code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __snake_case = Features({'''audio''': Audio()} ) __snake_case = Features({'''transcription''': Value('''string''' )} ) __snake_case = "audio" __snake_case = "transcription" def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Optional[int]: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , __UpperCAmelCase ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) a = copy.deepcopy(self ) a = self.input_schema.copy() a = features[self.audio_column] a = input_schema return task_template @property def __lowerCAmelCase ( self : Optional[Any] ) ->Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
26
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase_ ( lowercase ): '''simple docstring''' @slow @require_torch def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) a = bertabert.config.encoder.vocab_size a = tokenizer.sep_token_id a = tokenizer.cls_token_id a = 128 a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) a = train_dataset.select(range(32 ) ) a = val_dataset.select(range(16 ) ) a = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) a = inputs.input_ids a = inputs.attention_mask a = outputs.input_ids a = outputs.input_ids.copy() a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] a = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase : int ): a = pred.label_ids a = pred.predictions # all unnecessary tokens are removed a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) a = self.get_auto_remove_tmp_dir() a = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer a = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
26
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowercase_ : '''simple docstring''' __snake_case = 42 __snake_case = None # Automatically constructed __snake_case = "dict" __snake_case = None __snake_case = field(default='''Translation''' , init=lowercase , repr=lowercase ) def __call__( self : int ) ->List[Any]: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCAmelCase ( self : Optional[int] ) ->Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class lowercase_ : '''simple docstring''' __snake_case = None __snake_case = None __snake_case = None # Automatically constructed __snake_case = "dict" __snake_case = None __snake_case = field(default='''TranslationVariableLanguages''' , init=lowercase , repr=lowercase ) def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" a = sorted(set(self.languages ) ) if self.languages else None a = len(self.languages ) if self.languages else None def __call__( self : int ) ->Union[str, Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Tuple ) ->Any: """simple docstring""" a = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({', '.join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(__UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a , a = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __lowerCAmelCase ( self : List[Any] ) ->Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
26
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _a ( a :str ) -> None: a , a = analyze_text(a ) a = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. a = sum(single_char_strings.values() ) # one length string a = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: a = single_char_strings[ch] a = my_str / all_sum my_fir_sum += prob * math.loga(a ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string a = sum(two_char_strings.values() ) a = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: a = cha + cha if sequence in two_char_strings: a = two_char_strings[sequence] a = int(a ) / all_sum my_sec_sum += prob * math.loga(a ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def _a ( a :str ) -> tuple[dict, dict]: a = Counter() # type: ignore a = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _a ( ) -> Optional[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
26
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :Any ) -> List[str]: print('''Loading config file...''' ) def flatten_yaml_as_dict(a :str , a :List[str]="" , a :Union[str, Any]="." ): a = [] for k, v in d.items(): a = parent_key + sep + k if parent_key else k if isinstance(a , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(a , a , sep=a ).items() ) else: items.append((new_key, v) ) return dict(a ) a = argparse.Namespace() with open(a , '''r''' ) as yaml_file: try: a = yaml.load(a , Loader=yaml.FullLoader ) a = flatten_yaml_as_dict(a ) for k, v in flat_cfg.items(): setattr(a , a , a ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(a , str(a ) ) ) return config def _a ( a :Optional[Any] , a :Optional[Any] ) -> Optional[int]: a = MobileViTVaConfig() a = False # dataset if task_name.startswith('''imagenet1k_''' ): a = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: a = 384 else: a = 256 a = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): a = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: a = 384 else: a = 256 a = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): a = 151 a = 512 a = '''ade20k-id2label.json''' a = True elif task_name.startswith('''voc_''' ): a = 21 a = 512 a = '''pascal-voc-id2label.json''' a = True # orig_config a = load_orig_config_file(a ) assert getattr(a , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" a = getattr(a , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(a , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" a = getattr(a , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: a = getattr(a , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: a = getattr(a , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) a = getattr(a , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) a = getattr(a , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label a = '''huggingface/label-files''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} return config def _a ( a :Optional[Any] , a :Union[str, Any] , a :List[str] ) -> Optional[Any]: a = dct.pop(a ) a = val def _a ( a :Dict , a :Optional[int]=False ) -> List[Any]: if base_model: a = '''''' else: a = '''mobilevitv2.''' a = [] for k in state_dict.keys(): if k[:8] == "encoder.": a = k[8:] else: a = k if ".block." in k: a = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: a = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: a = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: a = k_new.replace('''conv_1.''' , F"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if F"""layer_{i}.""" in k: a = k_new.replace(F"""layer_{i}.""" , F"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: a = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: a = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if F"""layer_{i}.0.""" in k: a = k_new.replace(F"""layer_{i}.0.""" , F"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if F"""layer_{i}.1.local_rep.0.""" in k: a = k_new.replace(F"""layer_{i}.1.local_rep.0.""" , F"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if F"""layer_{i}.1.local_rep.1.""" in k: a = k_new.replace(F"""layer_{i}.1.local_rep.1.""" , F"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: a = [0, 1] elif i == 4: a = [0, 1, 2, 3] elif i == 5: a = [0, 1, 2] for j in j_in: if F"""layer_{i}.1.global_rep.{j}.""" in k: a = k_new.replace( F"""layer_{i}.1.global_rep.{j}.""" , F"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if F"""layer_{i}.1.global_rep.{j+1}.""" in k: a = k_new.replace( F"""layer_{i}.1.global_rep.{j+1}.""" , F"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if F"""layer_{i}.1.conv_proj.""" in k: a = k_new.replace(F"""layer_{i}.1.conv_proj.""" , F"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: a = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: a = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: a = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: a = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: a = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: a = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: a = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: a = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: a = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def _a ( a :str ) -> int: a = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(a ) for k in keys_to_ignore: state_dict.pop(a , a ) def _a ( ) -> str: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" a = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _a ( a :Union[str, Any] , a :int , a :str , a :str ) -> Optional[Any]: a = get_mobilevitva_config(a , a ) # load original state_dict a = torch.load(a , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): a = MobileViTVaForSemanticSegmentation(a ).eval() a = False else: a = MobileViTVaForImageClassification(a ).eval() a = False # remove and rename some keys of load the original model a = checkpoint remove_unused_keys(a ) a = create_rename_keys(a , base_model=a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load modified state_dict model.load_state_dict(a ) # Check outputs on an image, prepared by MobileViTImageProcessor a = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) a = image_processor(images=prepare_img() , return_tensors='''pt''' ) a = model(**a ) # verify classification model if task_name.startswith('''imagenet''' ): a = outputs.logits a = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant a = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] , a , atol=1e-4 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
26
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int]=0 ) ->Optional[int]: """simple docstring""" a = floats_tensor((1, 3, 128, 128) , rng=random.Random(__UpperCAmelCase ) ) a = np.random.RandomState(__UpperCAmelCase ) a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = self.get_dummy_inputs() a = pipe(**__UpperCAmelCase ).images a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) a = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = self.get_dummy_inputs() a = pipe(**__UpperCAmelCase ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # warmup pass to apply optimizations a = pipe(**self.get_dummy_inputs() ) a = self.get_dummy_inputs() a = pipe(**__UpperCAmelCase ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = self.get_dummy_inputs() a = pipe(**__UpperCAmelCase ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = self.get_dummy_inputs() a = pipe(**__UpperCAmelCase ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = self.get_dummy_inputs() a = pipe(**__UpperCAmelCase ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = ort.SessionOptions() a = False return options def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) a = init_image.resize((768, 512) ) # using the PNDM scheduler by default a = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = '''A fantasy landscape, trending on artstation''' a = np.random.RandomState(0 ) a = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCAmelCase , output_type='''np''' , ) a = output.images a = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) a = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) a = init_image.resize((768, 512) ) a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) a = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = '''A fantasy landscape, trending on artstation''' a = np.random.RandomState(0 ) a = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCAmelCase , output_type='''np''' , ) a = output.images a = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) a = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
26
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
1
from math import sqrt def _a ( a :int ) -> int: a = 0 for i in range(1 , int(sqrt(a ) + 1 ) ): if n % i == 0 and i != sqrt(a ): total += i + n // i elif i == sqrt(a ): total += i return total - n def _a ( a :int = 10_000 ) -> int: a = sum( i for i in range(1 , a ) if sum_of_divisors(sum_of_divisors(a ) ) == i and sum_of_divisors(a ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
26
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
1
from __future__ import annotations from math import ceil, floor, sqrt def _a ( a :int = 2_000_000 ) -> int: a = [0] a = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target a = 0 # the area corresponding to the grid that gives the product closest to target a = 0 # an estimate of b, using the quadratic formula a = 42 # the largest integer less than b_estimate a = 42 # the largest integer less than b_estimate a = 42 # the triangle number corresponding to b_floor a = 42 # the triangle number corresponding to b_ceil a = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): a = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 a = floor(a ) a = ceil(a ) a = triangle_numbers[b_floor] a = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): a = triangle_b_first_guess * triangle_a a = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): a = triangle_b_second_guess * triangle_a a = idx_a * b_ceil return area if __name__ == "__main__": print(f"""{solution() = }""")
26
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = 0 def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a = Path(__UpperCAmelCase ) / '''preprocessor_config.json''' a = Path(__UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCAmelCase , '''w''' ) ) a = AutoImageProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a = Path(__UpperCAmelCase ) / '''preprocessor_config.json''' a = Path(__UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCAmelCase , '''w''' ) ) a = AutoImageProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a = CLIPConfig() # Create a dummy config file with image_proceesor_type a = Path(__UpperCAmelCase ) / '''preprocessor_config.json''' a = Path(__UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a = AutoImageProcessor.from_pretrained(__UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) a = CLIPImageProcessor(**__UpperCAmelCase ) # save in new folder model_config.save_pretrained(__UpperCAmelCase ) config.save_pretrained(__UpperCAmelCase ) a = AutoImageProcessor.from_pretrained(__UpperCAmelCase ) # make sure private variable is not incorrectly saved a = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a = Path(__UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCAmelCase , '''w''' ) , ) a = AutoImageProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" with self.assertRaisesRegex( __UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): a = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" with self.assertRaisesRegex( __UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a = AutoImageProcessor.from_pretrained(__UpperCAmelCase , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" with self.assertRaisesRegex( __UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" with self.assertRaises(__UpperCAmelCase ): a = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): a = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCAmelCase ) a = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCAmelCase ) a = AutoImageProcessor.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" try: AutoConfig.register('''custom''' , __UpperCAmelCase ) AutoImageProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoImageProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: a = Path(__UpperCAmelCase ) / '''preprocessor_config.json''' a = Path(__UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCAmelCase , '''w''' ) ) a = CustomImageProcessor.from_pretrained(__UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCAmelCase ) a = AutoImageProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = True try: AutoConfig.register('''custom''' , __UpperCAmelCase ) AutoImageProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) # If remote code is not set, the default is to use local a = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
26
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
1
import math def _a ( a :list , a :int = 0 , a :int = 0 ) -> list: a = end or len(a ) for i in range(a , a ): a = i a = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: a = array[temp_index - 1] temp_index -= 1 a = temp_index_value return array def _a ( a :list , a :int , a :int ) -> None: # Max Heap a = index a = 2 * index + 1 # Left Node a = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: a = left_index if right_index < heap_size and array[largest] < array[right_index]: a = right_index if largest != index: a , a = array[largest], array[index] heapify(a , a , a ) def _a ( a :list ) -> list: a = len(a ) for i in range(n // 2 , -1 , -1 ): heapify(a , a , a ) for i in range(n - 1 , 0 , -1 ): a , a = array[0], array[i] heapify(a , 0 , a ) return array def _a ( a :list , a :int , a :int , a :int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _a ( a :list , a :int , a :int , a :int ) -> int: a = low a = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i a , a = array[j], array[i] i += 1 def _a ( a :list ) -> list: if len(a ) == 0: return array a = 2 * math.ceil(math.loga(len(a ) ) ) a = 16 return intro_sort(a , 0 , len(a ) , a , a ) def _a ( a :list , a :int , a :int , a :int , a :int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(a ) max_depth -= 1 a = median_of_a(a , a , start + ((end - start) // 2) + 1 , end - 1 ) a = partition(a , a , a , a ) intro_sort(a , a , a , a , a ) a = p return insertion_sort(a , a , a ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = input("Enter numbers separated by a comma : ").strip() UpperCAmelCase__ = [float(item) for item in user_input.split(",")] print(sort(unsorted))
26
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCAmelCase__ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = TOKEN HfFolder.save_token(__UpperCAmelCase ) @classmethod def __lowerCAmelCase ( cls : int ) ->Tuple: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) a = FlaxBertModel(__UpperCAmelCase ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) a = flatten_dict(unfreeze(model.params ) ) a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__UpperCAmelCase , 1e-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase , repo_id='''test-model-flax''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) a = flatten_dict(unfreeze(model.params ) ) a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__UpperCAmelCase , 1e-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) a = FlaxBertModel(__UpperCAmelCase ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) a = flatten_dict(unfreeze(model.params ) ) a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__UpperCAmelCase , 1e-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __UpperCAmelCase , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) a = flatten_dict(unfreeze(model.params ) ) a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__UpperCAmelCase , 1e-3 , msg=F"""{key} not identical""" ) def _a ( a :List[str] , a :Dict ) -> Optional[int]: a = True a = flatten_dict(modela.params ) a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: a = False return models_are_equal @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) a = FlaxBertModel(__UpperCAmelCase ) a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) with self.assertRaises(__UpperCAmelCase ): a = FlaxBertModel.from_pretrained(__UpperCAmelCase ) a = FlaxBertModel.from_pretrained(__UpperCAmelCase , subfolder=__UpperCAmelCase ) self.assertTrue(check_models_equal(__UpperCAmelCase , __UpperCAmelCase ) ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) a = FlaxBertModel(__UpperCAmelCase ) a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , max_shard_size='''10KB''' ) with self.assertRaises(__UpperCAmelCase ): a = FlaxBertModel.from_pretrained(__UpperCAmelCase ) a = FlaxBertModel.from_pretrained(__UpperCAmelCase , subfolder=__UpperCAmelCase ) self.assertTrue(check_models_equal(__UpperCAmelCase , __UpperCAmelCase ) ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = '''bert''' a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__UpperCAmelCase ): a = FlaxBertModel.from_pretrained(__UpperCAmelCase ) a = FlaxBertModel.from_pretrained(__UpperCAmelCase , subfolder=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = '''bert''' a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__UpperCAmelCase ): a = FlaxBertModel.from_pretrained(__UpperCAmelCase ) a = FlaxBertModel.from_pretrained(__UpperCAmelCase , subfolder=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
1
import enum import shutil import sys UpperCAmelCase__ , UpperCAmelCase__ = shutil.get_terminal_size() UpperCAmelCase__ = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class lowercase_ ( enum.Enum ): '''simple docstring''' __snake_case = 0 __snake_case = 1 def _a ( a :Dict , a :Any="" ) -> str: sys.stdout.write(str(a ) + end ) sys.stdout.flush() def _a ( a :str , a :List[Any] , a :str="" ) -> Union[str, Any]: forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , a ) def _a ( ) -> Union[str, Any]: forceWrite('''\r''' ) def _a ( a :int , a :str ) -> List[Any]: forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def _a ( ) -> Any: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def _a ( ) -> int: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
26
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
1
import os from datetime import datetime as dt from github import Github UpperCAmelCase__ = [ "good first issue", "feature request", "wip", ] def _a ( ) -> List[Any]: a = Github(os.environ['''GITHUB_TOKEN'''] ) a = g.get_repo('''huggingface/accelerate''' ) a = repo.get_issues(state='''open''' ) for issue in open_issues: a = sorted([comment for comment in issue.get_comments()] , key=lambda a : i.created_at , reverse=a ) a = comments[0] if len(a ) > 0 else None a = dt.utcnow() a = (current_time - issue.updated_at).days a = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
26
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __snake_case = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ) ->Dict: """simple docstring""" a = TextaTextGenerationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return generator, ["Something to write", "Something else"] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ) ->Any: """simple docstring""" a = generator('''Something there''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) a = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) a = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) with self.assertRaises(__UpperCAmelCase ): generator(4 ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" a = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility a = generator('''Something there''' , do_sample=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ''''''}] ) a = 3 a = generator( '''Something there''' , num_return_sequences=__UpperCAmelCase , num_beams=__UpperCAmelCase , ) a = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) a = generator('''This is a test''' , do_sample=__UpperCAmelCase , num_return_sequences=2 , return_tensors=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) a = generator.model.config.eos_token_id a = '''<pad>''' a = generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCAmelCase , ) self.assertEqual( __UpperCAmelCase , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" a = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility a = generator('''Something there''' , do_sample=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ''''''}] )
26
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _a ( a :ndarray ) -> float: return np.dot(a , a ) class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , *, __UpperCAmelCase : float = np.inf , __UpperCAmelCase : str = "linear" , __UpperCAmelCase : float = 0.0 , ) ->None: """simple docstring""" a = regularization a = gamma if kernel == "linear": a = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) a = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: a = F"""Unknown kernel: {kernel}""" raise ValueError(__UpperCAmelCase ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : ndarray , __UpperCAmelCase : ndarray ) ->float: """simple docstring""" return np.dot(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : ndarray , __UpperCAmelCase : ndarray ) ->float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : list[ndarray] , __UpperCAmelCase : ndarray ) ->None: """simple docstring""" a = observations a = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((a) , ) = np.shape(__UpperCAmelCase ) def to_minimize(__UpperCAmelCase : ndarray ) -> float: a = 0 ((a) , ) = np.shape(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__UpperCAmelCase ) a = LinearConstraint(__UpperCAmelCase , 0 , 0 ) a = Bounds(0 , self.regularization ) a = minimize( __UpperCAmelCase , np.ones(__UpperCAmelCase ) , bounds=__UpperCAmelCase , constraints=[ly_contraint] ).x a = l_star # calculating mean offset of separation plane to points a = 0 for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) a = s / n def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : ndarray ) ->int: """simple docstring""" a = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __UpperCAmelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
26
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :Optional[int] , a :int ) -> Union[str, Any]: a = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def _a ( a :List[Any] , a :Optional[int] ) -> int: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) a = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) a = in_proj_weight[ : encoder_config.hidden_size, : ] a = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] a = in_proj_weight[ -encoder_config.hidden_size :, : ] def _a ( a :Dict , a :int , a :int ) -> Optional[int]: a = dct.pop(a ) a = val def _a ( a :List[Any] ) -> List[Any]: if "handwritten" in checkpoint_url: a = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: a = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' a = Image.open(requests.get(a , stream=a ).raw ).convert('''RGB''' ) return im @torch.no_grad() def _a ( a :Dict , a :List[Any] ) -> str: a = ViTConfig(image_size=384 , qkv_bias=a ) a = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: a = 768 elif "large" in checkpoint_url: # use ViT-large encoder a = 1_024 a = 4_096 a = 24 a = 16 a = 1_024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: a = False a = '''relu''' a = 1_024 a = True a = False a = False # load HuggingFace model a = ViTModel(a , add_pooling_layer=a ) a = TrOCRForCausalLM(a ) a = VisionEncoderDecoderModel(encoder=a , decoder=a ) model.eval() # load state_dict of original model, rename some keys a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a )['''model'''] a = create_rename_keys(a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): a = state_dict.pop(a ) if key.startswith('''decoder''' ) and "output_projection" not in key: a = val else: a = val # load state dict model.load_state_dict(a ) # Check outputs on an image a = ViTImageProcessor(size=encoder_config.image_size ) a = RobertaTokenizer.from_pretrained('''roberta-large''' ) a = TrOCRProcessor(a , a ) a = processor(images=prepare_img(a ) , return_tensors='''pt''' ).pixel_values # verify logits a = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) a = model(pixel_values=a , decoder_input_ids=a ) a = outputs.logits a = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: a = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: a = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: a = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: a = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , a , atol=1e-3 ), "First elements of logits not as expected" Path(a ).mkdir(exist_ok=a ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
26
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "google/fnet-base": 512, "google/fnet-large": 512, } UpperCAmelCase__ = "▁" class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['''input_ids''', '''token_type_ids'''] __snake_case = FNetTokenizer def __init__( self : List[str] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Dict="<unk>" , __UpperCAmelCase : Optional[Any]="[SEP]" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : Optional[int]="[CLS]" , __UpperCAmelCase : Any="[MASK]" , **__UpperCAmelCase : Tuple , ) ->List[Any]: """simple docstring""" a = ( AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase , normalized=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = False if not self.vocab_file else True def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
26
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''camembert''' def __init__( self : Union[str, Any] , __UpperCAmelCase : int=30_522 , __UpperCAmelCase : Tuple=768 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : str=3_072 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Tuple=512 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Dict=1e-1_2 , __UpperCAmelCase : Dict=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : int="absolute" , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Union[str, Any] , ) ->List[str]: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = classifier_dropout class lowercase_ ( lowercase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''rwkv''' __snake_case = {'''max_position_embeddings''': '''context_length'''} def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[int]=50_277 , __UpperCAmelCase : str=1_024 , __UpperCAmelCase : Tuple=4_096 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=1e-5 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Dict=0 , __UpperCAmelCase : Dict=6 , __UpperCAmelCase : int=False , __UpperCAmelCase : Union[str, Any]=True , **__UpperCAmelCase : List[str] , ) ->Optional[int]: """simple docstring""" a = vocab_size a = context_length a = hidden_size a = num_hidden_layers a = attention_hidden_size if attention_hidden_size is not None else hidden_size a = intermediate_size if intermediate_size is not None else 4 * hidden_size a = layer_norm_epsilon a = rescale_every a = use_cache a = bos_token_id a = eos_token_id super().__init__( tie_word_embeddings=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
26
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
1
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
26
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
1
def _a ( a :int ) -> bool: if not isinstance(a , a ): a = F"""Input value of [number={number}] must be an integer""" raise TypeError(a ) if number < 0: return False a = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
26
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''openai-gpt''' __snake_case = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[str] , __UpperCAmelCase : int=40_478 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : int=768 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Tuple=12 , __UpperCAmelCase : List[str]="gelu" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Optional[Any]=1e-5 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple="cls_index" , __UpperCAmelCase : int=True , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Any=0.1 , **__UpperCAmelCase : List[str] , ) ->Any: """simple docstring""" a = vocab_size a = n_positions a = n_embd a = n_layer a = n_head a = afn a = resid_pdrop a = embd_pdrop a = attn_pdrop a = layer_norm_epsilon a = initializer_range a = summary_type a = summary_use_proj a = summary_activation a = summary_first_dropout a = summary_proj_to_labels super().__init__(**__UpperCAmelCase )
26
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
1
def _a ( a :list ) -> list: a = len(a ) for i in range(1 , a ): a = collection[i] a = 0 a = i - 1 while low <= high: a = (low + high) // 2 if val < collection[mid]: a = mid - 1 else: a = mid + 1 for j in range(a , a , -1 ): a = collection[j - 1] a = val return collection if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
26
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
1
def _a ( a :list[list[int]] , a :int , a :int , a :list[int] ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _a ( a :list[list[int]] , a :list[int] , a :int ) -> bool: # Base Case if curr_ind == len(a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(a ) ): if valid_connection(a , a , a , a ): # Insert current vertex into path as next transition a = next_ver # Validate created path if util_hamilton_cycle(a , a , curr_ind + 1 ): return True # Backtrack a = -1 return False def _a ( a :list[list[int]] , a :int = 0 ) -> list[int]: a = [-1] * (len(a ) + 1) # initialize start and end of path with starting index a = a = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(a , a , 1 ) else []
26
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[int] , *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any] ) ->None: """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
26
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase__ = threading.Lock() UpperCAmelCase__ = None UpperCAmelCase__ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } UpperCAmelCase__ = logging.WARNING UpperCAmelCase__ = True def _a ( ) -> str: a = os.getenv('''TRANSFORMERS_VERBOSITY''' , a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def _a ( ) -> str: return __name__.split('''.''' )[0] def _a ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def _a ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return a = logging.StreamHandler() # Set sys.stderr as stream. a = sys.stderr.flush # Apply our default configuration to the library root logger. a = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) a = False def _a ( ) -> None: global _default_handler with _lock: if not _default_handler: return a = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) a = None def _a ( ) -> Optional[int]: return log_levels def _a ( a :Optional[str] = None ) -> logging.Logger: if name is None: a = _get_library_name() _configure_library_root_logger() return logging.getLogger(a ) def _a ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _a ( a :int ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(a ) def _a ( ) -> int: return set_verbosity(a ) def _a ( ) -> Any: return set_verbosity(a ) def _a ( ) -> str: return set_verbosity(a ) def _a ( ) -> Dict: return set_verbosity(a ) def _a ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _a ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _a ( a :logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(a ) def _a ( a :logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(a ) def _a ( ) -> None: _configure_library_root_logger() a = False def _a ( ) -> None: _configure_library_root_logger() a = True def _a ( ) -> None: a = _get_library_root_logger().handlers for handler in handlers: a = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(a ) def _a ( ) -> None: a = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(a ) def _a ( self :Any , *a :List[Any] , **a :Optional[Any] ) -> Dict: a = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , a ) if no_advisory_warnings: return self.warning(*a , **a ) UpperCAmelCase__ = warning_advice @functools.lru_cache(a ) def _a ( self :List[Any] , *a :Any , **a :Optional[Any] ) -> int: self.warning(*a , **a ) UpperCAmelCase__ = warning_once class lowercase_ : '''simple docstring''' def __init__( self : Any , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) ->Tuple: # pylint: disable=unused-argument """simple docstring""" a = args[0] if args else None def __iter__( self : int ) ->Tuple: """simple docstring""" return iter(self._iterator ) def __getattr__( self : int , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" def empty_fn(*__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Optional[int] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ) ->Any: """simple docstring""" return self def __exit__( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] ) ->List[Any]: """simple docstring""" return class lowercase_ : '''simple docstring''' def __call__( self : List[str] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[Any] ) ->List[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*__UpperCAmelCase , **__UpperCAmelCase ) else: return EmptyTqdm(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : str , *__UpperCAmelCase : Any , **__UpperCAmelCase : Dict ) ->Tuple: """simple docstring""" a = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase__ = _tqdm_cls() def _a ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def _a ( ) -> Optional[int]: global _tqdm_active a = True hf_hub_utils.enable_progress_bars() def _a ( ) -> Tuple: global _tqdm_active a = False hf_hub_utils.disable_progress_bars()
26
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( a :Dict ) -> Optional[int]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a = k.replace(a , a ) if k.startswith('''encoder''' ): a = k.replace('''.attn''' , '''.self_attn''' ) a = k.replace('''norm1''' , '''self_attn_layer_norm''' ) a = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): a = k.replace('''norm1''' , '''self_attn_layer_norm''' ) a = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) a = k.replace('''norm3''' , '''final_layer_norm''' ) return k def _a ( a :Dict ) -> Optional[Any]: a = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: a = sd.pop(a ) a = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd a = v UpperCAmelCase__ = ["START"] @torch.no_grad() def _a ( a :Union[str, Any] , a :str , a :Tuple ) -> Tuple: a = torch.load(a , map_location='''cpu''' ) a = model['''model'''] a = BlenderbotConfig.from_json_file(a ) a = BlenderbotForConditionalGeneration(a ) a = m.model.state_dict().keys() a = [] a = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a = rename_state_dict_key(a ) if new_k not in valid_keys: failures.append([k, new_k] ) else: a = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(a ) m.model.load_state_dict(a , strict=a ) m.half() m.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) UpperCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''visual_bert''' def __init__( self : Any , __UpperCAmelCase : Tuple=30_522 , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Optional[Any]=512 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Union[str, Any]=3_072 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : int=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple=1e-1_2 , __UpperCAmelCase : Any=False , __UpperCAmelCase : Dict=True , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Dict=2 , **__UpperCAmelCase : Dict , ) ->str: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) a = vocab_size a = max_position_embeddings a = hidden_size a = visual_embedding_dim a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = type_vocab_size a = layer_norm_eps a = bypass_transformer a = special_visual_initialize
26
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''time_series_transformer''' __snake_case = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : str , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : str = "student_t" , __UpperCAmelCase : str = "nll" , __UpperCAmelCase : int = 1 , __UpperCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __UpperCAmelCase : Optional[Union[str, bool]] = "mean" , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : int = 64 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : List[Any]=True , **__UpperCAmelCase : Dict , ) ->int: """simple docstring""" a = prediction_length a = context_length or prediction_length a = distribution_output a = loss a = input_size a = num_time_features a = lags_sequence a = scaling a = num_dynamic_real_features a = num_static_real_features a = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) a = cardinality else: a = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) a = embedding_dimension else: a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] a = num_parallel_samples # Transformer architecture configuration a = input_size * len(__UpperCAmelCase ) + self._number_of_features a = d_model a = encoder_attention_heads a = decoder_attention_heads a = encoder_ffn_dim a = decoder_ffn_dim a = encoder_layers a = decoder_layers a = dropout a = attention_dropout a = activation_dropout a = encoder_layerdrop a = decoder_layerdrop a = activation_function a = init_std a = use_cache super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
26
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
1
from __future__ import annotations from typing import Generic, TypeVar UpperCAmelCase__ = TypeVar("T") class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : T ) ->None: """simple docstring""" a = data a = self a = 0 class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Dict ) ->None: """simple docstring""" a = {} def __lowerCAmelCase ( self : int , __UpperCAmelCase : T ) ->None: """simple docstring""" a = DisjointSetTreeNode(__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : T ) ->DisjointSetTreeNode[T]: """simple docstring""" a = self.map[data] if elem_ref != elem_ref.parent: a = self.find_set(elem_ref.parent.data ) return elem_ref.parent def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : DisjointSetTreeNode[T] , __UpperCAmelCase : DisjointSetTreeNode[T] ) ->None: """simple docstring""" if nodea.rank > nodea.rank: a = nodea else: a = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def __lowerCAmelCase ( self : str , __UpperCAmelCase : T , __UpperCAmelCase : T ) ->None: """simple docstring""" self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : str ) ->None: """simple docstring""" a = {} def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : T ) ->None: """simple docstring""" if node not in self.connections: a = {} def __lowerCAmelCase ( self : str , __UpperCAmelCase : T , __UpperCAmelCase : T , __UpperCAmelCase : int ) ->None: """simple docstring""" self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) a = weight a = weight def __lowerCAmelCase ( self : Dict ) ->GraphUndirectedWeighted[T]: """simple docstring""" a = [] a = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set a = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation a = 0 a = 0 a = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: a , a , a = edges[index] index += 1 a = disjoint_set.find_set(__UpperCAmelCase ) a = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
26
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''gpt_bigcode''' __snake_case = ['''past_key_values'''] __snake_case = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any]=50_257 , __UpperCAmelCase : Optional[Any]=1_024 , __UpperCAmelCase : int=768 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[Any]="gelu_pytorch_tanh" , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : str=1e-5 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : int=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Dict=50_256 , __UpperCAmelCase : Optional[int]=50_256 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" a = vocab_size a = n_positions a = n_embd a = n_layer a = n_head a = n_inner a = activation_function a = resid_pdrop a = embd_pdrop a = attn_pdrop a = layer_norm_epsilon a = initializer_range a = scale_attn_weights a = use_cache a = attention_softmax_in_fpaa a = scale_attention_softmax_in_fpaa a = multi_query a = bos_token_id a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
26
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
1
def _a ( a :int ) -> Dict: a = [] a = [] a = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator a = len(a ) if (len(a ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(a ) , '''Postfix'''.center(a ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(a ) == 0: stack.append(a ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(a ) # push x to stack print( x.center(8 ) , (''''''.join(a )).ljust(a ) , (''''''.join(a )).ljust(a ) , sep=''' | ''' , ) # Output in tabular format while len(a ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(a )).ljust(a ) , (''''''.join(a )).ljust(a ) , sep=''' | ''' , ) # Output in tabular format return "".join(a ) # return Postfix as str def _a ( a :Optional[Any] ) -> Any: a = list(infix[::-1] ) # reverse the infix equation for i in range(len(a ) ): if infix[i] == "(": a = ''')''' # change "(" to ")" elif infix[i] == ")": a = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(a ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCAmelCase__ = input("\nEnter an Infix Equation = ") # Input an Infix equation UpperCAmelCase__ = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
26
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import argparse import json from tqdm import tqdm def _a ( ) -> Optional[int]: a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=a , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=a , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=a , help='''where to store parsed gold_data_path file''' , ) a = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: a = json.load(a ) for dpr_record in tqdm(a ): a = dpr_record['''question'''] a = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(a ) + '''\n''' ) if __name__ == "__main__": main()
26
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
import random def _a ( a :int ) -> bool: a = num - 1 a = 0 while s % 2 == 0: a = s // 2 t += 1 for _ in range(5 ): a = random.randrange(2 , num - 1 ) a = pow(a , a , a ) if v != 1: a = 0 while v != (num - 1): if i == t - 1: return False else: a = i + 1 a = (v**2) % num return True def _a ( a :int ) -> bool: if num < 2: return False a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a ) def _a ( a :int = 1_024 ) -> int: while True: a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(a ): return num if __name__ == "__main__": UpperCAmelCase__ = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
26
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( enum.Enum ): '''simple docstring''' __snake_case = 0 __snake_case = 1 @add_end_docstrings(lowercase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''generated''' def __init__( self : int , *__UpperCAmelCase : int , **__UpperCAmelCase : Optional[int] ) ->Optional[int]: """simple docstring""" super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : Union[str, Any] , ) ->List[Any]: """simple docstring""" a = {} if truncation is not None: a = truncation a = generate_kwargs a = {} if return_tensors is not None and return_type is None: a = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: a = return_type if clean_up_tokenization_spaces is not None: a = clean_up_tokenization_spaces if stop_sequence is not None: a = self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->List[Any]: """simple docstring""" return True def __lowerCAmelCase ( self : Dict , *__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) ->Tuple: """simple docstring""" a = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , __UpperCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) a = ([prefix + arg for arg in args[0]],) a = True elif isinstance(args[0] , __UpperCAmelCase ): a = (prefix + args[0],) a = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) a = self.tokenizer(*__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Dict , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[Any] ) ->str: """simple docstring""" a = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) if ( isinstance(args[0] , __UpperCAmelCase ) and all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for el in args[0] ) and all(len(__UpperCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCAmelCase : int ) ->List[Any]: """simple docstring""" a = self._parse_and_tokenize(__UpperCAmelCase , truncation=__UpperCAmelCase , **__UpperCAmelCase ) return inputs def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] , **__UpperCAmelCase : Any ) ->int: """simple docstring""" if self.framework == "pt": a , a = model_inputs['''input_ids'''].shape elif self.framework == "tf": a , a = tf.shape(model_inputs['''input_ids'''] ).numpy() a = generate_kwargs.get('''min_length''' , self.model.config.min_length ) a = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(__UpperCAmelCase , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) a = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) a = output_ids.shape[0] if self.framework == "pt": a = output_ids.reshape(__UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": a = tf.reshape(__UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=ReturnType.TEXT , __UpperCAmelCase : Dict=False ) ->Dict: """simple docstring""" a = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: a = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: a = { F"""{self.return_name}_text""": self.tokenizer.decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) } records.append(__UpperCAmelCase ) return records @add_end_docstrings(lowercase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''summary''' def __call__( self : Dict , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : str ) ->str: """simple docstring""" return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->bool: """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(lowercase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''translation''' def __lowerCAmelCase ( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->Optional[int]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __lowerCAmelCase ( self : Dict , *__UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None ) ->List[Any]: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , __UpperCAmelCase ): return self.tokenizer._build_translation_inputs( *__UpperCAmelCase , return_tensors=self.framework , truncation=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase ) else: return super()._parse_and_tokenize(*__UpperCAmelCase , truncation=__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" a , a , a = super()._sanitize_parameters(**__UpperCAmelCase ) if src_lang is not None: a = src_lang if tgt_lang is not None: a = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. a = kwargs.get('''task''' , self.task ) a = task.split('''_''' ) if task and len(__UpperCAmelCase ) == 4: # translation, XX, to YY a = items[1] a = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *__UpperCAmelCase : int , **__UpperCAmelCase : int ) ->str: """simple docstring""" return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase )
26
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : List[Any] , *__UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) a = eval_examples a = post_process_function def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[Dataset] = None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "eval" , **__UpperCAmelCase : Any , ) ->Dict[str, float]: """simple docstring""" a = gen_kwargs.copy() a = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) a = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) a = gen_kwargs a = self.eval_dataset if eval_dataset is None else eval_dataset a = self.get_eval_dataloader(__UpperCAmelCase ) a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a = self.compute_metrics a = None a = time.time() a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a = eval_loop( __UpperCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: a = compute_metrics a = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): a = metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) else: a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase ) return metrics def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int=None , __UpperCAmelCase : str = "test" , **__UpperCAmelCase : Any ) ->int: """simple docstring""" a = gen_kwargs.copy() a = self.get_test_dataloader(__UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. a = self.compute_metrics a = None a = time.time() a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a = eval_loop( __UpperCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: a = compute_metrics a = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , '''predict''' ) a = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): a = metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase )
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :str , a :Union[str, Any]=False ) -> List[Any]: a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( a :Dict , a :Any , a :int=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): if base_model: a = '''''' else: a = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) a = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[ : config.hidden_size, : ] a = in_proj_bias[: config.hidden_size] a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a = in_proj_weight[ -config.hidden_size :, : ] a = in_proj_bias[-config.hidden_size :] def _a ( a :Tuple ) -> Dict: a = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a , a ) def _a ( a :Optional[int] , a :Tuple , a :Union[str, Any] ) -> Any: a = dct.pop(a ) a = val def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _a ( a :Dict , a :str , a :Optional[int]=True ) -> Optional[int]: a = ViTConfig() # patch_size if model_name[-1] == "8": a = 8 # set labels if required if not base_model: a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a = 384 a = 1_536 a = 12 a = 6 # load original model from torch hub a = torch.hub.load('''facebookresearch/dino:main''' , a ) original_model.eval() # load state_dict of original model, remove and rename some keys a = original_model.state_dict() if base_model: remove_classification_head_(a ) a = create_rename_keys(a , base_model=a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a , a ) # load HuggingFace model if base_model: a = ViTModel(a , add_pooling_layer=a ).eval() else: a = ViTForImageClassification(a ).eval() model.load_state_dict(a ) # Check outputs on an image, prepared by ViTImageProcessor a = ViTImageProcessor() a = image_processor(images=prepare_img() , return_tensors='''pt''' ) a = encoding['''pixel_values'''] a = model(a ) if base_model: a = original_model(a ) assert torch.allclose(a , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: a = original_model(a ) assert logits.shape == outputs.logits.shape assert torch.allclose(a , outputs.logits , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
26
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
1
import torch from diffusers import DiffusionPipeline class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) def __call__( self : List[Any] ) ->int: """simple docstring""" a = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) a = 1 a = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample a = scheduler_output - scheduler_output + torch.ones_like(__UpperCAmelCase ) return result
26
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Union[str, Any]=18 , __UpperCAmelCase : Optional[int]=30 , __UpperCAmelCase : Any=400 , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : str=True , __UpperCAmelCase : str=False , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , __UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , ) ->Dict: """simple docstring""" a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size if size is not None else {'''height''': 18, '''width''': 20} a = do_thumbnail a = do_align_axis a = do_pad a = do_normalize a = image_mean a = image_std def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = DonutImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" a = DonutImageProcessingTester(self ) @property def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order a = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" pass @is_flaky() def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
26
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase_ : '''simple docstring''' def __init__( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any]=13 , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : int=False , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[Any]=99 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Union[str, Any]=5 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : List[str]=37 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Optional[Any]=512 , __UpperCAmelCase : str=16 , __UpperCAmelCase : int=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Tuple=None , ) ->List[Any]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) ->List[Any]: """simple docstring""" a = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , ) ->Optional[Any]: """simple docstring""" a = True a = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , ) ->List[Any]: """simple docstring""" a = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , ) ->Dict: """simple docstring""" a = True a = True a = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] , dim=-1 ) a = torch.cat([input_mask, next_mask] , dim=-1 ) a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0] a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0] # select random slice a = ids_tensor((1,) , output_from_past.shape[-1] ).item() a = output_from_no_past[:, -3:, random_slice_idx].detach() a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ ( lowercase , lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __snake_case = (LlamaForCausalLM,) if is_torch_available() else () __snake_case = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = False def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a = LlamaModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = input_dict['''input_ids'''] a = input_ids.ne(1 ).to(__UpperCAmelCase ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = '''single_label_classification''' a = input_dict['''input_ids'''] a = input_ids.ne(1 ).to(__UpperCAmelCase ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = '''multi_label_classification''' a = input_dict['''input_ids'''] a = input_ids.ne(1 ).to(__UpperCAmelCase ) a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Any ) ->Tuple: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ids_tensor([1, 10] , config.vocab_size ) a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() a = original_model(__UpperCAmelCase ).last_hidden_state a = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = {'''type''': scaling_type, '''factor''': 10.0} a = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() a = scaled_model(__UpperCAmelCase ).last_hidden_state a = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-5 ) ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" a = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] a = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) a = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 a = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" a = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] a = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) a = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 a = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] a = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) a = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 a = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] a = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) a = model(torch.tensor(__UpperCAmelCase ) ) a = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off a = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' a = '''Simply put, the theory of relativity states that ''' a = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) a = tokenizer.encode(__UpperCAmelCase , return_tensors='''pt''' ) a = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=__UpperCAmelCase ) # greedy generation outputs a = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) a = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
26
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = mock.Mock() a = 500 a = {} a = HTTPError a = {} # Download this model to make sure it's in the cache. a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__UpperCAmelCase ) as mock_head: a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" a = mock.Mock() a = 500 a = {} a = HTTPError a = {} # Download this model to make sure it's in the cache. a = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__UpperCAmelCase ) as mock_head: a = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" try: a = tempfile.mktemp() with open(__UpperCAmelCase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , __UpperCAmelCase ) a = AlbertTokenizer.from_pretrained(__UpperCAmelCase ) finally: os.remove(__UpperCAmelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , __UpperCAmelCase ) a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ) ->Dict: """simple docstring""" a = TOKEN HfFolder.save_token(__UpperCAmelCase ) @classmethod def __lowerCAmelCase ( cls : List[str] ) ->Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(__UpperCAmelCase , '''vocab.txt''' ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = BertTokenizer(__UpperCAmelCase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) a = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase , repo_id='''test-tokenizer''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) a = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(__UpperCAmelCase , '''vocab.txt''' ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = BertTokenizer(__UpperCAmelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) a = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __UpperCAmelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) a = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(__UpperCAmelCase , '''vocab.txt''' ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = CustomTokenizer(__UpperCAmelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) a = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(__UpperCAmelCase , '''vocab.txt''' ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = BertTokenizerFast.from_pretrained(__UpperCAmelCase ) bert_tokenizer.save_pretrained(__UpperCAmelCase ) a = CustomTokenizerFast.from_pretrained(__UpperCAmelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) a = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) a = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=__UpperCAmelCase , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" a = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" a = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" a = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = Trie() a = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__UpperCAmelCase , ['''AB''', '''C'''] )
26
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
1
import os import pytest from transformers.dynamic_module_utils import get_imports UpperCAmelCase__ = "\nimport os\n" UpperCAmelCase__ = "\ndef foo():\n import os\n return False\n" UpperCAmelCase__ = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" UpperCAmelCase__ = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" UpperCAmelCase__ = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" UpperCAmelCase__ = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" UpperCAmelCase__ = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" UpperCAmelCase__ = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" UpperCAmelCase__ = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" UpperCAmelCase__ = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" UpperCAmelCase__ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , a ) def _a ( a :Any , a :Optional[Any] ) -> str: a = os.path.join(a , '''test_file.py''' ) with open(a , '''w''' ) as _tmp_file: _tmp_file.write(a ) a = get_imports(a ) assert parsed_imports == ["os"]
26
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
1
def _a ( a :Any , a :Tuple , a :int , a :str , a :int , a :Tuple ) -> Optional[int]: if index == r: for j in range(a ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location a = arr[i] combination_util(a , a , a , index + 1 , a , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(a , a , a , a , a , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _a ( a :Optional[int] , a :Any , a :Dict ) -> List[str]: # A temporary array to store all combination one by one a = [0] * r # Print all combination using temporary array 'data[]' combination_util(a , a , a , 0 , a , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase__ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
26
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict=7 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : Union[str, Any]=18 , __UpperCAmelCase : Any=30 , __UpperCAmelCase : Optional[int]=400 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=[0.5, 0.5, 0.5] , __UpperCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , ) ->int: """simple docstring""" a = size if size is not None else {'''shortest_edge''': 18} a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size a = do_center_crop a = crop_size a = do_normalize a = image_mean a = image_std def __lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = LevitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = LevitImageProcessingTester(self ) @property def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" pass def __lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
26
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
1
from math import isclose, sqrt def _a ( a :float , a :float , a :float ) -> tuple[float, float, float]: a = point_y / 4 / point_x a = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) a = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) a = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 a = outgoing_gradient**2 + 4 a = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) a = (point_y - outgoing_gradient * point_x) ** 2 - 100 a = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) a = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point a = x_minus if isclose(a , a ) else x_plus a = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _a ( a :float = 1.4 , a :float = -9.6 ) -> int: a = 0 a = first_x_coord a = first_y_coord a = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): a , a , a = next_point(a , a , a ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
26
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Union[str, Any]=99 , __UpperCAmelCase : int=64 , __UpperCAmelCase : Any=32 , __UpperCAmelCase : Union[str, Any]=5 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : int=None , ) ->List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = embedding_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def __lowerCAmelCase ( self : Dict ) ->List[str]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] ) ->List[Any]: """simple docstring""" a = MegatronBertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) ->str: """simple docstring""" a = MegatronBertForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] ) ->Optional[int]: """simple docstring""" a = MegatronBertForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" a = MegatronBertForNextSentencePrediction(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = MegatronBertForPreTraining(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , next_sentence_label=__UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) ->Union[str, Any]: """simple docstring""" a = MegatronBertForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ) ->Optional[Any]: """simple docstring""" a = self.num_labels a = MegatronBertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ) ->Dict: """simple docstring""" a = self.num_labels a = MegatronBertForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) ->Optional[int]: """simple docstring""" a = self.num_choices a = MegatronBertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __snake_case = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True # test_resize_embeddings = False __snake_case = False def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=False ) ->Union[str, Any]: """simple docstring""" a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCAmelCase ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = MegatronBertModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__UpperCAmelCase ) def _a ( a :Union[str, Any] ) -> int: return torch.tensor( a , dtype=torch.long , device=a , ) UpperCAmelCase__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" a = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: a = os.path.join(os.environ['''MYDIR'''] , __UpperCAmelCase ) a = MegatronBertModel.from_pretrained(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.half() a = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): a = model(__UpperCAmelCase )[0] a = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , __UpperCAmelCase ) a = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): a = output[0, ii, jj] a = expected[3 * ii + jj] a = '''ii={} jj={} a={} b={}'''.format(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertTrue(math.isclose(__UpperCAmelCase , __UpperCAmelCase , rel_tol=__UpperCAmelCase , abs_tol=__UpperCAmelCase ) , msg=__UpperCAmelCase )
26
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
1
def _a ( a :int , a :int ) -> int: while b: a , a = b, a % b return a def _a ( a :int , a :int ) -> int: return a if b == 0 else euclidean_gcd_recursive(a , a % b ) def _a ( ) -> Union[str, Any]: print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
26
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''owlvit_text_model''' def __init__( self : Dict , __UpperCAmelCase : Optional[int]=49_408 , __UpperCAmelCase : Optional[int]=512 , __UpperCAmelCase : List[str]=2_048 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Union[str, Any]=8 , __UpperCAmelCase : Tuple=16 , __UpperCAmelCase : Union[str, Any]="quick_gelu" , __UpperCAmelCase : str=1e-5 , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : str=1.0 , __UpperCAmelCase : int=0 , __UpperCAmelCase : str=49_406 , __UpperCAmelCase : List[str]=49_407 , **__UpperCAmelCase : str , ) ->int: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) a = vocab_size a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads a = max_position_embeddings a = hidden_act a = layer_norm_eps a = attention_dropout a = initializer_range a = initializer_factor @classmethod def __lowerCAmelCase ( cls : List[Any] , __UpperCAmelCase : Union[str, os.PathLike] , **__UpperCAmelCase : Tuple ) ->"PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__UpperCAmelCase ) a , a = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": a = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''owlvit_vision_model''' def __init__( self : str , __UpperCAmelCase : str=768 , __UpperCAmelCase : List[str]=3_072 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Union[str, Any]=768 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Dict="quick_gelu" , __UpperCAmelCase : Any=1e-5 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : str=1.0 , **__UpperCAmelCase : Any , ) ->str: """simple docstring""" super().__init__(**__UpperCAmelCase ) a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads a = num_channels a = image_size a = patch_size a = hidden_act a = layer_norm_eps a = attention_dropout a = initializer_range a = initializer_factor @classmethod def __lowerCAmelCase ( cls : Any , __UpperCAmelCase : Union[str, os.PathLike] , **__UpperCAmelCase : Dict ) ->"PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__UpperCAmelCase ) a , a = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''owlvit''' __snake_case = True def __init__( self : List[str] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Tuple=2.6592 , __UpperCAmelCase : Optional[int]=True , **__UpperCAmelCase : List[Any] , ) ->List[Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) if text_config is None: a = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: a = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) a = OwlViTTextConfig(**__UpperCAmelCase ) a = OwlViTVisionConfig(**__UpperCAmelCase ) a = projection_dim a = logit_scale_init_value a = return_dict a = 1.0 @classmethod def __lowerCAmelCase ( cls : Any , __UpperCAmelCase : Union[str, os.PathLike] , **__UpperCAmelCase : Union[str, Any] ) ->"PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__UpperCAmelCase ) a , a = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) @classmethod def __lowerCAmelCase ( cls : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ) ->str: """simple docstring""" a = {} a = text_config a = vision_config return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = copy.deepcopy(self.__dict__ ) a = self.text_config.to_dict() a = self.vision_config.to_dict() a = self.__class__.model_type return output class lowercase_ ( lowercase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __lowerCAmelCase ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __lowerCAmelCase ( self : int ) ->float: """simple docstring""" return 1e-4 def __lowerCAmelCase ( self : str , __UpperCAmelCase : "ProcessorMixin" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : Optional["TensorType"] = None , ) ->Mapping[str, Any]: """simple docstring""" a = super().generate_dummy_inputs( processor.tokenizer , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , framework=__UpperCAmelCase ) a = super().generate_dummy_inputs( processor.image_processor , batch_size=__UpperCAmelCase , framework=__UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def __lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" return 14
26
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
1
from __future__ import annotations def _a ( a :list , a :int , a :int , a :int ) -> list: a = [] a , a = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) a = result + left + right return input_list def _a ( a :list ) -> list: if len(a ) <= 1: return input_list a = list(a ) # iteration for two-way merging a = 2 while p <= len(a ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(a ) , a ): a = i a = i + p - 1 a = (low + high + 1) // 2 a = merge(a , a , a , a ) # final merge of last two parts if p * 2 >= len(a ): a = i a = merge(a , 0 , a , len(a ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": UpperCAmelCase__ = [] else: UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
26
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCAmelCase__ = get_logger() UpperCAmelCase__ = None class lowercase_ ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__( self : int , __UpperCAmelCase : int=None , __UpperCAmelCase : int=None , **__UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" super().__init__(features=__UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( F"""Expected {device} to be a `str` not {type(__UpperCAmelCase )}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) a = device if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) a = str(jax.devices()[0] ) a = jnp_array_kwargs @staticmethod def __lowerCAmelCase ( ) ->Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(__UpperCAmelCase ): device for device in jax.devices()} def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Union[str, Any] ) ->str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and column: if all( isinstance(__UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCAmelCase , axis=0 ) return column def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , (str, bytes, type(__UpperCAmelCase )) ): return value elif isinstance(__UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a = {} if isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: a = {'''dtype''': jnp.intaa} else: a = {'''dtype''': jnp.intaa} elif isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCAmelCase , PIL.Image.Image ): a = np.asarray(__UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] ) ->Any: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCAmelCase , '''__array__''' ) and not isinstance(__UpperCAmelCase , jax.Array ): a = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : dict ) ->Tuple: """simple docstring""" return map_nested(self._recursive_tensorize , __UpperCAmelCase , map_list=__UpperCAmelCase ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : pa.Table ) ->Mapping: """simple docstring""" a = self.numpy_arrow_extractor().extract_row(__UpperCAmelCase ) a = self.python_features_decoder.decode_row(__UpperCAmelCase ) return self.recursive_tensorize(__UpperCAmelCase ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : pa.Table ) ->"jax.Array": """simple docstring""" a = self.numpy_arrow_extractor().extract_column(__UpperCAmelCase ) a = self.python_features_decoder.decode_column(__UpperCAmelCase , pa_table.column_names[0] ) a = self.recursive_tensorize(__UpperCAmelCase ) a = self._consolidate(__UpperCAmelCase ) return column def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : pa.Table ) ->Mapping: """simple docstring""" a = self.numpy_arrow_extractor().extract_batch(__UpperCAmelCase ) a = self.python_features_decoder.decode_batch(__UpperCAmelCase ) a = self.recursive_tensorize(__UpperCAmelCase ) for column_name in batch: a = self._consolidate(batch[column_name] ) return batch
26
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : int=13 , __UpperCAmelCase : Dict=7 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Union[str, Any]=99 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Union[str, Any]=4 , ) ->List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__a , ) return config, input_ids, attention_mask def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" a = self.prepare_config_and_inputs() a = config_and_inputs a = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowercase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = FlaxDistilBertModelTester(self ) @slow def __lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained('''distilbert-base-uncased''' ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" a = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a = model(__a , attention_mask=__a )[0] a = (1, 11, 768) self.assertEqual(output.shape , __a ) a = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) )
350
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import logging import os import threading import time try: import warnings except ImportError: UpperCAmelCase__ = None try: import msvcrt except ImportError: UpperCAmelCase__ = None try: import fcntl except ImportError: UpperCAmelCase__ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: UpperCAmelCase__ = OSError # Data # ------------------------------------------------ UpperCAmelCase__ = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] UpperCAmelCase__ = "3.0.12" UpperCAmelCase__ = None def _a ( ) -> int: global _logger a = _logger or logging.getLogger(__name__ ) return _logger class lowercase_ ( A__ ): def __init__( self : Any , __UpperCAmelCase : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a = lock_file return None def __str__( self : Union[str, Any] ) ->Dict: """simple docstring""" a = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class lowercase_ : def __init__( self : Optional[Any] , __UpperCAmelCase : str ) ->List[Any]: """simple docstring""" a = lock return None def __enter__( self : Union[str, Any] ) ->Any: """simple docstring""" return self.lock def __exit__( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] ) ->str: """simple docstring""" self.lock.release() return None class lowercase_ : def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple=-1 , __UpperCAmelCase : int=None ) ->str: """simple docstring""" a = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long a = self.hash_filename_if_too_long(__A , __A ) # The path to the lock file. a = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a = None # The default timeout value. a = timeout # We use this lock primarily for the lock counter. a = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a = 0 return None @property def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" return self._lock_file @property def __lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" return self._timeout @timeout.setter def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[Any] ) ->Union[str, Any]: """simple docstring""" a = float(__A ) return None def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" raise NotImplementedError() def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" raise NotImplementedError() @property def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" return self._lock_file_fd is not None def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Any]=0.05 ) ->Any: """simple docstring""" if timeout is None: a = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a = id(self ) a = self._lock_file a = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__A ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple=False ) ->List[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a = id(self ) a = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() a = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : List[Any] ) ->Optional[int]: """simple docstring""" self.acquire() return self def __exit__( self : int , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) ->str: """simple docstring""" self.release() return None def __del__( self : Union[str, Any] ) ->str: """simple docstring""" self.release(force=__A ) return None def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : str ) ->str: """simple docstring""" a = os.path.basename(__A ) if len(__A ) > max_length and max_length > 0: a = os.path.dirname(__A ) a = str(hash(__A ) ) a = filename[: max_length - len(__A ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__A , __A ) else: return path class lowercase_ ( A__ ): def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any]=-1 , __UpperCAmelCase : Tuple=None ) ->List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__A , timeout=__A , max_filename_length=__A ) a = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def __lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" a = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a = os.open(self._lock_file , __A ) except OSError: pass else: try: msvcrt.locking(__A , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__A ) else: a = fd return None def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" a = self._lock_file_fd a = None msvcrt.locking(__A , msvcrt.LK_UNLCK , 1 ) os.close(__A ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase_ ( A__ ): def __init__( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : List[str]=-1 , __UpperCAmelCase : int=None ) ->Union[str, Any]: """simple docstring""" a = os.statvfs(os.path.dirname(__A ) ).f_namemax super().__init__(__A , timeout=__A , max_filename_length=__A ) def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" a = os.O_RDWR | os.O_CREAT | os.O_TRUNC a = os.open(self._lock_file , __A ) try: fcntl.flock(__A , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__A ) else: a = fd return None def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = self._lock_file_fd a = None fcntl.flock(__A , fcntl.LOCK_UN ) os.close(__A ) return None class lowercase_ ( A__ ): def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a = os.open(self._lock_file , __A ) except OSError: pass else: a = fd return None def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" os.close(self._lock_file_fd ) a = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None UpperCAmelCase__ = None if msvcrt: UpperCAmelCase__ = WindowsFileLock elif fcntl: UpperCAmelCase__ = UnixFileLock else: UpperCAmelCase__ = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowercase_ : '''simple docstring''' __snake_case = BlenderbotConfig __snake_case = {} __snake_case = "gelu" def __init__( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : Any=7 , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=False , __UpperCAmelCase : List[str]=99 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Dict=37 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=20 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : Union[str, Any]=0 , ) ->Dict: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Any ) ->Any: """simple docstring""" a = TFBlenderbotModel(config=_UpperCAmelCase ).get_decoder() a = inputs_dict['''input_ids'''] a = input_ids[:1, :] a = inputs_dict['''attention_mask'''][:1, :] a = inputs_dict['''head_mask'''] a = 1 # first forward pass a = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] a = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) def _a ( a :Optional[Any] , a :Optional[int] , a :str , a :Dict=None , a :Optional[Any]=None , a :Union[str, Any]=None , a :List[Any]=None , a :Any=None , ) -> List[str]: if attention_mask is None: a = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __snake_case = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = TFBlenderbotModelTester(self ) a = ConfigTester(self , config_class=_UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_tokenizers @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = ["My friends are cool but they eat too many carbs."] __snake_case = "facebook/blenderbot-400M-distill" @cached_property def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = self.tokenizer(self.src_text , return_tensors='''tf''' ) a = self.model.generate( model_inputs.input_ids , ) a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_UpperCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
353
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :str , a :str ) -> str: a = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase__ , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict a = torch.load(hf_hub_download(repo_id=lowerCamelCase__ , filename='''pytorch_model.bin''' ) ) a = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): a = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue a = tensor_value a = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase__ , config=lowerCamelCase__ , state_dict=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) # convert tokenizer a = AutoTokenizer.from_pretrained(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase__ = 250004 UpperCAmelCase__ = 250020 @require_sentencepiece @require_tokenizers class lowercase_ ( lowercase__ , unittest.TestCase ): '''simple docstring''' __snake_case = MBartaaTokenizer __snake_case = MBartaaTokenizerFast __snake_case = True __snake_case = True def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = MBartaaTokenizer(_a , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" a = '<s>' a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_a ) , 1_054 ) def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = MBartaaTokenizer(_a , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_a ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) a = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" a = {'input_ids': [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) a = self.tokenizer_class.from_pretrained(_a , **_a ) a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(_a ) a = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) a = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_a , _a ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(_a ) a = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=True a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(_a , legacy_format=_a ) a = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files self.assertSequenceEqual(_a , _a ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(_a ) a = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=False a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(_a , legacy_format=_a ) a = tokenizer_p.save_pretrained(_a ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(_a ) a = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) shutil.rmtree(_a ) @require_torch @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = '''facebook/mbart-large-50-one-to-many-mmt''' __snake_case = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __snake_case = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __snake_case = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls : Optional[int] ) ->int: """simple docstring""" a = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) a = 1 return cls def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 250_038 ) def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" self.assertIn(_a , self.tokenizer.all_special_ids ) a = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] a = self.tokenizer.decode(_a , skip_special_tokens=_a ) a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" a = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , _a ) a = 10 a = self.tokenizer(_a , max_length=_a , truncation=_a ).input_ids[0] self.assertEqual(ids[0] , _a ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_a ) , _a ) def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250_053, 250_001] ) def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" a = tempfile.mkdtemp() a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) a = MBartaaTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _a ) @require_torch def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors='''pt''' ) a = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_a , truncation=_a , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) a = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _a ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" a = self.tokenizer(self.src_text , padding=_a , truncation=_a , max_length=3 , return_tensors='''pt''' ) a = self.tokenizer( text_target=self.tgt_text , padding=_a , truncation=_a , max_length=10 , return_tensors='''pt''' ) a = targets['input_ids'] a = shift_tokens_right(_a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_a ) , { # en_XX, A, test, EOS '''input_ids''': [[250_004, 62, 3_034, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250_001, } , )
355
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowercase_ : '''simple docstring''' def __init__( self : str , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : List[str]=64 , __UpperCAmelCase : Any=None ) ->Optional[Any]: """simple docstring""" a = np.random.default_rng(__UpperCAmelCase ) a = length a = rng.normal(size=(length,) ).astype(np.floataa ) a = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ) ->Any: """simple docstring""" return self.length def __getitem__( self : Optional[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[int]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class lowercase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : int=0 , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[Any]=False ) ->Optional[int]: """simple docstring""" super().__init__() a = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) a = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) a = True def __lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[Any]=None ) ->int: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) a = False return x * self.a[0] + self.b[0] class lowercase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : int , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Any=False ) ->str: """simple docstring""" super().__init__() a = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) a = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) a = True def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str=None ) ->List[Any]: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) a = False return x * self.a + self.b def _a ( a :Dict , a :int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) a = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} a = load_dataset('''csv''' , data_files=__snake_case ) a = datasets['''train'''].unique('''label''' ) a = {v: i for i, v in enumerate(__snake_case )} def tokenize_function(a :List[str] ): # max_length=None => use the model max length (it's actually the default) a = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case , padding='''max_length''' ) if "label" in examples: a = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a = datasets.map( __snake_case , batched=__snake_case , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(a :Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__snake_case , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. a = DataLoader(tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=2 ) a = DataLoader(tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=1 ) return train_dataloader, eval_dataloader
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = OpenAIGPTTokenizer __snake_case = OpenAIGPTTokenizerFast __snake_case = True __snake_case = False def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) a = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_snake_case ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] ) ->Tuple: """simple docstring""" return "lower newer", "lower newer" def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) a = '''lower''' a = ['''low''', '''er</w>'''] a = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) a = tokens + ['''<unk>'''] a = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[Any]=15 ) ->List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) # Simple input a = '''This is a simple input''' a = ['''This is a simple input 1''', '''This is a simple input 2'''] a = ('''This is a simple input''', '''This is a pair''') a = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''' ) # Simple input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' ) # Simple input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''' ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' ) # Pair input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , ) def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class lowercase_ ( lowercase ): '''simple docstring''' pass
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
358
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowercase ): a = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) a = FlaxAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowercase ): a = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) a = FlaxAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: a = AutoTokenizer.from_pretrained(__lowercase ) a = FlaxBertModel.from_pretrained(__lowercase ) a = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__UpperCAmelCase : Optional[Any] ): return model(**__lowercase ) eval(**__lowercase ).block_until_ready() @slow def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: a = AutoTokenizer.from_pretrained(__lowercase ) a = FlaxRobertaModel.from_pretrained(__lowercase ) a = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__UpperCAmelCase : List[str] ): return model(**__lowercase ) eval(**__lowercase ).block_until_ready() def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" with self.assertRaisesRegex( __lowercase , '''bert-base is not a local folder and is not a valid model identifier''' ): a = FlaxAutoModel.from_pretrained('''bert-base''' ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" with self.assertRaisesRegex( __lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a = FlaxAutoModel.from_pretrained(__lowercase , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): a = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" with self.assertRaisesRegex(__lowercase , '''Use `from_pt=True` to load this model''' ): a = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
359
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } UpperCAmelCase__ = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _a ( a :Union[str, Any] , a :List[Any] , a :str , a :List[str] , a :Any , a :List[Any] ) -> Dict: for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models a = "lm_head" a = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: a = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: a = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _a ( a :int , a :Dict , a :List[str] ) -> int: a = [] a = fairseq_model.state_dict() a = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) a = True else: for key, mapped_key in MAPPING.items(): a = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: a = True if "*" in mapped_key: a = name.split(__lowerCamelCase )[0].split('''.''' )[-2] a = mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: a = "weight_g" elif "weight_v" in name: a = "weight_v" elif "bias" in name: a = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a = "weight" else: a = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _a ( a :str , a :Any , a :List[str] , a :Tuple , a :str ) -> Tuple: a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def _a ( a :Union[str, Any] , a :str , a :str=None , a :Optional[Any]=None , a :int=True ) -> List[str]: if config_path is not None: a = UniSpeechConfig.from_pretrained(__lowerCamelCase ) else: a = UniSpeechConfig() if is_finetuned: if dict_path: a = Dictionary.load_from_json(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a = target_dict.pad_index a = target_dict.bos_index a = target_dict.eos_index a = len(target_dict.symbols ) a = os.path.join(__lowerCamelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) a = target_dict.indices # fairseq has the <pad> and <s> switched a = 42 a = 43 with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) a = WavaVecaPhonemeCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCamelCase , ) a = True if config.feat_extract_norm == "layer" else False a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) a = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) a = UniSpeechForCTC(__lowerCamelCase ) else: a = UniSpeechForPreTraining(__lowerCamelCase ) if is_finetuned: a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_unispeech.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __snake_case = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __snake_case = Features({'''audio''': Audio()} ) __snake_case = Features({'''transcription''': Value('''string''' )} ) __snake_case = "audio" __snake_case = "transcription" def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] ) ->int: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , _a ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) a = copy.deepcopy(self ) a = self.input_schema.copy() a = features[self.audio_column] a = input_schema return task_template @property def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
361
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCAmelCase__ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : int=18 , __UpperCAmelCase : Any=30 , __UpperCAmelCase : Union[str, Any]=400 , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[int]=None , ) ->Optional[Any]: """simple docstring""" a = size if size is not None else {'height': 20, 'width': 20} a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = size a = do_normalize a = do_convert_rgb a = [512, 1_024, 2_048, 4_096] a = patch_size if patch_size is not None else {'height': 16, 'width': 16} def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' a = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = PixaStructImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.image_processor_tester.prepare_dummy_image() a = self.image_processing_class(**self.image_processor_dict ) a = 2_048 a = image_processor(__UpperCAmelCase , return_tensors='''pt''' , max_patches=__UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input a = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a = image_processor( __UpperCAmelCase , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input a = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 a = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__UpperCAmelCase ): a = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches a = 'Hello' a = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__UpperCAmelCase , header_text=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a = image_processor( __UpperCAmelCase , return_tensors='''pt''' , max_patches=__UpperCAmelCase , header_text=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) a = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a = image_processor( __UpperCAmelCase , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input a = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a = image_processor( __UpperCAmelCase , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" a = PixaStructImageProcessingTester(self , num_channels=4 ) a = 3 @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input a = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a = image_processor( __UpperCAmelCase , return_tensors='''pt''' , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
362
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase_ ( __lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , '''num_attention_heads''' ) ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int=13 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Optional[int]=640 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Tuple="silu" , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : Any=32 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : str=10 , __UpperCAmelCase : Tuple=None , ) ->Optional[int]: """simple docstring""" a = parent a = batch_size a = image_size a = patch_size a = num_channels a = last_hidden_size a = num_attention_heads a = hidden_act a = conv_kernel_size a = output_stride a = hidden_dropout_prob a = attention_probs_dropout_prob a = classifier_dropout_prob a = use_labels a = is_training a = num_labels a = initializer_range a = scope def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = MobileViTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) ->Optional[int]: """simple docstring""" a = self.num_labels a = MobileViTForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = self.num_labels a = MobileViTForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" a = self.prepare_config_and_inputs() a = config_and_inputs a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __snake_case = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = MobileViTModelTester(self ) a = MobileViTConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" pass def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__UpperCAmelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" pass def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ): a = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) a = outputs.hidden_states a = 5 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a = 2 for i in range(len(__UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = MobileViTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> Any: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(__UpperCAmelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) # verify the logits a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) a = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a = model.to(__UpperCAmelCase ) a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) a = outputs.logits # verify the logits a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a = model.to(__UpperCAmelCase ) a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) a = outputs.logits.detach().cpu() a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(50, 60)] ) a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
363
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
0
UpperCAmelCase__ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCAmelCase__ = {value: key for key, value in encode_dict.items()} def _a ( a :str ) -> str: a = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( a :Tuple ) -> str: if set(a_ ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) a = '''''' for word in coded.split(): while len(a_ ) != 0: decoded += decode_dict[word[:5]] a = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionLDMaDPipeline __snake_case = TEXT_TO_IMAGE_PARAMS __snake_case = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" torch.manual_seed(0 ) a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a = CLIPTextModel(_a ) a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Any=0 ) ->Optional[Any]: """simple docstring""" if str(_a ).startswith('''mps''' ): a = torch.manual_seed(_a ) else: a = torch.Generator(device=_a ).manual_seed(_a ) a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = '''cpu''' # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = StableDiffusionLDMaDPipeline(**_a ) a = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) a = self.get_dummy_inputs(_a ) a = ldmad_pipe(**_a ) a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1] a = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) a = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" a = self.get_dummy_components() a = StableDiffusionLDMaDPipeline(**_a ) a = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) a = self.get_dummy_inputs(_a ) a = 3 * [inputs['''prompt''']] # forward a = ldmad_pipe(**_a ) a = output.rgb, output.depth a = rgb_slice_a[0, -3:, -3:, -1] a = depth_slice_a[0, -3:, -1] a = self.get_dummy_inputs(_a ) a = 3 * [inputs.pop('''prompt''' )] a = ldmad_pipe.tokenizer( _a , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_a , return_tensors='''pt''' , ) a = text_inputs['''input_ids'''].to(_a ) a = ldmad_pipe.text_encoder(_a )[0] a = prompt_embeds # forward a = ldmad_pipe(**_a ) a = output.rgb, output.depth a = rgb_slice_a[0, -3:, -3:, -1] a = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a = '''cpu''' # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = PNDMScheduler(skip_prk_steps=_a ) a = StableDiffusionLDMaDPipeline(**_a ) a = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) a = self.get_dummy_inputs(_a ) a = '''french fries''' a = ldmad_pipe(**_a , negative_prompt=_a ) a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1] a = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) a = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any]="cpu" , __UpperCAmelCase : Union[str, Any]=torch.floataa , __UpperCAmelCase : int=0 ) ->Tuple: """simple docstring""" a = torch.Generator(device=_a ).manual_seed(_a ) a = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) a = torch.from_numpy(_a ).to(device=_a , dtype=_a ) a = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) a = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) a = self.get_inputs(_a ) a = ldmad_pipe(**_a ) a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1].flatten() a = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) a = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) a = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int]="cpu" , __UpperCAmelCase : int=torch.floataa , __UpperCAmelCase : Any=0 ) ->Optional[int]: """simple docstring""" a = torch.Generator(device=_a ).manual_seed(_a ) a = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) a = torch.from_numpy(_a ).to(device=_a , dtype=_a ) a = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) a = self.get_inputs(_a ) a = ldmad_pipe(**_a ) a = output.rgb, output.depth a = 0.495586 a = 0.33795515 a = 112.48518 a = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) a = self.get_inputs(_a ) a = ldmad_pipe(**_a ) a = output.rgb, output.depth a = 0.4194127 a = 0.35375586 a = 0.5638502 a = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
365
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] UpperCAmelCase__ = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = {f"""funnel-transformer/{name}""": 512 for name in _model_names} UpperCAmelCase__ = {f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class lowercase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = FunnelTokenizer __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = 2 def __init__( self : Optional[int] , __UpperCAmelCase : int=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=True , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : List[str]="<sep>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : List[Any]="<cls>" , __UpperCAmelCase : List[Any]="<mask>" , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Tuple="##" , **__UpperCAmelCase : Tuple , ) ->List[Any]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , clean_text=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , wordpieces_prefix=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int=None ) ->Dict: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : int = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") UpperCAmelCase__ = {"target_lang": "fi", "source_lang": "en"} UpperCAmelCase__ = ">>zh<<" UpperCAmelCase__ = "Helsinki-NLP/" if is_torch_available(): UpperCAmelCase__ = "pt" elif is_tf_available(): UpperCAmelCase__ = "tf" else: UpperCAmelCase__ = "jax" @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = MarianTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" super().setUp() a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] a = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) a = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) a = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Any , **__UpperCAmelCase : Optional[int] ) ->MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] ) ->List[Any]: """simple docstring""" return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = "</s>" a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(lowerCAmelCase__ ) , 9 ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) a = en_de_tokenizer(['''I am a small frog'''] , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) a = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(lowerCAmelCase__ , batch.input_ids[0] ) a = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase__ ) a = [x.name for x in Path(lowerCAmelCase__ ).glob('''*''' )] self.assertIn('''source.spm''' , lowerCAmelCase__ ) MarianTokenizer.from_pretrained(lowerCAmelCase__ ) def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.get_tokenizer() a = tok( ['''I am a small frog''' * 1_000, '''I am a small frog'''] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __lowerCAmelCase ( self : int ) ->int: """simple docstring""" a = self.get_tokenizer() a = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = {"input_ids": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" a = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) a = "Tämä on testi" a = "This is a test" a = [76, 7, 2_047, 2] a = [69, 12, 11, 940, 2] a = tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a = tokenizer(text_target=lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
367
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _a ( ) -> Union[str, Any]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join a = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , _UpperCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _a ( ) -> int: assert _test_patching.open is open a = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _UpperCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _a ( ) -> Dict: # pandas.read_csv is not present in _test_patching a = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , _UpperCamelCase ): pass def _a ( ) -> List[Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point a = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _UpperCamelCase ) is None with patch_submodule(_test_patching , '''len''' , _UpperCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _a ( ) -> Optional[Any]: a = '''__test_patch_submodule_start_and_stop_mock__''' a = patch_submodule(_test_patching , '''open''' , _UpperCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _a ( ) -> Union[str, Any]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join a = '''__test_patch_submodule_successive_join__''' a = '''__test_patch_submodule_successive_dirname__''' a = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _UpperCamelCase ): with patch_submodule(_test_patching , '''os.rename''' , _UpperCamelCase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _UpperCamelCase ): with patch_submodule(_test_patching , '''os.path.join''' , _UpperCamelCase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _a ( ) -> int: a = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _UpperCamelCase ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _UpperCamelCase ): pass
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = mock.Mock() a = 500 a = {} a = HTTPError a = {} # Download this model to make sure it's in the cache. a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = mock.Mock() a = 500 a = {} a = HTTPError a = {} # Download this model to make sure it's in the cache. a = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: a = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" try: a = tempfile.mktemp() with open(_lowerCamelCase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , _lowerCamelCase ) a = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , _lowerCamelCase ) a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" a = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __lowerCAmelCase ( cls : List[str] ) ->Optional[Any]: """simple docstring""" a = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls : int ) ->int: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) a = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id='''test-tokenizer''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) a = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) a = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) a = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) a = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) a = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) a = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) a = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) ->Optional[int]: """simple docstring""" a = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" a = Trie() a = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ['''AB''', '''C'''] )
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
def _a ( a :int , a :int ) -> int: return abs(__SCREAMING_SNAKE_CASE ) if a == 0 else greatest_common_divisor(b % a , __SCREAMING_SNAKE_CASE ) def _a ( a :int , a :int ) -> Any: while y: # --> when y=0 then loop will terminate and return x as final GCD. a = y, x % y return abs(__SCREAMING_SNAKE_CASE ) def _a ( ) -> int: try: a = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) a = int(nums[0] ) a = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
370
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
0
from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase__ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" UpperCAmelCase__ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" UpperCAmelCase__ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int=None , __UpperCAmelCase : Tuple="uniform_average" , __UpperCAmelCase : Dict=True ) ->str: """simple docstring""" a = mean_squared_error( lowercase_ , lowercase_ , sample_weight=lowercase_ , multioutput=lowercase_ , squared=lowercase_ ) return {"mse": mse}
371
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCAmelCase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: UpperCAmelCase__ = json.load(f) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->Tuple: """simple docstring""" return FSMTTokenizer.from_pretrained(_a ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Any: """simple docstring""" a = FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" a = F"""facebook/wmt19-{pair}""" a = self.get_tokenizer(_a ) a = self.get_model(_a ) a = bleu_data[pair]['''src'''] a = bleu_data[pair]['''tgt'''] a = tokenizer(_a , return_tensors='''pt''' , truncation=_a , padding='''longest''' ).to(_a ) a = model.generate( input_ids=batch.input_ids , num_beams=8 , ) a = tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) a = calculate_bleu(_a , _a ) print(_a ) self.assertGreaterEqual(scores['''bleu'''] , _a )
350
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCAmelCase__ = numpy.array([0, 0]) UpperCAmelCase__ = numpy.array([0.5, 0.866_0254]) UpperCAmelCase__ = numpy.array([1, 0]) UpperCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _a ( a :Dict , a :Tuple ) -> Optional[int]: a = initial_vectors for _ in range(__lowerCamelCase ): a = iteration_step(__lowerCamelCase ) return vectors def _a ( a :int ) -> int: a = [] for i, start_vector in enumerate(vectors[:-1] ): a = vectors[i + 1] new_vectors.append(__lowerCamelCase ) a = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _a ( a :Union[str, Any] , a :Union[str, Any] ) -> Union[str, Any]: a = numpy.radians(__lowerCamelCase ) a = numpy.cos(__lowerCamelCase ), numpy.sin(__lowerCamelCase ) a = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__lowerCamelCase , __lowerCamelCase ) def _a ( a :Dict ) -> int: a = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a = zip(*__lowerCamelCase ) plt.plot(__lowerCamelCase , __lowerCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model UpperCAmelCase__ = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def _a ( a :List[str] , a :Any , a :int=None ) -> Tuple: if rng is None: a = random.Random() a = 1 for dim in shape: total_dims *= dim a = [] for _ in range(_snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) a = np.array(_snake_case , dtype=jnp.intaa ).reshape(_snake_case ) return output def _a ( a :Optional[int] , a :List[Any]=None ) -> Any: a = ids_tensor(_snake_case , vocab_size=2 , rng=_snake_case ) # make sure that at least one token is attended to for each batch a = 1 return attn_mask @require_flax class lowercase_ : '''simple docstring''' __snake_case = None __snake_case = () def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a = 2 a = inputs['''input_ids'''].shape[-1] // 2 a = inputs['''input_ids'''][:max_batch_size, :sequence_length] a = jnp.ones_like(a_ ) a = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = self._get_input_ids_and_config() a = False a = max_length a = 0 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model_class.__name__[4:] # Skip the "Flax" at the beginning a = getattr(a_ , a_ ) a = pt_model_class(a_ ).eval() a = load_flax_weights_in_pytorch_model(a_ , flax_model.params ) a = flax_model.generate(a_ ).sequences a = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self._get_input_ids_and_config() a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = self._get_input_ids_and_config() a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" a = self._get_input_ids_and_config() a = False a = max_length a = 2 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = self._get_input_ids_and_config() a = False a = max_length a = 2 a = 2 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self._get_input_ids_and_config() a = True a = max_length a = 0.8 a = 10 a = 0.3 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self._get_input_ids_and_config() a = max_length a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self._get_input_ids_and_config() a = max_length a = 2 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = 2 a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) a = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) a = '''Hello world''' a = tokenizer(a_ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a_ , '''do_samples''' ): model.generate(a_ , do_samples=a_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a_ , '''foo''' ): a = {'''foo''': '''bar'''} model.generate(a_ , **a_ )
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = 'The dog is cute and lives in the garden house' a = jnp.array([tokenizer.encode(snake_case__ )] ) a = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) a = model(snake_case__ )['last_hidden_state'] self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case__ , atol=1e-3 ) )
353
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCAmelCase__ = pd.read_csv("sample_data.csv", header=None) UpperCAmelCase__ = df.shape[:1][0] # If you're using some other dataset input the target column UpperCAmelCase__ = df.iloc[:, 1:2] UpperCAmelCase__ = actual_data.values.reshape(len_data, 1) UpperCAmelCase__ = MinMaxScaler().fit_transform(actual_data) UpperCAmelCase__ = 10 UpperCAmelCase__ = 5 UpperCAmelCase__ = 20 UpperCAmelCase__ = len_data - periods * look_back UpperCAmelCase__ = actual_data[:division] UpperCAmelCase__ = actual_data[division - look_back :] UpperCAmelCase__ = [], [] UpperCAmelCase__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCAmelCase__ = np.array(train_x) UpperCAmelCase__ = np.array(test_x) UpperCAmelCase__ = np.array([list(i.ravel()) for i in train_y]) UpperCAmelCase__ = np.array([list(i.ravel()) for i in test_y]) UpperCAmelCase__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") UpperCAmelCase__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCAmelCase__ = model.predict(x_test)
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
def _a ( ) -> Tuple: a = 0 for i in range(1 , 1_001 ): total += i**i return str(lowercase__ )[-10:] if __name__ == "__main__": print(solution())
355
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _a ( a :dict ) -> int: return (data["data"], data["target"]) def _a ( a :np.ndarray , a :np.ndarray ) -> Optional[Any]: a = XGBClassifier() classifier.fit(A__ , A__ ) return classifier def _a ( ) -> int: a = load_iris() a , a = data_handling(A__ ) a , a , a , a = train_test_split( A__ , A__ , test_size=0.25 ) a = iris['''target_names'''] # Create an XGBoost Classifier from the training data a = xgboost(A__ , A__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A__ , A__ , A__ , display_labels=A__ , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
0
from collections.abc import Callable def _a ( a :List[str] , a :Optional[int] , a :str ) -> Union[str, Any]: a = a a = b if function(a ) == 0: # one of the a or b is a root for the function return a elif function(a ) == 0: return b elif ( function(a ) * function(a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: a = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(a ) == 0: return mid elif function(a ) * function(a ) < 0: a = mid else: a = mid a = start + (end - start) / 2.0 return mid def _a ( a :List[str] ) -> Optional[Any]: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['input_ids', 'attention_mask'] __snake_case = DistilBertTokenizer def __init__( self : Union[str, Any] , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Dict=True , __UpperCAmelCase : List[Any]="[UNK]" , __UpperCAmelCase : Union[str, Any]="[SEP]" , __UpperCAmelCase : List[str]="[PAD]" , __UpperCAmelCase : List[Any]="[CLS]" , __UpperCAmelCase : Dict="[MASK]" , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : str=None , **__UpperCAmelCase : Union[str, Any] , ) ->Optional[int]: """simple docstring""" super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , tokenize_chinese_chars=a_ , strip_accents=a_ , **a_ , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , a_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , a_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , a_ ) != tokenize_chinese_chars ): a = getattr(a_ , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**a_ ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : int=None ) ->List[str]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->Optional[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->str: """simple docstring""" a = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
358
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase__ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __snake_case = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __snake_case = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __snake_case = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) a = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) a = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) a = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) a = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior a = text_classifier('''This is great !''' , return_all_scores=__lowerCAmelCase ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) a = text_classifier('''This is great !''' , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) a = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) a = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] , ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" import torch a = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) a = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) a = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" a = pipeline('''text-classification''' ) a = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) a = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) a = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = pipeline('''text-classification''' , framework='''tf''' ) a = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) a = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) a = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) ->Tuple: """simple docstring""" a = TextClassificationPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->str: """simple docstring""" a = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 a = '''HuggingFace is in''' a = text_classifier(__lowerCAmelCase ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) a = ['''HuggingFace is in ''', '''Paris is in France'''] a = text_classifier(__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}, {'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format a = text_classifier(__lowerCAmelCase , top_k=__lowerCAmelCase ) a = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [[{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] * N, [{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] * N] , ) a = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} a = text_classifier(__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , {'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. a = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(__lowerCAmelCase ): text_classifier(__lowerCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility a = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
359
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : int=10 , __UpperCAmelCase : int=[10, 20, 30, 40] , __UpperCAmelCase : Union[str, Any]=[1, 1, 2, 1] , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Union[str, Any]="relu" , __UpperCAmelCase : Any=3 , __UpperCAmelCase : List[Any]=None , ) ->Optional[Any]: """simple docstring""" a = parent a = batch_size a = image_size a = num_channels a = embeddings_size a = hidden_sizes a = depths a = is_training a = use_labels a = hidden_act a = num_labels a = scope a = len(_snake_case ) def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" a = TFResNetModel(config=_snake_case ) a = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) ->List[Any]: """simple docstring""" a = self.num_labels a = TFResNetForImageClassification(_snake_case ) a = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __snake_case = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" a = TFResNetModelTester(self ) a = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" pass def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(_snake_case ) a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ): a = model_class(_snake_case ) a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: a = layer_type a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def __lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( ) -> Union[str, Any]: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" a = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) a = self.default_image_processor a = prepare_img() a = image_processor(images=_snake_case , return_tensors='''tf''' ) # forward pass a = model(**_snake_case ) # verify the logits a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _snake_case ) a = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1e-4 ) )
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) a = img a = img.shape[1] a = img.shape[0] a = dst_width a = dst_height a = self.src_w / self.dst_w a = self.src_h / self.dst_h a = a = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): a = self.img[self.get_y(__UpperCAmelCase )][self.get_x(__UpperCAmelCase )] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] ) ->int: """simple docstring""" return int(self.ratio_x * x ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->int: """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": UpperCAmelCase__ , UpperCAmelCase__ = 800, 600 UpperCAmelCase__ = imread("image_data/lena.jpg", 1) UpperCAmelCase__ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
361
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __snake_case = 'time_series_transformer' __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[int] , __UpperCAmelCase : str = None , __UpperCAmelCase : int = None , __UpperCAmelCase : List[str] = "student_t" , __UpperCAmelCase : str = "nll" , __UpperCAmelCase : Dict = 1 , __UpperCAmelCase : Optional[int] = [1, 2, 3, 4, 5, 6, 7] , __UpperCAmelCase : Union[str, Any] = "mean" , __UpperCAmelCase : Optional[Any] = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Union[str, Any] = 0 , __UpperCAmelCase : List[Any] = 0 , __UpperCAmelCase : int = None , __UpperCAmelCase : Tuple = None , __UpperCAmelCase : Optional[Any] = 32 , __UpperCAmelCase : str = 32 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : Any = 2 , __UpperCAmelCase : List[str] = 2 , __UpperCAmelCase : Any = 2 , __UpperCAmelCase : List[Any] = True , __UpperCAmelCase : Any = "gelu" , __UpperCAmelCase : Dict = 64 , __UpperCAmelCase : str = 0.1 , __UpperCAmelCase : str = 0.1 , __UpperCAmelCase : Optional[int] = 0.1 , __UpperCAmelCase : int = 0.1 , __UpperCAmelCase : Optional[Any] = 0.1 , __UpperCAmelCase : int = 100 , __UpperCAmelCase : Any = 0.02 , __UpperCAmelCase : int=True , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" a = prediction_length a = context_length or prediction_length a = distribution_output a = loss a = input_size a = num_time_features a = lags_sequence a = scaling a = num_dynamic_real_features a = num_static_real_features a = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) a = cardinality else: a = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) a = embedding_dimension else: a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] a = num_parallel_samples # Transformer architecture configuration a = input_size * len(_SCREAMING_SNAKE_CASE ) + self._number_of_features a = d_model a = encoder_attention_heads a = decoder_attention_heads a = encoder_ffn_dim a = decoder_ffn_dim a = encoder_layers a = decoder_layers a = dropout a = attention_dropout a = activation_dropout a = encoder_layerdrop a = decoder_layerdrop a = activation_function a = init_std a = use_cache super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
363
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase_ ( snake_case__ ): '''simple docstring''' __snake_case = '''xlm-roberta-xl''' def __init__( self : List[str] , __UpperCAmelCase : Any=250_880 , __UpperCAmelCase : Optional[int]=2_560 , __UpperCAmelCase : Dict=36 , __UpperCAmelCase : Any=32 , __UpperCAmelCase : int=10_240 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : str=514 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Optional[Any]=1e-0_5 , __UpperCAmelCase : str=1 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : int=2 , __UpperCAmelCase : str="absolute" , __UpperCAmelCase : int=True , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : int , ) ->int: """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = classifier_dropout class lowercase_ ( snake_case__ ): '''simple docstring''' @property def __lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" if self.task == "multiple-choice": a = {0: "batch", 1: "choice", 2: "sequence"} else: a = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case = TransfoXLTokenizer __snake_case = False __snake_case = False def __lowerCAmelCase ( self : int ) ->int: """simple docstring""" super().setUp() a = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : str ) ->int: """simple docstring""" a = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" a = '''<unk> UNwanted , running''' a = '''<unk> unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) a = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" a = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" a = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) a = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' a = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = self.get_tokenizer() a = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
365
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any=7 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Any=18 , __UpperCAmelCase : List[str]=30 , __UpperCAmelCase : str=400 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : str=None , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=False , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , __UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , ) ->List[Any]: """simple docstring""" a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size if size is not None else {'''height''': 18, '''width''': 20} a = do_thumbnail a = do_align_axis a = do_pad a = do_normalize a = image_mean a = image_std def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase_ ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = DonutImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" a = DonutImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order a = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" pass @is_flaky() def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _a ( a :Union[str, Any] , a :List[str] , a :Any=8 ) -> Optional[Any]: a = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase_ ( A_ ): '''simple docstring''' def __init__( self : List[str] , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : VQModel , ) ->str: """simple docstring""" super().__init__() self.register_modules( unet=_lowerCamelCase , scheduler=_lowerCamelCase , movq=_lowerCamelCase , ) a = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" if latents is None: a = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) a = latents.to(_lowerCamelCase ) a = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[Any]=0 ) ->Tuple: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a = torch.device(F"""cuda:{gpu_id}""" ) a = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[str]=0 ) ->List[Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a = None for cpu_offloaded_model in [self.unet, self.movq]: a , a = cpu_offload_with_hook(_lowerCamelCase , _lowerCamelCase , prev_module_hook=_lowerCamelCase ) # We'll offload the last model manually. a = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self : Any , __UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __UpperCAmelCase : int = 512 , __UpperCAmelCase : int = 512 , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 4.0 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) ->List[str]: """simple docstring""" a = self._execution_device a = guidance_scale > 1.0 if isinstance(_lowerCamelCase , _lowerCamelCase ): a = torch.cat(_lowerCamelCase , dim=0 ) a = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCamelCase , _lowerCamelCase ): a = torch.cat(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: a = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) a = negative_image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) a = self.scheduler.timesteps a = self.unet.config.in_channels a , a = downscale_height_and_width(_lowerCamelCase , _lowerCamelCase , self.movq_scale_factor ) # create initial latent a = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a = {'''image_embeds''': image_embeds} a = self.unet( sample=_lowerCamelCase , timestep=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , added_cond_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] if do_classifier_free_guidance: a , a = noise_pred.split(latents.shape[1] , dim=1 ) a , a = noise_pred.chunk(2 ) a , a = variance_pred.chunk(2 ) a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a , a = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase , )[0] # post-processing a = self.movq.decode(_lowerCamelCase , force_not_quantize=_lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: a = image * 0.5 + 0.5 a = image.clamp(0 , 1 ) a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
367
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _a ( a :str ) -> Optional[Any]: a = SwinConfig() a = swin_name.split('''_''' ) a = name_split[1] a = int(name_split[4] ) a = int(name_split[3][-1] ) if model_size == "tiny": a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif model_size == "small": a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif model_size == "base": a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) else: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) if "in22k" in swin_name: a = 21_841 else: a = 1_000 a = "huggingface/label-files" a = "imagenet-1k-id2label.json" a = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) a = {int(_snake_case ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} a = img_size a = num_classes a = embed_dim a = depths a = num_heads a = window_size return config def _a ( a :Union[str, Any] ) -> Any: if "patch_embed.proj" in name: a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: a = "encoder." + name if "attn.proj" in name: a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: a = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": a = "layernorm.weight" if name == "norm.bias": a = "layernorm.bias" if "head" in name: a = name.replace('''head''' , '''classifier''' ) else: a = "swin." + name return name def _a ( a :List[str] , a :Tuple ) -> Tuple: for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(_snake_case ) if "mask" in key: continue elif "qkv" in key: a = key.split('''.''' ) a = int(key_split[1] ) a = int(key_split[3] ) a = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a = val[:dim, :] a = val[ dim : dim * 2, : ] a = val[-dim:, :] else: a = val[ :dim ] a = val[ dim : dim * 2 ] a = val[ -dim: ] else: a = val return orig_state_dict def _a ( a :Any , a :Union[str, Any] ) -> Union[str, Any]: a = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() a = get_swin_config(_snake_case ) a = SwinForImageClassification(_snake_case ) model.eval() a = convert_state_dict(timm_model.state_dict() , _snake_case ) model.load_state_dict(_snake_case ) a = "http://images.cocodataset.org/val2017/000000039769.jpg" a = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) a = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) a = image_processor(images=_snake_case , return_tensors='''pt''' ) a = timm_model(inputs['''pixel_values'''] ) a = model(**_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0