare the actual values for a slice. __snake_case : int = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a_ ) __snake_case : int = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __snake_case : str = model(a_ )[0] # compare the actual values for a slice. __snake_case : List[str] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a_ , atol=1E-4 ) )
24
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
1
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =AutoencoderKL lowerCamelCase__ ='sample' lowerCamelCase__ =1E-2 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = 4 __snake_case : Optional[Any] = 3 __snake_case : Dict = (32, 32) __snake_case : Any = floats_tensor((batch_size, num_channels) + sizes ).to(a_ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __snake_case : str = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : int = self.prepare_init_args_and_inputs_for_common() __snake_case : Dict = self.model_class(**a_ ) model.to(a_ ) assert not model.is_gradient_checkpointing and model.training __snake_case : Tuple = model(**a_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case : List[str] = torch.randn_like(a_ ) __snake_case : str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case : Optional[int] = self.model_class(**a_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case : List[str] = model_a(**a_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __snake_case : Dict = dict(model.named_parameters() ) __snake_case : int = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : int = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(a_ ) __snake_case : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __snake_case : Tuple = model.to(a_ ) model.eval() if torch_device == "mps": __snake_case : str = torch.manual_seed(0 ) else: __snake_case : Optional[Any] = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : List[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case : str = image.to(a_ ) with torch.no_grad(): __snake_case : Tuple = model(a_ , sample_posterior=a_ , generator=a_ ).sample __snake_case : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case : List[str] = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": __snake_case : Any = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __snake_case : str = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(a_ , a_ , rtol=1E-2 ) ) @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' return f"""gaussian_noise_s={seed}_shape={'_'.join([str(a_ ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self , a_=0 , a_=(4, 3, 5_12, 5_12) , a_=False ): '''simple docstring''' __snake_case : Any = torch.floataa if fpaa else torch.floataa __snake_case : Any = torch.from_numpy(load_hf_numpy(self.get_file_format(a_ , a_ ) ) ).to(a_ ).to(a_ ) return image def SCREAMING_SNAKE_CASE (self , a_="CompVis/stable-diffusion-v1-4" , a_=False ): '''simple docstring''' __snake_case : List[Any] = '''fp16''' if fpaa else None __snake_case : List[Any] = torch.floataa if fpaa else torch.floataa __snake_case : Tuple = AutoencoderKL.from_pretrained( a_ , subfolder='''vae''' , torch_dtype=a_ , revision=a_ , ) model.to(a_ ).eval() return model def SCREAMING_SNAKE_CASE (self , a_=0 ): '''simple docstring''' if torch_device == "mps": return torch.manual_seed(a_ ) return torch.Generator(device=a_ ).manual_seed(a_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = self.get_sd_vae_model() __snake_case : Dict = self.get_sd_image(a_ ) __snake_case : List[Any] = self.get_generator(a_ ) with torch.no_grad(): __snake_case : Optional[int] = model(a_ , generator=a_ , sample_posterior=a_ ).sample assert sample.shape == image.shape __snake_case : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case : Optional[int] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(a_ , a_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = self.get_sd_vae_model(fpaa=a_ ) __snake_case : List[Any] = self.get_sd_image(a_ , fpaa=a_ ) __snake_case : int = self.get_generator(a_ ) with torch.no_grad(): __snake_case : str = model(a_ , generator=a_ , sample_posterior=a_ ).sample assert sample.shape == image.shape __snake_case : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case : Tuple = torch.tensor(a_ ) assert torch_all_close(a_ , a_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = self.get_sd_vae_model() __snake_case : Optional[Any] = self.get_sd_image(a_ ) with torch.no_grad(): __snake_case : List[Any] = model(a_ ).sample assert sample.shape == image.shape __snake_case : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case : Any = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(a_ , a_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : int = self.get_sd_vae_model() __snake_case : Tuple = self.get_sd_image(a_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case : str = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __snake_case : Dict = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case : Any = torch.tensor(a_ ) assert torch_all_close(a_ , a_ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.get_sd_vae_model(fpaa=a_ ) __snake_case : Union[str, Any] = self.get_sd_image(a_ , shape=(3, 4, 64, 64) , fpaa=a_ ) with torch.no_grad(): __snake_case : Optional[int] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __snake_case : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case : Dict = torch.tensor(a_ ) assert torch_all_close(a_ , a_ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = self.get_sd_vae_model(fpaa=a_ ) __snake_case : Any = self.get_sd_image(a_ , shape=(3, 4, 64, 64) , fpaa=a_ ) with torch.no_grad(): __snake_case : Optional[int] = model.decode(a_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case : Union[str, Any] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(a_ , a_ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[int] = self.get_sd_vae_model() __snake_case : str = self.get_sd_image(a_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case : Optional[Any] = model.decode(a_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case : Optional[Any] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(a_ , a_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = self.get_sd_vae_model() __snake_case : Optional[int] = self.get_sd_image(a_ ) __snake_case : List[str] = self.get_generator(a_ ) with torch.no_grad(): __snake_case : List[str] = model.encode(a_ ).latent_dist __snake_case : int = dist.sample(generator=a_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case : Union[str, Any] = torch.tensor(a_ ) __snake_case : str = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(a_ , a_ , atol=a_ )
24
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
1
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _snake_case : np.ndarray ) ->tuple[np.ndarray, np.ndarray]: """simple docstring""" __snake_case , __snake_case : Optional[Any] = np.shape(_snake_case ) if rows != columns: __snake_case : Union[str, Any] = ( '''\'table\' has to be of square shaped array but got a ''' f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(_snake_case ) __snake_case : Tuple = np.zeros((rows, columns) ) __snake_case : List[str] = np.zeros((rows, columns) ) for i in range(_snake_case ): for j in range(_snake_case ): __snake_case : List[Any] = sum(lower[i][k] * upper[k][j] for k in range(_snake_case ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) __snake_case : Dict = (table[i][j] - total) / upper[j][j] __snake_case : Tuple = 1 for j in range(_snake_case , _snake_case ): __snake_case : List[str] = sum(lower[i][k] * upper[k][j] for k in range(_snake_case ) ) __snake_case : int = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
1
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE : Union[str, Any] = NewType("""DataClass""", Any) SCREAMING_SNAKE_CASE : str = NewType("""DataClassType""", Any) def lowercase ( _snake_case : Optional[int] ) ->List[str]: """simple docstring""" if isinstance(_snake_case , _snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowercase ( _snake_case : list ) ->Callable[[str], Any]: """simple docstring""" __snake_case : int = {str(_snake_case ): choice for choice in choices} return lambda _snake_case : str_to_choice.get(_snake_case , _snake_case ) def lowercase ( *, _snake_case : Union[str, List[str]] = None , _snake_case : str = None , _snake_case : Any = dataclasses.MISSING , _snake_case : Callable[[], Any] = dataclasses.MISSING , _snake_case : dict = None , **_snake_case : str , ) ->dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __snake_case : str = {} if aliases is not None: __snake_case : Any = aliases if help is not None: __snake_case : Dict = help return dataclasses.field(metadata=_snake_case , default=_snake_case , default_factory=_snake_case , **_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , **a_ ): '''simple docstring''' if "formatter_class" not in kwargs: __snake_case : Dict = ArgumentDefaultsHelpFormatter super().__init__(**a_ ) if dataclasses.is_dataclass(a_ ): __snake_case : Optional[int] = [dataclass_types] __snake_case : Any = list(a_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(a_ ) @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = f"""--{field.name}""" __snake_case : Optional[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , a_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __snake_case : Optional[Any] = kwargs.pop('''aliases''' , [] ) if isinstance(a_ , a_ ): __snake_case : Tuple = [aliases] __snake_case : Union[str, Any] = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(a_ , '''UnionType''' ) and isinstance(a_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(a_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(a_ ) not in field.type.__args__: # filter `str` in Union __snake_case : Optional[int] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __snake_case : List[Any] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __snake_case : List[str] = ( field.type.__args__[0] if isinstance(a_ , field.type.__args__[1] ) else field.type.__args__[1] ) __snake_case : Union[str, Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __snake_case : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , a_ ) and issubclass(field.type , a_ )): if origin_type is Literal: __snake_case : int = field.type.__args__ else: __snake_case : Tuple = [x.value for x in field.type] __snake_case : Tuple = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __snake_case : List[Any] = field.default else: __snake_case : Union[str, Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __snake_case : List[str] = copy(a_ ) # Hack because type=bool in argparse does not behave as we want. __snake_case : Tuple = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __snake_case : str = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __snake_case : Optional[int] = default # This tells argparse we accept 0 or 1 value after --field_name __snake_case : Optional[Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) __snake_case : Any = True elif isclass(a_ ) and issubclass(a_ , a_ ): __snake_case : List[Any] = field.type.__args__[0] __snake_case : List[Any] = '''+''' if field.default_factory is not dataclasses.MISSING: __snake_case : Any = field.default_factory() elif field.default is dataclasses.MISSING: __snake_case : List[Any] = True else: __snake_case : Any = field.type if field.default is not dataclasses.MISSING: __snake_case : Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: __snake_case : Tuple = field.default_factory() else: __snake_case : Tuple = True parser.add_argument(a_ , *a_ , **a_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __snake_case : List[str] = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if hasattr(a_ , '''_argument_group_name''' ): __snake_case : Optional[Any] = self.add_argument_group(dtype._argument_group_name ) else: __snake_case : List[str] = self try: __snake_case : Dict[str, type] = get_type_hints(a_ ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(a_ ): __snake_case : int = '''.'''.join(map(a_ , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(a_ ): if not field.init: continue __snake_case : List[Any] = type_hints[field.name] self._parse_dataclass_field(a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_=None , a_=False , a_=True , a_=None , a_=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __snake_case : Union[str, Any] = [] if args_filename: args_files.append(Path(a_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __snake_case : Union[str, Any] = ArgumentParser() args_file_parser.add_argument(a_ , type=a_ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __snake_case , __snake_case : Optional[Any] = args_file_parser.parse_known_args(args=a_ ) __snake_case : Union[str, Any] = vars(a_ ).get(args_file_flag.lstrip('''-''' ) , a_ ) if cmd_args_file_paths: args_files.extend([Path(a_ ) for p in cmd_args_file_paths] ) __snake_case : Dict = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __snake_case : List[str] = file_args + args if args is not None else file_args + sys.argv[1:] __snake_case , __snake_case : List[str] = self.parse_known_args(args=a_ ) __snake_case : str = [] for dtype in self.dataclass_types: __snake_case : Any = {f.name for f in dataclasses.fields(a_ ) if f.init} __snake_case : Optional[Any] = {k: v for k, v in vars(a_ ).items() if k in keys} for k in keys: delattr(a_ , a_ ) __snake_case : str = dtype(**a_ ) outputs.append(a_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(a_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' __snake_case : Tuple = set(args.keys() ) __snake_case : Optional[int] = [] for dtype in self.dataclass_types: __snake_case : List[str] = {f.name for f in dataclasses.fields(a_ ) if f.init} __snake_case : List[Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __snake_case : List[Any] = dtype(**a_ ) outputs.append(a_ ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(a_ )}""" ) return tuple(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' with open(Path(a_ ) , encoding='''utf-8''' ) as open_json_file: __snake_case : List[Any] = json.loads(open_json_file.read() ) __snake_case : Optional[Any] = self.parse_dict(a_ , allow_extra_keys=a_ ) return tuple(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' __snake_case : List[str] = self.parse_dict(yaml.safe_load(Path(a_ ).read_text() ) , allow_extra_keys=a_ ) return tuple(a_ )
24
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
1
"""simple docstring""" from __future__ import annotations import math def lowercase ( _snake_case : int , _snake_case : int , _snake_case : bool , _snake_case : list[int] , _snake_case : float ) ->int: """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) ) def lowercase ( ) ->None: """simple docstring""" __snake_case : int = [90, 23, 6, 33, 21, 65, 123, 34_423] __snake_case : int = math.log(len(_snake_case ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , _snake_case , _snake_case , _snake_case )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
1
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) def lowercase ( _snake_case : torch.nn.Module , _snake_case : BnbQuantizationConfig , _snake_case : Union[str, os.PathLike] = None , _snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None , _snake_case : Optional[List[str]] = None , _snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None , _snake_case : Optional[Union[str, os.PathLike]] = None , _snake_case : bool = False , ) ->Union[str, Any]: """simple docstring""" __snake_case : int = bnb_quantization_config.load_in_abit __snake_case : Union[str, Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) __snake_case : str = [] # custom device map if isinstance(_snake_case , _snake_case ) and len(device_map.keys() ) > 1: __snake_case : Any = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __snake_case : List[str] = get_keys_to_not_convert(_snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_snake_case ) __snake_case : int = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __snake_case : int = [] __snake_case : str = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_snake_case ) # compatibility with peft __snake_case : Dict = load_in_abit __snake_case : Any = load_in_abit __snake_case : List[Any] = get_parameter_device(_snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) __snake_case : List[Any] = replace_with_bnb_layers(_snake_case , _snake_case , modules_to_not_convert=_snake_case ) # convert param to the right dtype __snake_case : List[Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __snake_case : Union[str, Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) __snake_case : Optional[Any] = getattr(_snake_case , _snake_case , _snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_snake_case ): param.to(_snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): __snake_case : List[str] = replace_with_bnb_layers( _snake_case , _snake_case , modules_to_not_convert=_snake_case ) __snake_case : Optional[Any] = get_quantized_model_device_map( _snake_case , _snake_case , _snake_case , max_memory=_snake_case , no_split_module_classes=_snake_case , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __snake_case : Dict = True __snake_case : List[str] = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( _snake_case , _snake_case , _snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=_snake_case , offload_state_dict=_snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_snake_case , device_map=_snake_case , offload_dir=_snake_case ) def lowercase ( _snake_case : Tuple , _snake_case : List[str] , _snake_case : Optional[int]=None , _snake_case : int=None , _snake_case : Optional[int]=None ) ->str: """simple docstring""" if device_map is None: if torch.cuda.is_available(): __snake_case : Dict = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(_snake_case , _snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) __snake_case : Any = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __snake_case : List[Any] = {} __snake_case : Optional[Any] = special_dtypes __snake_case : Union[str, Any] = no_split_module_classes __snake_case : Tuple = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __snake_case : Any = get_balanced_memory( _snake_case , low_zero=(device_map == '''balanced_low_0''') , max_memory=_snake_case , **_snake_case , ) __snake_case : Tuple = max_memory __snake_case : Dict = infer_auto_device_map(_snake_case , **_snake_case ) if isinstance(_snake_case , _snake_case ): # check if don't have any quantized module on the cpu __snake_case : List[str] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __snake_case : Any = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def lowercase ( _snake_case : List[Any] , _snake_case : Any , _snake_case : Optional[Any]=None , _snake_case : Tuple=None ) ->int: """simple docstring""" if modules_to_not_convert is None: __snake_case : List[Any] = [] __snake_case , __snake_case : Any = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowercase ( _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Tuple=None , _snake_case : Dict=None , ) ->Union[str, Any]: """simple docstring""" __snake_case : List[str] = False for name, module in model.named_children(): if current_key_name is None: __snake_case : str = [] current_key_name.append(_snake_case ) if isinstance(_snake_case , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __snake_case : str = '''.'''.join(_snake_case ) __snake_case : Any = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __snake_case : Dict = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __snake_case : Union[str, Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_snake_case , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __snake_case : Optional[Any] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) __snake_case : List[str] = module.weight.data if module.bias is not None: __snake_case : int = module.bias.data bnb_module.requires_grad_(_snake_case ) setattr(_snake_case , _snake_case , _snake_case ) __snake_case : Tuple = True if len(list(module.children() ) ) > 0: __snake_case , __snake_case : Tuple = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case ) __snake_case : List[str] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase ( _snake_case : Optional[int] ) ->Optional[int]: """simple docstring""" with init_empty_weights(): __snake_case : Any = deepcopy(_snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __snake_case : Tuple = find_tied_parameters(_snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(_snake_case , _snake_case ): __snake_case : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __snake_case : str = sum(_snake_case , [] ) __snake_case : Dict = len(_snake_case ) > 0 # Check if it is a base model __snake_case : Tuple = False if hasattr(_snake_case , '''base_model_prefix''' ): __snake_case : Any = not hasattr(_snake_case , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __snake_case : List[Any] = list(model.named_children() ) __snake_case : Union[str, Any] = [list_modules[-1][0]] # add last module together with tied weights __snake_case : Optional[Any] = set(_snake_case ) - set(_snake_case ) __snake_case : List[Any] = list(set(_snake_case ) ) + list(_snake_case ) # remove ".weight" from the keys __snake_case : List[str] = ['''.weight''', '''.bias'''] __snake_case : Any = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __snake_case : Dict = name.replace(_snake_case , '''''' ) filtered_module_names.append(_snake_case ) return filtered_module_names def lowercase ( _snake_case : str ) ->Optional[int]: """simple docstring""" for m in model.modules(): if isinstance(_snake_case , bnb.nn.Linearabit ): return True return False def lowercase ( _snake_case : nn.Module ) ->Optional[int]: """simple docstring""" return next(parameter.parameters() ).device def lowercase ( _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Dict , _snake_case : str , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : int ) ->int: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(_snake_case , _snake_case , 0 , dtype=_snake_case , value=_snake_case ) __snake_case : int = param_name __snake_case : Dict = model if "." in tensor_name: __snake_case : Any = tensor_name.split('''.''' ) for split in splits[:-1]: __snake_case : Optional[Any] = getattr(_snake_case , _snake_case ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) __snake_case : Any = new_module __snake_case : Tuple = splits[-1] # offload weights __snake_case : Dict = False offload_weight(module._parameters[tensor_name] , _snake_case , _snake_case , index=_snake_case ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , _snake_case , index=_snake_case , ) else: offload_weight(_snake_case , _snake_case , _snake_case , index=_snake_case ) offload_weight(_snake_case , param_name.replace('''weight''' , '''SCB''' ) , _snake_case , index=_snake_case ) set_module_tensor_to_device(_snake_case , _snake_case , '''meta''' , dtype=_snake_case , value=torch.empty(*param.size() ) )
24
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
1
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =LongformerTokenizer lowerCamelCase__ =True lowerCamelCase__ =LongformerTokenizerFast lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __snake_case : Union[str, Any] = dict(zip(a_ , range(len(a_ ) ) ) ) __snake_case : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __snake_case : List[Any] = {'''unk_token''': '''<unk>'''} __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a_ ) ) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : str = '''lower newer''' __snake_case : int = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case : Any = '''lower newer''' __snake_case : Optional[Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __snake_case : List[str] = tokenizer.tokenize(a_ ) # , add_prefix_space=True) self.assertListEqual(a_ , a_ ) __snake_case : List[str] = tokens + [tokenizer.unk_token] __snake_case : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=a_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=a_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __snake_case : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=a_ ) __snake_case : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a_ ) __snake_case : int = tokenizer.encode( '''sequence builders''' , add_special_tokens=a_ , add_prefix_space=a_ ) __snake_case : int = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=a_ , add_prefix_space=a_ ) __snake_case : Optional[int] = tokenizer.build_inputs_with_special_tokens(a_ ) __snake_case : str = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Optional[int] = '''Encode this sequence.''' __snake_case : int = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __snake_case : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) __snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a_ , a_ ) __snake_case : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) __snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a_ , a_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __snake_case : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) __snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a_ , a_ ) # Testing spaces after special tokens __snake_case : List[str] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(a_ , lstrip=a_ , rstrip=a_ )} ) # mask token has a left space __snake_case : Tuple = tokenizer.convert_tokens_to_ids(a_ ) __snake_case : int = '''Encode <mask> sequence''' __snake_case : Optional[int] = '''Encode <mask>sequence''' __snake_case : str = tokenizer.encode(a_ ) __snake_case : Any = encoded.index(a_ ) __snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a_ , a_ ) __snake_case : Optional[int] = tokenizer.encode(a_ ) __snake_case : Optional[Any] = encoded.index(a_ ) __snake_case : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) __snake_case : str = self.tokenizer_class.from_pretrained(a_ , **a_ ) __snake_case : Tuple = '''A, <mask> AllenNLP sentence.''' __snake_case : Union[str, Any] = tokenizer_r.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) __snake_case : str = tokenizer_p.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __snake_case : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __snake_case : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( a_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( a_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) __snake_case : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case : int = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , a_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , a_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : List[Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case : List[str] = f"""{text_of_1_token} {text_of_1_token}""" __snake_case : str = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) __snake_case : List[Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) __snake_case : Any = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) __snake_case : int = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) __snake_case : Optional[int] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ), len(a_ ) + 1 + len(a_ )) , ) __snake_case : Any = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) __snake_case : Optional[int] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ), len(a_ ) + 1 + len(a_ )) , ) __snake_case : List[Any] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) __snake_case : Tuple = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) __snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) __snake_case : Optional[Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )) , ) __snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) __snake_case : int = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )) , )
24
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( _snake_case : Optional[Any] ) ->str: """simple docstring""" __snake_case : Optional[int] = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __snake_case : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : str = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : int = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __snake_case : Optional[Any] = [3, 3, 3, 3] __snake_case : Optional[Any] = [5, 5, 5, 5] elif "fl4" in model_name: __snake_case : Optional[Any] = [4, 4, 4, 4] __snake_case : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __snake_case : List[Any] = [3, 3, 3, 3] if "lrf" in model_name: __snake_case : Dict = [3, 3, 3, 3] else: __snake_case : int = [2, 2, 2, 2] if "tiny" in model_name: __snake_case : Dict = 96 elif "small" in model_name: __snake_case : Dict = 96 elif "base" in model_name: __snake_case : Dict = 128 elif "large" in model_name: __snake_case : int = 192 elif "xlarge" in model_name: __snake_case : int = 256 elif "huge" in model_name: __snake_case : Tuple = 352 # set label information __snake_case : Optional[int] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __snake_case : List[Any] = '''imagenet-22k-id2label.json''' else: __snake_case : str = '''imagenet-1k-id2label.json''' __snake_case : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) __snake_case : Tuple = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} __snake_case : Union[str, Any] = FocalNetConfig( embed_dim=_snake_case , depths=_snake_case , focal_levels=_snake_case , focal_windows=_snake_case , use_conv_embed=_snake_case , idalabel=_snake_case , labelaid=_snake_case , use_post_layernorm=_snake_case , use_layerscale=_snake_case , ) return config def lowercase ( _snake_case : Optional[Any] ) ->List[str]: """simple docstring""" if "patch_embed.proj" in name: __snake_case : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __snake_case : List[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __snake_case : List[str] = '''encoder.''' + name if "encoder.layers" in name: __snake_case : str = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __snake_case : Tuple = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __snake_case : Dict = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __snake_case : Optional[int] = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __snake_case : Tuple = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __snake_case : int = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __snake_case : str = '''layernorm.weight''' if name == "norm.bias": __snake_case : int = '''layernorm.bias''' if "head" in name: __snake_case : Optional[Any] = name.replace('''head''' , '''classifier''' ) else: __snake_case : Any = '''focalnet.''' + name return name def lowercase ( _snake_case : Any , _snake_case : Optional[Any] , _snake_case : str=False ) ->Dict: """simple docstring""" __snake_case : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __snake_case : Union[str, Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _snake_case ) __snake_case : Any = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __snake_case : Dict = state_dict.pop(_snake_case ) __snake_case : Dict = val __snake_case : int = get_focalnet_config(_snake_case ) __snake_case : List[Any] = FocalNetForImageClassification(_snake_case ) model.eval() # load state dict model.load_state_dict(_snake_case ) # verify conversion __snake_case : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case : Dict = BitImageProcessor( do_resize=_snake_case , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_snake_case , crop_size=224 , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , ) __snake_case : Optional[int] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __snake_case : Tuple = processor(images=_snake_case , return_tensors='''pt''' ) __snake_case : List[str] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case : str = image_transforms(_snake_case ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _snake_case , atol=1e-4 ) __snake_case : Any = model(**_snake_case ) __snake_case : Dict = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __snake_case : Any = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __snake_case : Any = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __snake_case : Dict = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __snake_case : Union[str, Any] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __snake_case : Optional[int] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __snake_case : Dict = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
24
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =[ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__(self , **a_ ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __snake_case : List[Any] = deprecated_arg[3:] setattr(self , a_ , not kwargs.pop(a_ ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __snake_case : Optional[Any] = kwargs.pop('''torchscript''' , self.torchscript ) __snake_case : str = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) __snake_case : Union[str, Any] = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**a_ ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Trace the models using torchscript'} ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) lowerCamelCase__ =field( default='O1', metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) }, ) @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __snake_case : Any = torch.device('''cpu''' ) __snake_case : List[Any] = 0 elif is_torch_tpu_available(): __snake_case : List[Any] = xm.xla_device() __snake_case : str = 0 else: __snake_case : Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __snake_case : Union[str, Any] = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.n_gpu > 0
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
"""simple docstring""" SCREAMING_SNAKE_CASE : str = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE : List[Any] = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int ) ->str: """simple docstring""" assert len(str(_snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __snake_case : Union[str, Any] = year // 100 __snake_case : List[str] = (5 * (century % 4) + 2) % 7 __snake_case : Dict = year % 100 __snake_case : Optional[int] = centurian % 12 __snake_case : Dict = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __snake_case : Tuple = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __snake_case : Optional[int] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *a_ , a_=None , a_=None , **a_ ): '''simple docstring''' super().__init__(*a_ , **a_ ) __snake_case : List[str] = eval_examples __snake_case : Optional[Any] = post_process_function def SCREAMING_SNAKE_CASE (self , a_=None , a_=None , a_=None , a_ = "eval" ): '''simple docstring''' __snake_case : Union[str, Any] = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case : Union[str, Any] = self.get_eval_dataloader(a_ ) __snake_case : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case : Optional[Any] = self.compute_metrics __snake_case : Union[str, Any] = None __snake_case : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case : str = time.time() try: __snake_case : Dict = eval_loop( a_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , metric_key_prefix=a_ , ) finally: __snake_case : str = compute_metrics __snake_case : Optional[Any] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a_ , a_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case : Optional[Any] = self.post_process_function(a_ , a_ , output.predictions ) __snake_case : Any = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __snake_case : List[str] = metrics.pop(a_ ) metrics.update(output.metrics ) else: __snake_case : str = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __snake_case : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , a_ ) return metrics def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=None , a_ = "test" ): '''simple docstring''' __snake_case : Any = self.get_test_dataloader(a_ ) # Temporarily disable metric computation, we will do it in the loop here. __snake_case : List[str] = self.compute_metrics __snake_case : List[Any] = None __snake_case : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case : Dict = time.time() try: __snake_case : List[Any] = eval_loop( a_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , metric_key_prefix=a_ , ) finally: __snake_case : Optional[int] = compute_metrics __snake_case : str = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a_ , a_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case : Optional[int] = self.post_process_function(a_ , a_ , output.predictions , '''predict''' ) __snake_case : Union[str, Any] = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __snake_case : int = metrics.pop(a_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a_ )
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case : Dict = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Dict = os.path.join(a_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(a_ ) __snake_case : Any = self.feature_extraction_class.from_json_file(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[int] = feat_extract_first.save_pretrained(a_ )[0] check_json_file_has_correct_format(a_ ) __snake_case : Dict = self.feature_extraction_class.from_pretrained(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.feature_extraction_class() self.assertIsNotNone(a_ )
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Dict = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=12 , a_=7 , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=32 , a_=2 , a_=4 , a_=37 , a_=0.1 , a_=0.1 , a_=5_12 , a_=0.02 , a_=0 , a_=None , ): '''simple docstring''' __snake_case : Dict = parent __snake_case : str = batch_size __snake_case : Optional[Any] = seq_length __snake_case : Optional[Any] = is_training __snake_case : int = use_input_mask __snake_case : int = use_labels __snake_case : Optional[int] = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[int] = projection_dim __snake_case : List[Any] = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : Optional[Any] = dropout __snake_case : Optional[Any] = attention_dropout __snake_case : Optional[Any] = max_position_embeddings __snake_case : List[str] = initializer_range __snake_case : Union[str, Any] = scope __snake_case : int = bos_token_id def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[Any] = None if self.use_input_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __snake_case : Union[str, Any] = input_mask.numpy() __snake_case , __snake_case : Optional[int] = input_mask.shape __snake_case : Optional[int] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): __snake_case : Any = 1 __snake_case : str = 0 __snake_case : List[str] = self.get_config() return config, input_ids, tf.convert_to_tensor(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = TFBlipTextModel(config=a_ ) __snake_case : int = model(a_ , attention_mask=a_ , training=a_ ) __snake_case : Optional[int] = model(a_ , training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[Any] = config_and_inputs __snake_case : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TFBlipTextModel,) if is_tf_available() else () lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = BlipTextModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = TFBlipTextModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self , a_=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=a_ )
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( _snake_case : dict ) ->tuple: """simple docstring""" return (data["data"], data["target"]) def lowercase ( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : np.ndarray ) ->np.ndarray: """simple docstring""" __snake_case : Union[str, Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_snake_case , _snake_case ) # Predict target for test data __snake_case : Any = xgb.predict(_snake_case ) __snake_case : Optional[int] = predictions.reshape(len(_snake_case ) , 1 ) return predictions def lowercase ( ) ->None: """simple docstring""" __snake_case : Union[str, Any] = fetch_california_housing() __snake_case , __snake_case : str = data_handling(_snake_case ) __snake_case , __snake_case , __snake_case , __snake_case : Dict = train_test_split( _snake_case , _snake_case , test_size=0.25 , random_state=1 ) __snake_case : List[str] = xgboost(_snake_case , _snake_case , _snake_case ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_snake_case , _snake_case )}""" ) print(f"""Mean Square Error : {mean_squared_error(_snake_case , _snake_case )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =CpmAntTokenizer lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().setUp() __snake_case : Optional[int] = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case : Tuple = '''今天天气真好!''' __snake_case : int = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case : int = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) __snake_case : List[Any] = '''今天天气真好!''' __snake_case : Dict = [tokenizer.bos_token] + tokens __snake_case : List[str] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) __snake_case : Optional[Any] = tokenizer.decode(a_ ) self.assertEqual(a_ , a_ )
24
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
1
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ = "cpu" , a_ = "openai/clip-vit-large-patch14" ): '''simple docstring''' __snake_case : Union[str, Any] = device __snake_case : int = CLIPTokenizerFast.from_pretrained(a_ ) __snake_case : Any = [0.4814_5466, 0.457_8275, 0.4082_1073] __snake_case : Optional[Any] = [0.2686_2954, 0.2613_0258, 0.2757_7711] __snake_case : int = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __snake_case : List[Any] = torchvision.transforms.Resize(2_24 ) __snake_case : str = torchvision.transforms.CenterCrop(2_24 ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = self.resize(a_ ) __snake_case : Optional[int] = self.center_crop(a_ ) __snake_case : List[str] = self.normalize(a_ ) return images def __call__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : str = self.tokenizer(text=a_ , **a_ ) __snake_case : Dict = self.preprocess_img(a_ ) __snake_case : Dict = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_=10 , a_=0.01 , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , a_=False , a_=True , a_="image" , a_=True , a_=False , a_=False , a_=False , ): '''simple docstring''' super().__init__() __snake_case : Union[str, Any] = None __snake_case : List[Any] = device if device else get_device() if vqgan: __snake_case : List[str] = vqgan else: __snake_case : Optional[Any] = load_vqgan(self.device , conf_path=a_ , ckpt_path=a_ ) self.vqgan.eval() if clip: __snake_case : List[Any] = clip else: __snake_case : Optional[int] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __snake_case : Optional[int] = ProcessorGradientFlow(device=self.device ) __snake_case : Optional[int] = iterations __snake_case : Any = lr __snake_case : Optional[Any] = log __snake_case : int = make_grid __snake_case : List[str] = return_val __snake_case : int = quantize __snake_case : Optional[Any] = self.vqgan.decoder.z_shape def SCREAMING_SNAKE_CASE (self , a_=None , a_=None , a_=5 , a_=True ): '''simple docstring''' __snake_case : Union[str, Any] = [] if output_path is None: __snake_case : str = '''./animation.gif''' if input_path is None: __snake_case : Any = self.save_path __snake_case : Optional[Any] = sorted(glob(input_path + '''/*''' ) ) if not len(a_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(a_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __snake_case : Optional[int] = total_duration / len(a_ ) __snake_case : int = [frame_duration] * len(a_ ) if extend_frames: __snake_case : Dict = 1.5 __snake_case : List[Any] = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_ , a_ , duration=a_ ) print(f"""gif saved to {output_path}""" ) def SCREAMING_SNAKE_CASE (self , a_=None , a_=None ): '''simple docstring''' if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __snake_case : Dict = preprocess(Image.open(a_ ) , target_image_size=2_56 ).to(self.device ) __snake_case : Tuple = preprocess_vqgan(a_ ) __snake_case , *__snake_case : Union[str, Any] = self.vqgan.encode(a_ ) return z def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = self.latent.detach().requires_grad_() __snake_case : str = base_latent + transform_vector if self.quantize: __snake_case , *__snake_case : str = self.vqgan.quantize(a_ ) else: __snake_case : Tuple = trans_latent return self.vqgan.decode(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=None ): '''simple docstring''' __snake_case : List[str] = self.clip_preprocessor(text=a_ , images=a_ , return_tensors='''pt''' , padding=a_ ) __snake_case : Dict = self.clip(**a_ ) __snake_case : Optional[Any] = clip_outputs.logits_per_image if weights is not None: __snake_case : Dict = similarity_logits * weights return similarity_logits.sum() def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = self._get_clip_similarity(pos_prompts['''prompts'''] , a_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __snake_case : Any = self._get_clip_similarity(neg_prompts['''prompts'''] , a_ , weights=neg_prompts['''weights'''] ) else: __snake_case : Optional[Any] = torch.tensor([1] , device=self.device ) __snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = torch.randn_like(self.latent , requires_grad=a_ , device=self.device ) __snake_case : List[str] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __snake_case : Optional[int] = self._add_vector(a_ ) __snake_case : Tuple = loop_post_process(a_ ) __snake_case : Tuple = self._get_CLIP_loss(a_ , a_ , a_ ) print('''CLIP loss''' , a_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' wandb.init(reinit=a_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __snake_case : Optional[int] = Image.open(a_ ) __snake_case : Any = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(a_ ) ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not prompts: return [] __snake_case : Dict = [] __snake_case : List[Any] = [] if isinstance(a_ , a_ ): __snake_case : List[str] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(a_ , (tuple, list) ): __snake_case : int = prompt[0] __snake_case : str = float(prompt[1] ) elif ":" in prompt: __snake_case , __snake_case : Any = prompt.split(''':''' ) __snake_case : str = float(a_ ) else: __snake_case : Optional[int] = prompt __snake_case : str = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_ , device=self.device ), } def SCREAMING_SNAKE_CASE (self , a_ , a_=None , a_=None , a_=True , a_=False , a_=True , a_=True , a_=None , ): '''simple docstring''' if image_path: __snake_case : Optional[Any] = self._get_latent(a_ ) else: __snake_case : Union[str, Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(a_ , a_ , a_ ) assert pos_prompts, "You must provide at least one positive prompt." __snake_case : Optional[int] = self.process_prompts(a_ ) __snake_case : Union[str, Any] = self.process_prompts(a_ ) if save_final and save_path is None: __snake_case : Union[str, Any] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: __snake_case : List[Any] = save_path + '''_''' + get_timestamp() os.makedirs(a_ ) __snake_case : List[str] = save_path __snake_case : int = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(a_ ) ) __snake_case : Any = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_ , a_ , a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({'''Image''': wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
24
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
1
"""simple docstring""" def lowercase ( _snake_case : int = 1 , _snake_case : int = 1_000 ) ->int: """simple docstring""" __snake_case : List[Any] = 1 __snake_case : int = 0 for divide_by_number in range(_snake_case , digit + 1 ): __snake_case : list[int] = [] __snake_case : List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_snake_case ): __snake_case : Optional[int] = len(_snake_case ) __snake_case : Union[str, Any] = divide_by_number else: has_been_divided.append(_snake_case ) __snake_case : str = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Dict = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _UpperCAmelCase : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE (*a_ , **a_ ): '''simple docstring''' pass def lowercase ( _snake_case : Tuple ) ->Union[str, Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE : Union[str, Any] = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = pipeline( '''document-question-answering''' , model=a_ , tokenizer=a_ , image_processor=a_ ) __snake_case : Any = INVOICE_URL __snake_case : List[str] = list(zip(*apply_tesseract(load_image(a_ ) , a_ , '''''' ) ) ) __snake_case : Any = '''What is the placebo?''' __snake_case : Any = [ { '''image''': load_image(a_ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = dqa_pipeline(a_ , top_k=2 ) self.assertEqual( a_ , [ [ {'''score''': ANY(a_ ), '''answer''': ANY(a_ ), '''start''': ANY(a_ ), '''end''': ANY(a_ )}, {'''score''': ANY(a_ ), '''answer''': ANY(a_ ), '''start''': ANY(a_ ), '''end''': ANY(a_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case : Union[str, Any] = INVOICE_URL __snake_case : Tuple = '''How many cats are there?''' __snake_case : Tuple = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case : Union[str, Any] = dqa_pipeline(image=a_ , question=a_ , top_k=2 ) self.assertEqual(nested_simplify(a_ , decimals=4 ) , a_ ) __snake_case : int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a_ , decimals=4 ) , a_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case : List[Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case : List[Any] = dqa_pipeline(image=a_ , question=a_ , top_k=2 ) self.assertEqual(a_ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case : Dict = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case : Union[str, Any] = [] __snake_case : int = [] __snake_case : List[str] = dqa_pipeline(image=a_ , question=a_ , words=a_ , boxes=a_ , top_k=2 ) self.assertEqual(a_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case : str = INVOICE_URL __snake_case : Any = '''What is the invoice number?''' __snake_case : Union[str, Any] = dqa_pipeline(image=a_ , question=a_ , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case : Dict = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case : str = INVOICE_URL __snake_case : List[str] = '''What is the invoice number?''' __snake_case : Tuple = dqa_pipeline(image=a_ , question=a_ , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case : str = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a_ ) __snake_case : int = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a_ , revision='''3dc6de3''' , ) __snake_case : int = INVOICE_URL __snake_case : List[str] = '''What is the invoice number?''' __snake_case : Union[str, Any] = dqa_pipeline(image=a_ , question=a_ , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case : Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case : Tuple = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case : Union[str, Any] = list(zip(*apply_tesseract(load_image(a_ ) , a_ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case : Dict = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a_ ) __snake_case : int = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a_ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case : int = INVOICE_URL __snake_case : Optional[int] = '''What is the invoice number?''' __snake_case : str = dqa_pipeline(image=a_ , question=a_ , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case : Union[str, Any] = list(zip(*apply_tesseract(load_image(a_ ) , a_ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case : Any = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case : int = INVOICE_URL __snake_case : Optional[Any] = '''What is the invoice number?''' __snake_case : Optional[int] = dqa_pipeline(image=a_ , question=a_ , top_k=2 ) self.assertEqual(nested_simplify(a_ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass
24
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __snake_case : int = img __snake_case : Optional[int] = img.shape[1] __snake_case : str = img.shape[0] __snake_case : int = dst_width __snake_case : Any = dst_height __snake_case : Tuple = self.src_w / self.dst_w __snake_case : Any = self.src_h / self.dst_h __snake_case : Optional[Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): __snake_case : List[str] = self.img[self.get_y(a_ )][self.get_x(a_ )] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = 800, 600 SCREAMING_SNAKE_CASE : Any = imread("""image_data/lena.jpg""", 1) SCREAMING_SNAKE_CASE : List[str] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
24
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
1
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : list[int | str] ) ->None: """simple docstring""" create_state_space_tree(_snake_case , [] , 0 , [0 for i in range(len(_snake_case ) )] ) def lowercase ( _snake_case : list[int | str] , _snake_case : list[int | str] , _snake_case : int , _snake_case : list[int] , ) ->None: """simple docstring""" if index == len(_snake_case ): print(_snake_case ) return for i in range(len(_snake_case ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __snake_case : Union[str, Any] = True create_state_space_tree(_snake_case , _snake_case , index + 1 , _snake_case ) current_sequence.pop() __snake_case : Any = False SCREAMING_SNAKE_CASE : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) SCREAMING_SNAKE_CASE : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : int = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Optional[Any] = { """google/rembert""": 256, } SCREAMING_SNAKE_CASE : Any = """▁""" class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =RemBertTokenizer def __init__(self , a_=None , a_=None , a_=True , a_=True , a_=False , a_="[CLS]" , a_="[SEP]" , a_="<unk>" , a_="[SEP]" , a_="<pad>" , a_="[CLS]" , a_="[MASK]" , **a_ , ): '''simple docstring''' __snake_case : Dict = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , ) __snake_case : List[Any] = do_lower_case __snake_case : List[str] = remove_space __snake_case : int = keep_accents __snake_case : str = vocab_file __snake_case : Dict = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Any = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : str = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(a_ ) ) return __snake_case : Tuple = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
1
"""simple docstring""" def lowercase ( _snake_case : Optional[Any] ) ->str: """simple docstring""" __snake_case : Optional[Any] = 1 __snake_case : Dict = 2 while i * i <= n: __snake_case : Any = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowercase ( ) ->int: """simple docstring""" __snake_case : Dict = 1 __snake_case : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(_snake_case ) > 500: break return t_num if __name__ == "__main__": print(solution())
24
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
1