code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :Any , a :Any=False ) -> List[Any]: a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( a :int , a :List[Any] , a :List[Any]=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: a = "" else: a = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) a = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[ : config.hidden_size, : ] a = in_proj_bias[: config.hidden_size] a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a = in_proj_weight[ -config.hidden_size :, : ] a = in_proj_bias[-config.hidden_size :] def _a ( a :Optional[Any] ) -> Optional[Any]: a = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(a , a ) def _a ( a :Tuple , a :Union[str, Any] , a :Any ) -> Tuple: a = dct.pop(a ) a = val def _a ( ) -> Dict: a = "http://images.cocodataset.org/val2017/000000039769.jpg" a = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _a ( a :Optional[int] , a :Optional[Any] , a :Union[str, Any]=True ) -> int: a = ViTConfig() # patch_size if model_name[-1] == "8": a = 8 # set labels if required if not base_model: a = 1_000 a = "huggingface/label-files" a = "imagenet-1k-id2label.json" a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a = 384 a = 1_536 a = 12 a = 6 # load original model from torch hub a = torch.hub.load('''facebookresearch/dino:main''' , a ) original_model.eval() # load state_dict of original model, remove and rename some keys a = original_model.state_dict() if base_model: remove_classification_head_(a ) a = create_rename_keys(a , base_model=a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a , a ) # load HuggingFace model if base_model: a = ViTModel(a , add_pooling_layer=a ).eval() else: a = ViTForImageClassification(a ).eval() model.load_state_dict(a ) # Check outputs on an image, prepared by ViTImageProcessor a = ViTImageProcessor() a = image_processor(images=prepare_img() , return_tensors='''pt''' ) a = encoding["pixel_values"] a = model(a ) if base_model: a = original_model(a ) assert torch.allclose(a , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: a = original_model(a ) assert logits.shape == outputs.logits.shape assert torch.allclose(a , outputs.logits , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ ( _a , unittest.TestCase ): '''simple docstring''' __snake_case = CTRLTokenizer __snake_case = False __snake_case = False def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) a = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] a = {"""unk_token""": """<unk>"""} a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case_ ) ) def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : List[str] ) ->int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] ) ->Any: """simple docstring""" a = """adapt react readapt apt""" a = """adapt react readapt apt""" return input_text, output_text def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a = """adapt react readapt apt""" a = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() a = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) a = tokens + [tokenizer.unk_token] a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
370
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = JukeboxTokenizer __snake_case = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" import torch a = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) a = tokenizer(**self.metas )['''input_ids'''] # fmt: off a = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" import torch a = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) a = tokenizer(**self.metas )['''input_ids'''] # fmt: off a = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
371
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __UpperCAmelCase : str=None , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , __UpperCAmelCase , ) super().__init__(args=__UpperCAmelCase , **__UpperCAmelCase )
350
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
UpperCAmelCase__ = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowercase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' __snake_case = AlbertTokenizer __snake_case = AlbertTokenizerFast __snake_case = True __snake_case = True __snake_case = True def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = AlbertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[str] ) ->Any: """simple docstring""" a = '''this is a test''' a = '''this is a test''' return input_text, output_text def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = '''<pad>''' a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(__UpperCAmelCase ) , 30_000 ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = '''I was born in 92000, and this is falsé.''' a = tokenizer.tokenize(__UpperCAmelCase ) a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = AlbertTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [48, 25, 21, 1_289] ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" a = AlbertTokenizer(__UpperCAmelCase ) a = tokenizer.encode('''sequence builders''' ) a = tokenizer.encode('''multi-sequence build''' ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowercase_ ( lowercase , lowercase ): '''simple docstring''' __snake_case = '''pixel_values''' __snake_case = False __snake_case = TimmBackboneConfig def __init__( self : List[Any] , __UpperCAmelCase : Any , **__UpperCAmelCase : List[Any] ) ->List[str]: """simple docstring""" requires_backends(self , '''timm''' ) super().__init__(_lowerCAmelCase ) a = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(_lowerCAmelCase , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) a = getattr(_lowerCAmelCase , '''use_pretrained_backbone''' , _lowerCAmelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. a = config.out_indices if getattr(_lowerCAmelCase , '''out_indices''' , _lowerCAmelCase ) is not None else (-1,) a = timm.create_model( config.backbone , pretrained=_lowerCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=_lowerCAmelCase , **_lowerCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a = self._backbone.return_layers a = {layer['''module''']: str(_lowerCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_lowerCAmelCase ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , __UpperCAmelCase : Tuple , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : str ) ->List[Any]: """simple docstring""" requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig a = kwargs.pop('''config''' , TimmBackboneConfig() ) a = kwargs.pop('''use_timm_backbone''' , _lowerCAmelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) a = kwargs.pop('''num_channels''' , config.num_channels ) a = kwargs.pop('''features_only''' , config.features_only ) a = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) a = kwargs.pop('''out_indices''' , config.out_indices ) a = TimmBackboneConfig( backbone=_lowerCAmelCase , num_channels=_lowerCAmelCase , features_only=_lowerCAmelCase , use_pretrained_backbone=_lowerCAmelCase , out_indices=_lowerCAmelCase , ) return super()._from_config(_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Tuple ) ->List[Any]: """simple docstring""" pass def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : Tuple ) ->str: """simple docstring""" a = return_dict if return_dict is not None else self.config.use_return_dict a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone a = self._all_layers a = self._backbone(_lowerCAmelCase , **_lowerCAmelCase ) a = self._return_layers a = tuple(hidden_states[i] for i in self.out_indices ) else: a = self._backbone(_lowerCAmelCase , **_lowerCAmelCase ) a = None a = tuple(_lowerCAmelCase ) a = tuple(_lowerCAmelCase ) if hidden_states is not None else None if not return_dict: a = (feature_maps,) if output_hidden_states: a = output + (hidden_states,) return output return BackboneOutput(feature_maps=_lowerCAmelCase , hidden_states=_lowerCAmelCase , attentions=_lowerCAmelCase )
353
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Any=99 , __UpperCAmelCase : str=24 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : int=6 , __UpperCAmelCase : int=37 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : int=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[str]=1_000 , ) ->List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = scope a = range_bbox def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a = bbox[i, j, 3] a = bbox[i, j, 1] a = t if bbox[i, j, 2] < bbox[i, j, 0]: a = bbox[i, j, 2] a = bbox[i, j, 0] a = t a = None if self.use_input_mask: a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , ) ->Any: """simple docstring""" a = LiltModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) a = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) a = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , ) ->Optional[int]: """simple docstring""" a = self.num_labels a = LiltForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , ) ->Any: """simple docstring""" a = LiltForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = False def __lowerCAmelCase ( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Tuple ) ->Tuple: """simple docstring""" return True def __lowerCAmelCase ( self : int ) ->Any: """simple docstring""" a = LiltModelTester(self ) a = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = LiltModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch @slow class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" a = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_SCREAMING_SNAKE_CASE ) a = torch.tensor([[1, 2]] , device=_SCREAMING_SNAKE_CASE ) a = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): a = model(input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE ) a = torch.Size([1, 2, 768] ) a = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_SCREAMING_SNAKE_CASE , ) self.assertTrue(outputs.last_hidden_state.shape , _SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __snake_case = IFImgaImgSuperResolutionPipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} __snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) __snake_case = PipelineTesterMixin.required_optional_params - {'''latents'''} def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=0 ) ->str: """simple docstring""" if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" self._test_save_load_local() def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
355
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
0
import qiskit def _a ( a :str , a :List[Any] ) -> str: a = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register a = qiskit.QuantumCircuit(A__ , A__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator a = qiskit.execute(A__ , A__ , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase_( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @register_to_config def __init__( self : List[Any] , __UpperCAmelCase : int = 768 , ) ->int: """simple docstring""" super().__init__() a = nn.Parameter(torch.zeros(1 , __UpperCAmelCase ) ) a = nn.Parameter(torch.ones(1 , __UpperCAmelCase ) ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[Union[str, torch.device]] = None , __UpperCAmelCase : Optional[torch.dtype] = None , ) ->Optional[int]: """simple docstring""" a = nn.Parameter(self.mean.to(__UpperCAmelCase ).to(__UpperCAmelCase ) ) a = nn.Parameter(self.std.to(__UpperCAmelCase ).to(__UpperCAmelCase ) ) return self def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Union[str, Any] ) ->int: """simple docstring""" a = (embeds - self.mean) * 1.0 / self.std return embeds def __lowerCAmelCase ( self : int , __UpperCAmelCase : Tuple ) ->str: """simple docstring""" a = (embeds * self.std) + self.mean return embeds
358
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class lowercase_ : '''simple docstring''' __snake_case = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __snake_case = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __snake_case = field( default=_lowercase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class lowercase_ : '''simple docstring''' __snake_case = field(default=_lowercase , metadata={'''help''': '''The input training data file (a text file).'''} ) __snake_case = field( default=_lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) __snake_case = field( default=_lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __snake_case = field( default=_lowercase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __snake_case = field( default=_lowercase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) __snake_case = field( default=_lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __snake_case = field( default=_lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" if self.train_file is not None: a = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: a = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase_ : '''simple docstring''' __snake_case = 42 __snake_case = True __snake_case = None __snake_case = None def __call__( self : List[str] , __UpperCAmelCase : List[Any] ) ->Dict: """simple docstring""" a = '''label''' if '''label''' in features[0].keys() else '''labels''' a = [feature.pop(__UpperCamelCase ) for feature in features] a = len(__UpperCamelCase ) a = len(features[0]['''input_ids'''] ) a = [ [{k: v[i] for k, v in feature.items()} for i in range(__UpperCamelCase )] for feature in features ] a = list(chain(*__UpperCamelCase ) ) a = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten a = {k: v.view(__UpperCamelCase , __UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels a = torch.tensor(__UpperCamelCase , dtype=torch.intaa ) return batch def _a ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , a__ , a__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a = training_args.get_process_log_level() logger.setLevel(a__ ) datasets.utils.logging.set_verbosity(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: a = {} if data_args.train_file is not None: a = data_args.train_file if data_args.validation_file is not None: a = data_args.validation_file a = data_args.train_file.split('''.''' )[-1] a = load_dataset( a__ , data_files=a__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. a = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. a = [F"""ending{i}""" for i in range(4 )] a = '''sent1''' a = '''sent2''' if data_args.max_seq_length is None: a = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) a = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) a = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a :Any ): a = [[context] * 4 for context in examples[context_name]] a = examples[question_header_name] a = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a__ ) ] # Flatten out a = list(chain(*a__ ) ) a = list(chain(*a__ ) ) # Tokenize a = tokenizer( a__ , a__ , truncation=a__ , max_length=a__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(a__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) a = raw_datasets['''train'''] if data_args.max_train_samples is not None: a = min(len(a__ ) , data_args.max_train_samples ) a = train_dataset.select(range(a__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): a = train_dataset.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) a = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: a = min(len(a__ ) , data_args.max_eval_samples ) a = eval_dataset.select(range(a__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): a = eval_dataset.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator a = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a :List[str] ): a , a = eval_predictions a = np.argmax(a__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer a = Trainer( model=a__ , args=a__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=a__ , data_collator=a__ , compute_metrics=a__ , ) # Training if training_args.do_train: a = None if training_args.resume_from_checkpoint is not None: a = training_args.resume_from_checkpoint elif last_checkpoint is not None: a = last_checkpoint a = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() # Saves the tokenizer too for easy upload a = train_result.metrics a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a__ ) ) a = min(a__ , len(a__ ) ) trainer.log_metrics('''train''' , a__ ) trainer.save_metrics('''train''' , a__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) a = trainer.evaluate() a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a__ ) a = min(a__ , len(a__ ) ) trainer.log_metrics('''eval''' , a__ ) trainer.save_metrics('''eval''' , a__ ) a = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) def _a ( a :Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
359
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } UpperCAmelCase__ = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } UpperCAmelCase__ = "▁" class lowercase_ ( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : int=True , __UpperCAmelCase : str=False , __UpperCAmelCase : int="[CLS]" , __UpperCAmelCase : Optional[int]="[SEP]" , __UpperCAmelCase : Tuple="<unk>" , __UpperCAmelCase : List[str]="[SEP]" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : List[Any]="[CLS]" , __UpperCAmelCase : List[Any]="[MASK]" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Optional[int] , ) ->None: """simple docstring""" a = ( AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ , normalized=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token ) a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" a = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ) ->Tuple: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : str , __UpperCAmelCase : List[str] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->Optional[int]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , UpperCAmelCase__ ) a = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(UpperCAmelCase__ ) a = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) a = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.sp_model.PieceToId(UpperCAmelCase__ ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] ) ->Optional[Any]: """simple docstring""" return self.sp_model.IdToPiece(UpperCAmelCase__ ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple ) ->str: """simple docstring""" a = [] a = '''''' a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__ ) + token a = True a = [] else: current_sub_tokens.append(UpperCAmelCase__ ) a = False out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' __snake_case = ["""transformers""", """torch""", """note_seq"""] def __init__( self : List[Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Any ) ->int: """simple docstring""" requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : int ) ->Optional[Any]: """simple docstring""" requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
361
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
0
def _a ( a :List[str] ) -> int: a = False while is_sorted is False: # Until all the indices are traversed keep looping a = True for i in range(0 , len(lowercase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: a , a = input_list[i + 1], input_list[i] # swapping if elements not in order a = False for i in range(1 , len(lowercase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: a , a = input_list[i + 1], input_list[i] # swapping if elements not in order a = False return input_list if __name__ == "__main__": print("Enter list to be sorted") UpperCAmelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCAmelCase__ = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
362
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model") UpperCAmelCase__ = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __snake_case = CamembertTokenizer __snake_case = CamembertTokenizerFast __snake_case = True __snake_case = True def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = CamembertTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" a = "<pad>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1_004 ) def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" a = CamembertTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) a = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) a = "I was born in 92000, and this is falsé." a = tokenizer.encode(_SCREAMING_SNAKE_CASE ) a = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) a = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) a = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) a = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) a = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) a = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = self.get_rust_tokenizer() a = tokenizer.encode(_SCREAMING_SNAKE_CASE ) a = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" a = {"input_ids": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. a = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=_SCREAMING_SNAKE_CASE , )
363
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
0
from pathlib import Path import fire from tqdm import tqdm def _a ( a :str="ro" , a :List[Any]="en" , a :Tuple="wmt16" , a :str=None ) -> Tuple: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) a = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) a = datasets.load_dataset(_a , _a ) if save_dir is None: a = F"""{dataset}-{pair}""" a = Path(_a ) save_dir.mkdir(exist_ok=_a ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets a = """val""" if split == """validation""" else split a = save_dir.joinpath(F"""{fn}.source""" ) a = save_dir.joinpath(F"""{fn}.target""" ) a = src_path.open('''w+''' ) a = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): a = x["""translation"""] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import os import numpy import onnx def _a ( a :Any , a :List[str] ) -> int: a = a.name a = b.name a = '''''' a = '''''' a = a == b a = name_a a = name_b return res def _a ( a :Dict , a :Dict , a :Optional[Any] ) -> Tuple: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _a ( a :Any , a :Tuple , a :List[Any] ) -> Tuple: for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _a ( a :int , a :Tuple , a :Union[str, Any] ) -> Optional[Any]: a = list(model.graph.initializer ) a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a = inits[i].name a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _a ( a :List[str] ) -> str: a = os.path.dirname(SCREAMING_SNAKE_CASE__ ) a = os.path.basename(SCREAMING_SNAKE_CASE__ ) a = onnx.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a = list(model.graph.initializer ) a = set() a = {} a = [] a = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE__ ) dup_set.add(SCREAMING_SNAKE_CASE__ ) a = inits[j].data_type a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , SCREAMING_SNAKE_CASE__ ) total_reduced_size += mem_size a = inits[i].name a = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE__ ) else: a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) a = sorted(SCREAMING_SNAKE_CASE__ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a = '''optimized_''' + model_file_name a = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) onnx.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new_model
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowercase_ : '''simple docstring''' def __init__( self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : Any=7 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : str=False , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=99 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : str=5 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[Any]=512 , __UpperCAmelCase : List[Any]=16 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : List[str]=None , ) ->int: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , use_stable_embedding=__lowerCamelCase , ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ) ->Tuple: """simple docstring""" a = OpenLlamaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , ) ->int: """simple docstring""" a = True a = OpenLlamaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , ) ->Tuple: """simple docstring""" a = OpenLlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : str , ) ->List[str]: """simple docstring""" a = True a = True a = OpenLlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] , dim=-1 ) a = torch.cat([input_mask, next_mask] , dim=-1 ) a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["""hidden_states"""][0] a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["""hidden_states"""][0] # select random slice a = ids_tensor((1,) , output_from_past.shape[-1] ).item() a = output_from_no_past[:, -3:, random_slice_idx].detach() a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.prepare_config_and_inputs() ( a ) = config_and_inputs a = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' __snake_case = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __snake_case = (OpenLlamaForCausalLM,) if is_torch_available() else () __snake_case = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = False def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" a = OpenLlamaModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = input_dict["""input_ids"""] a = input_ids.ne(1 ).to(__lowerCamelCase ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = """single_label_classification""" a = input_dict["""input_ids"""] a = input_ids.ne(1 ).to(__lowerCamelCase ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = """multi_label_classification""" a = input_dict["""input_ids"""] a = input_ids.ne(1 ).to(__lowerCamelCase ) a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def __lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() a = ids_tensor([1, 10] , config.vocab_size ) a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = OpenLlamaModel(__lowerCamelCase ) original_model.to(__lowerCamelCase ) original_model.eval() a = original_model(__lowerCamelCase ).last_hidden_state a = original_model(__lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = {"""type""": scaling_type, """factor""": 10.0} a = OpenLlamaModel(__lowerCamelCase ) scaled_model.to(__lowerCamelCase ) scaled_model.eval() a = scaled_model(__lowerCamelCase ).last_hidden_state a = scaled_model(__lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) )
367
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
0
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase__ = logging.getLogger(__name__) def _a ( ) -> str: a = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=a__ , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=a__ , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=a__ , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=a__ , default=1_000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=a__ , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=a__ , type=a__ , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=a__ , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=a__ , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) a = parser.parse_args() return args def _a ( a :Union[str, Any] ) -> Tuple: def fn(a :Tuple ): return tokenizer(examples['''text'''] ) return fn def _a ( a :Optional[int] ) -> Union[str, Any]: a = [] for i in range(len(tokenized_data['''input_ids'''] ) ): a = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } a = tf.train.Features(feature=a__ ) a = tf.train.Example(features=a__ ) a = example.SerializeToString() records.append(a__ ) return records def _a ( a :Any ) -> List[Any]: a = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: a = min(len(a__ ) , args.limit ) a = dataset.select(range(a__ ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) a = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) a = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: a = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. a = tokenize_function(a__ ) a = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a :List[Any] ): # Concatenate all texts. a = {k: sum(examples[k] , [] ) for k in examples.keys()} a = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 a = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. a = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result a = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_000 , num_proc=4 ) a = 0 a = 0 for shard in range(0 , len(a__ ) , args.shard_size ): a = grouped_dataset[shard : shard + args.shard_size] a = len(dataset_snapshot['''input_ids'''] ) a = os.path.join(a__ , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) a = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): a = serialized_examples[i] out_file.write(a__ ) print('''Wrote file {} containing {} records'''.format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , '''w''' ) as f: print(F"""Total {args.split} records: {total_records}""" , file=a__ ) if __name__ == "__main__": UpperCAmelCase__ = parse_args() main(args)
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
370
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCAmelCase__ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] UpperCAmelCase__ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = " Hello world! cécé herlolip" UpperCAmelCase__ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def _a ( a :Tuple ) -> str: a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def _a ( a :Optional[int] , a :Any , a :Dict ) -> Optional[Any]: a = dct.pop(lowerCamelCase__ ) a = val def _a ( a :Dict ) -> int: a = torch.load(lowerCamelCase__ , map_location='''cpu''' ) a = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def _a ( a :Optional[Any] ) -> Any: a , a = emb.weight.shape a = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) a = emb.weight.data return lin_layer @torch.no_grad() def _a ( a :Any , a :Dict , a :Union[str, Any]=None ) -> Optional[Any]: if not os.path.exists(lowerCamelCase__ ): a = torch.hub.load('''pytorch/fairseq''' , lowerCamelCase__ ).eval() else: a = load_xsum_checkpoint(lowerCamelCase__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: a = checkpoint_path.replace('''.''' , '''-''' ) a = BartConfig.from_pretrained(lowerCamelCase__ ) a = bart.encode(lowerCamelCase__ ).unsqueeze(0 ) a = BartTokenizer.from_pretrained(lowerCamelCase__ ).encode(lowerCamelCase__ , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(lowerCamelCase__ , lowerCamelCase__ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": a = bart.state_dict() remove_ignore_keys_(lowerCamelCase__ ) a = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) a = BartForSequenceClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) a = bart.predict('''mnli''' , lowerCamelCase__ , return_logits=lowerCamelCase__ ) a = model(lowerCamelCase__ )[0] # logits else: # no classification heads to worry about a = bart.model.state_dict() remove_ignore_keys_(lowerCamelCase__ ) a = state_dict['''decoder.embed_tokens.weight'''] a = bart.extract_features(lowerCamelCase__ ) if hf_checkpoint_name == "facebook/bart-large": a = BartModel(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) a = model(lowerCamelCase__ ).model[0] else: a = BartForConditionalGeneration(lowerCamelCase__ ).eval() # an existing summarization ckpt model.model.load_state_dict(lowerCamelCase__ ) if hasattr(lowerCamelCase__ , '''lm_head''' ): a = make_linear_from_emb(model.model.shared ) a = model.model(lowerCamelCase__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) UpperCAmelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
371
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
350
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowercase_ ( unittest.TestCase ): def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" a = [[1, 2, 4], [1, 2, 3, 4]] a = DisjunctiveConstraint(__UpperCAmelCase ) self.assertTrue(isinstance(dc.token_ids , __UpperCAmelCase ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" a = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(__UpperCAmelCase ) # fails here def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = [[1, 2, 3], [1, 2, 4]] a = DisjunctiveConstraint(__UpperCAmelCase ) a = dc.update(1 ) a = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) a = dc.update(2 ) a = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) a = dc.update(3 ) a = stepped is True and completed is True and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] a = DisjunctiveConstraint(__UpperCAmelCase ) a = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) a = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) a = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) a = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() a = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) a = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) a = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch UpperCAmelCase__ = random.Random() def _a ( a :str , a :int=1.0 , a :Any=None , a :Union[str, Any]=None ) -> Union[str, Any]: if rng is None: a = global_rng a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : Optional[int]=400 , __UpperCAmelCase : Dict=2_000 , __UpperCAmelCase : Dict=1 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Union[str, Any]=16_000 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : List[str]=80 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Tuple=64 , __UpperCAmelCase : List[Any]="hann_window" , __UpperCAmelCase : int=80 , __UpperCAmelCase : int=7_600 , __UpperCAmelCase : Optional[Any]=1e-1_0 , __UpperCAmelCase : int=True , ) ->str: """simple docstring""" a = parent a = batch_size a = min_seq_length a = max_seq_length a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a = feature_size a = padding_value a = sampling_rate a = do_normalize a = num_mel_bins a = hop_length a = win_length a = win_function a = fmin a = fmax a = mel_floor a = return_attention_mask def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Dict=False ) ->Union[str, Any]: """simple docstring""" def _flatten(__UpperCAmelCase : Dict ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : List[Any]=False ) ->Optional[int]: """simple docstring""" if equal_length: a = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowercase_ ( _lowerCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = SpeechTaFeatureExtractor def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" a = SpeechTaFeatureExtractionTester(self ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[Any] ) ->Any: """simple docstring""" self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input a = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values a = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched a = feat_extract(__UpperCAmelCase , return_tensors='''np''' ).input_values a = feat_extract(__UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = ['''longest''', '''max_length''', '''do_not_pad'''] a = [None, 1_600, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): a = feat_extract(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors='''np''' ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = range(800 , 1_400 , 200 ) a = [floats_list((1, x) )[0] for x in lengths] a = ['''longest''', '''max_length''', '''do_not_pad'''] a = [None, 1_600, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): a = feat_extract(__UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_000 , padding='''max_length''' , return_tensors='''np''' ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_000 , padding='''longest''' , return_tensors='''np''' ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=2_000 , padding='''longest''' , return_tensors='''np''' ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = np.random.rand(100 ).astype(np.floataa ) a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size a = feature_extractor(audio_target=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input a = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values a = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ).input_values a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a = [floats_list((1, x) )[0] for x in (800, 800, 800)] a = np.asarray(__UpperCAmelCase ) a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ).input_values a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = self.feat_extract_tester.prepare_inputs_for_target() a = self.feature_extraction_class(**self.feat_extract_dict ) a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) for x, y in zip(__UpperCAmelCase , processed_features[input_name] ) ) ) a = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) a = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) a = processed_features[input_name] if len(batch_features_input.shape ) < 3: a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" a = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) a = self.feature_extraction_class(**self.feat_extract_dict ) a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) a = processed_features[input_name] if len(batch_features_input.shape ) < 3: a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_dict ) a = self.feat_extract_tester.prepare_inputs_for_target() a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} ) a = feat_extract.num_mel_bins # hack! a = feat_extract.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] a = feat_extract.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" a = self.feat_extract_dict a = True a = self.feature_extraction_class(**__UpperCAmelCase ) a = self.feat_extract_tester.prepare_inputs_for_target() a = [len(__UpperCAmelCase ) for x in speech_inputs] a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} ) a = feat_extract.num_mel_bins # hack! a = feat_extract.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a = self.feat_extract_dict a = True a = self.feature_extraction_class(**__UpperCAmelCase ) a = self.feat_extract_tester.prepare_inputs_for_target() a = [len(__UpperCAmelCase ) for x in speech_inputs] a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} ) a = min(__UpperCAmelCase ) a = feat_extract.num_mel_bins # hack! a = feat_extract.pad( __UpperCAmelCase , padding='''max_length''' , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->Optional[int]: """simple docstring""" from datasets import load_dataset a = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a = ds.sort('''id''' ).select(range(__UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on a = self._load_datasamples(1 ) a = SpeechTaFeatureExtractor() a = feature_extractor(__UpperCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , __UpperCAmelCase , atol=1e-6 ) ) def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on a = self._load_datasamples(1 ) a = SpeechTaFeatureExtractor() a = feature_extractor(audio_target=__UpperCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __UpperCAmelCase , atol=1e-4 ) )
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = val a = None a = None def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] ) ->Tuple: """simple docstring""" if self.val: if val < self.val: if self.left is None: a = Node(__UpperCAmelCase ) else: self.left.insert(__UpperCAmelCase ) elif val > self.val: if self.right is None: a = Node(__UpperCAmelCase ) else: self.right.insert(__UpperCAmelCase ) else: a = val def _a ( a :Union[str, Any] , a :List[str] ) -> Dict: # Recursive traversal if root: inorder(root.left , _lowerCAmelCase ) res.append(root.val ) inorder(root.right , _lowerCAmelCase ) def _a ( a :Any ) -> List[Any]: # Build BST if len(_lowerCAmelCase ) == 0: return arr a = Node(arr[0] ) for i in range(1 , len(_lowerCAmelCase ) ): root.insert(arr[i] ) # Traverse BST in order. a = [] inorder(_lowerCAmelCase , _lowerCAmelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
353
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
0
from __future__ import annotations import requests def _a ( a :str ) -> dict: a = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(a ).json() def _a ( a :int = 10 ) -> list[dict]: a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' a = requests.get(a ).json()[:max_stories] return [get_hackernews_story(a ) for story_id in story_ids] def _a ( a :int = 10 ) -> str: a = hackernews_top_stories(a ) return "\n".join('''* [{title}]({url})'''.format(**a ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase_ ( _lowerCamelCase ): '''simple docstring''' __snake_case = '''xlm-roberta-xl''' def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=250_880 , __UpperCAmelCase : Tuple=2_560 , __UpperCAmelCase : str=36 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : Optional[Any]=10_240 , __UpperCAmelCase : List[str]="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : str=514 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Dict=1e-0_5 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Optional[Any]="absolute" , __UpperCAmelCase : str=True , __UpperCAmelCase : str=None , **__UpperCAmelCase : Tuple , ) ->List[Any]: """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = classifier_dropout class lowercase_ ( _lowerCamelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" if self.task == "multiple-choice": a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
355
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 UpperCAmelCase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCAmelCase__ = get_tests_dir("fixtures/vocab.json") UpperCAmelCase__ = get_tests_dir("fixtures") class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = 0 def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(lowercase_ , lowercase_ ) def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a = WavaVecaConfig() a = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) a = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) copyfile(lowercase_ , os.path.join(lowercase_ , '''vocab.json''' ) ) a = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a = WavaVecaFeatureExtractor() a = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) a = WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_ , lowercase_ ) , '''r''' ) as f: a = json.load(lowercase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' ) as f: f.write(json.dumps(lowercase_ ) ) a = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def __lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a = WavaVecaFeatureExtractor() a = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) a = WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_ , lowercase_ ) , '''r''' ) as f: a = json.load(lowercase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' ) as f: f.write(json.dumps(lowercase_ ) ) a = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(lowercase_ ) # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' ) as f: f.write('''{}''' ) a = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" with self.assertRaises(lowercase_ ): a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_ ) a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) a = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) a = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_ , use_fast=lowercase_ ) a = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" try: AutoConfig.register('''custom''' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoProcessor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API a = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(lowercase_ , '''vocab.txt''' ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = CustomTokenizer(lowercase_ ) a = CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_ ) a = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" class lowercase_ ( a_ ): '''simple docstring''' __snake_case = False class lowercase_ ( a_ ): '''simple docstring''' __snake_case = False class lowercase_ ( a_ ): '''simple docstring''' __snake_case = '''AutoFeatureExtractor''' __snake_case = '''AutoTokenizer''' __snake_case = False try: AutoConfig.register('''custom''' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local classes. a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" a = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" a = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def __lowerCAmelCase ( cls : Tuple ) ->Tuple: """simple docstring""" a = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def __lowerCAmelCase ( cls : List[Any] ) ->List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , '''test-processor''' ) , push_to_hub=lowercase_ , use_auth_token=self._token ) a = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , '''test-processor-org''' ) , push_to_hub=lowercase_ , use_auth_token=self._token , organization='''valid_org''' , ) a = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() a = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: a = os.path.join(lowercase_ , '''vocab.txt''' ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a = CustomTokenizer(lowercase_ ) a = CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) a = Repository(lowercase_ , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(lowercase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_ , '''tokenizer_config.json''' ) ) as f: a = json.load(lowercase_ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , '''custom_processing.py''' ) ) ) repo.push_to_hub() a = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def _a ( a :int ) -> Tuple: a = list(s_dict.keys() ) for key in keys: a = r'''.*/layers_(\d+)''' a = key if re.match(_lowercase , _lowercase ): a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , _lowercase ) a = r'''(encoder|decoder)\/''' if re.match(_lowercase , _lowercase ): a = re.match(_lowercase , _lowercase ).groups() if groups[0] == "encoder": a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , _lowercase ) a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , _lowercase ) elif groups[0] == "decoder": a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , _lowercase ) a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , _lowercase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: a = new_key.replace(_lowercase , _lowercase ) print(F"""{key} -> {new_key}""" ) a = s_dict.pop(_lowercase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: a = s_dict[key].shape[0] a = s_dict[key] for idx in range(_lowercase ): a = expert_weihts[idx] print(F"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(_lowercase ) return s_dict UpperCAmelCase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def _a ( a :Union[str, Any] , a :List[Any] ) -> Optional[int]: import regex as re with open(_lowercase , '''r''' ) as f: a = f.read() a = re.findall(r'''(.*) = ([0-9.]*)''' , _lowercase ) a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": a = float(_lowercase ) if '''.''' in value else int(_lowercase ) a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , _lowercase )[0] a = str(activation[1] ) a = num_experts a = SwitchTransformersConfig(**_lowercase ) return config def _a ( a :Tuple , a :Any , a :str=None , a :Tuple="./" , a :Tuple=8 ) -> Any: print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) a = checkpoints.load_tax_checkpoint(_lowercase ) if gin_file is not None: a = convert_gin_to_config(_lowercase , _lowercase ) else: a = SwitchTransformersConfig.from_pretrained(_lowercase ) a = SwitchTransformersForConditionalGeneration(_lowercase ) a = flax_params['''target'''] a = flatten_dict(_lowercase , sep='''/''' ) a = rename_keys(_lowercase ) a = unflatten_dict(_lowercase , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_lowercase , _lowercase ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(_lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") UpperCAmelCase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
358
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
0
"""simple docstring""" from math import factorial def _a ( a :int , a :int , a :float ) -> Union[str, Any]: if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(a , a ) or not isinstance(a , a ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) a = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! a = float(factorial(a ) ) coefficient /= factorial(a ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
359
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''mgp-str''' def __init__( self : str , __UpperCAmelCase : Dict=[32, 128] , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : List[str]=27 , __UpperCAmelCase : Optional[Any]=38 , __UpperCAmelCase : Any=50_257 , __UpperCAmelCase : Optional[Any]=30_522 , __UpperCAmelCase : str=768 , __UpperCAmelCase : Tuple=12 , __UpperCAmelCase : Union[str, Any]=12 , __UpperCAmelCase : Optional[Any]=4.0 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=False , __UpperCAmelCase : Tuple=1e-5 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : str=0.02 , **__UpperCAmelCase : Optional[Any] , ) ->Union[str, Any]: """simple docstring""" super().__init__(**lowerCamelCase_ ) a = image_size a = patch_size a = num_channels a = max_token_length a = num_character_labels a = num_bpe_labels a = num_wordpiece_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = mlp_ratio a = distilled a = layer_norm_eps a = drop_rate a = qkv_bias a = attn_drop_rate a = drop_path_rate a = output_aa_attentions a = initializer_range
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCAmelCase__ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class lowercase_ ( a__ ): '''simple docstring''' __snake_case = """blip_2_vision_model""" def __init__( self : Dict , __UpperCAmelCase : Union[str, Any]=1_408 , __UpperCAmelCase : List[Any]=6_144 , __UpperCAmelCase : int=39 , __UpperCAmelCase : Tuple=16 , __UpperCAmelCase : int=224 , __UpperCAmelCase : Dict=14 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Union[str, Any]=0.00001 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : str=1e-1_0 , __UpperCAmelCase : Dict=True , **__UpperCAmelCase : str , ) ->List[str]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads a = patch_size a = image_size a = initializer_range a = attention_dropout a = layer_norm_eps a = hidden_act a = qkv_bias @classmethod def __lowerCAmelCase ( cls : Tuple , __UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) ->"PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) a = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": a = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowercase_ ( a__ ): '''simple docstring''' __snake_case = """blip_2_qformer""" def __init__( self : Optional[int] , __UpperCAmelCase : Tuple=30_522 , __UpperCAmelCase : str=768 , __UpperCAmelCase : List[Any]=12 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Any=3_072 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Any=1e-1_2 , __UpperCAmelCase : int=0 , __UpperCAmelCase : Union[str, Any]="absolute" , __UpperCAmelCase : int=2 , __UpperCAmelCase : Tuple=1_408 , **__UpperCAmelCase : Union[str, Any] , ) ->Any: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = initializer_range a = layer_norm_eps a = position_embedding_type a = cross_attention_frequency a = encoder_hidden_size @classmethod def __lowerCAmelCase ( cls : str , __UpperCAmelCase : Any , **__UpperCAmelCase : Union[str, Any] ) ->"PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) a = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": a = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowercase_ ( a__ ): '''simple docstring''' __snake_case = """blip-2""" __snake_case = True def __init__( self : int , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Optional[int]=32 , **__UpperCAmelCase : int ) ->Dict: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if vision_config is None: a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) a = BlipaVisionConfig(**lowerCAmelCase__ ) a = BlipaQFormerConfig(**lowerCAmelCase__ ) a = text_config["model_type"] if "model_type" in text_config else "opt" a = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) a = self.text_config.tie_word_embeddings a = self.text_config.is_encoder_decoder a = num_query_tokens a = self.vision_config.hidden_size a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a = 1.0 a = 0.02 @classmethod def __lowerCAmelCase ( cls : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , **__UpperCAmelCase : Optional[Any] , ) ->Tuple: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = copy.deepcopy(self.__dict__ ) a = self.vision_config.to_dict() a = self.qformer_config.to_dict() a = self.text_config.to_dict() a = self.__class__.model_type return output
362
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCAmelCase__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int = None , __UpperCAmelCase : List[Any] = None ) ->Union[str, Any]: """simple docstring""" a = None a = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) a = os.path.abspath('''examples''' ) for item in os.listdir(a__ ): if item not in EXCLUDE_EXAMPLES: a = os.path.join(a__ , a__ ) if os.path.isfile(a__ ) and ".py" in item_path: with self.subTest( tested_script=a__ , feature_script=a__ , tested_section='''main()''' if parser_only else '''training_function()''' , ): a = compare_against_test( os.path.join(a__ , a__ ) , a__ , a__ , a__ ) a = '''\n'''.join(a__ ) if special_strings is not None: for string in special_strings: a = diff.replace(a__ , '''''' ) self.assertEqual(a__ , '''''' ) def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , a__ ) self.one_complete_example('''complete_nlp_example.py''' , a__ ) def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" a = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) a = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , a__ , a__ , a__ ) self.one_complete_example('''complete_cv_example.py''' , a__ , a__ , a__ ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class lowercase_ ( lowerCAmelCase__ ): '''simple docstring''' __snake_case = False @classmethod def __lowerCAmelCase ( cls : Optional[int] ) ->List[str]: """simple docstring""" super().setUpClass() a = tempfile.mkdtemp() a = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __lowerCAmelCase ( cls : List[Any] ) ->List[str]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = F"""\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = F"""\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n """.split() a = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = F"""\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n """.split() a = run_command(self._launch_args + testargs , return_stdout=a__ ) self.assertNotIn('''epoch 0:''' , a__ ) self.assertIn('''epoch 1:''' , a__ ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a = F"""\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n """.split() a = run_command(self._launch_args + testargs , return_stdout=a__ ) if torch.cuda.is_available(): a = torch.cuda.device_count() else: a = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , a__ ) self.assertIn('''epoch 1:''' , a__ ) else: self.assertIn('''epoch 0:''' , a__ ) self.assertIn('''epoch 1:''' , a__ ) @slow def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" a = '''\n examples/by_feature/cross_validation.py\n --num_folds 2\n '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): a = run_command(self._launch_args + testargs , return_stdout=a__ ) a = re.findall('''({.+})''' , a__ ) a = [r for r in results if '''accuracy''' in r][-1] a = ast.literal_eval(a__ ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def __lowerCAmelCase ( self : int ) ->int: """simple docstring""" a = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: a = F"""\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(a__ , '''tracking''' ) ) ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" a = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
363
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' __snake_case = (DDIMParallelScheduler,) __snake_case = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def __lowerCAmelCase ( self : Optional[int] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[str] ) ->int: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config(**lowerCAmelCase_ ) a = scheduler_class(**lowerCAmelCase_ ) a , a = 10, 0.0 a = self.dummy_model() a = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase_ ) for t in scheduler.timesteps: a = model(lowerCAmelCase_ , lowerCAmelCase_ ) a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample return sample def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase_ ) a = self.scheduler_classes[0] a = self.get_scheduler_config(steps_offset=1 ) a = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCAmelCase_ , eta=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCAmelCase_ ) a , a = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase_ ) a = self.dummy_model() a = self.dummy_sample_deter a = self.dummy_sample_deter + 0.1 a = self.dummy_sample_deter - 0.1 a = samplea.shape[0] a = torch.stack([samplea, samplea, samplea] , dim=0 ) a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase_ ) a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" a = self.full_loop() a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = self.full_loop(prediction_type='''v_prediction''' ) a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 ) a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 ) a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
import os from math import logaa def _a ( a :str = "base_exp.txt" ) -> Any: a = 0 a = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ): a = list(map(lowerCAmelCase__ , line.split(''',''' ) ) ) if x * logaa(lowerCAmelCase__ ) > largest: a = x * logaa(lowerCAmelCase__ ) a = i + 1 return result if __name__ == "__main__": print(solution())
365
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
0
def _a ( a :Any = 3 , a :str = 7 , a :List[str] = 1_000_000 ) -> int: a = 0 a = 1 for current_denominator in range(1 , limit + 1 ): a = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: a = current_numerator a = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
from __future__ import annotations def _a ( a :Any , a :List[Any] = None ) -> list[list[str]]: a = word_bank or [] # create a table a = len(lowerCamelCase_ ) + 1 a = [] for _ in range(lowerCamelCase_ ): table.append([] ) # seed value a = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase_ )] == word: a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase_ )]: combination.reverse() return table[len(lowerCamelCase_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
367
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
0
"""simple docstring""" import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ ( __a ): '''simple docstring''' __snake_case = '''facebook/bart-large-mnli''' __snake_case = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) __snake_case = '''text_classifier''' __snake_case = AutoTokenizer __snake_case = AutoModelForSequenceClassification __snake_case = ['''text''', ['''text''']] __snake_case = ['''text'''] def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" super().setup() a = self.model.config a = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): a = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any ) ->Any: """simple docstring""" a = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any ) ->Union[str, Any]: """simple docstring""" a = outputs.logits a = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
UpperCAmelCase__ = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) class lowercase_ ( _a ): '''simple docstring''' __snake_case = """masked_bert""" def __init__( self : Optional[int] , __UpperCAmelCase : List[Any]=30_522 , __UpperCAmelCase : List[Any]=768 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : int=12 , __UpperCAmelCase : str=3_072 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Any=512 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Tuple=1e-1_2 , __UpperCAmelCase : Any=0 , __UpperCAmelCase : List[str]="topK" , __UpperCAmelCase : Union[str, Any]="constant" , __UpperCAmelCase : List[Any]=0.0 , **__UpperCAmelCase : List[str] , ) ->List[str]: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = pruning_method a = mask_init a = mask_scale
370
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
0
def _a ( a :str , a :Tuple = False ) -> Optional[Any]: if not isinstance(__a , __a ): a = F"""Expected string as input, found {type(__a )}""" raise ValueError(__a ) if not isinstance(__a , __a ): a = F"""Expected boolean as use_pascal parameter, found {type(__a )}""" raise ValueError(__a ) a = input_str.split('''_''' ) a = 0 if use_pascal else 1 a = words[start_index:] a = [word[0].upper() + word[1:] for word in words_to_capitalize] a = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
371
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import math def _a ( a :int ) -> Any: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( a :int = 10_001 ) -> Optional[int]: try: a = int(A__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) a = [] a = 2 while len(A__ ) < nth: if is_prime(A__ ): primes.append(A__ ) num += 1 else: num += 1 return primes[len(A__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
350
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase_ : def __init__( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any=13 , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Any=99 , __UpperCAmelCase : Optional[Any]=32 , __UpperCAmelCase : List[str]=5 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : List[Any]=37 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : int=512 , __UpperCAmelCase : str=16 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : List[Any]=None , ) ->str: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope a = self.vocab_size - 1 def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , *__UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" a = OpenAIGPTModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() a = model(snake_case_ , token_type_ids=snake_case_ , head_mask=snake_case_ ) a = model(snake_case_ , token_type_ids=snake_case_ ) a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , *__UpperCAmelCase : List[Any] ) ->Optional[Any]: """simple docstring""" a = OpenAIGPTLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() a = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , *__UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" a = OpenAIGPTDoubleHeadsModel(snake_case_ ) model.to(snake_case_ ) model.eval() a = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , *__UpperCAmelCase : Tuple ) ->Dict: """simple docstring""" a = self.num_labels a = OpenAIGPTForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = self.prepare_config_and_inputs() ( a ) = config_and_inputs a = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class lowercase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): __snake_case = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __snake_case = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __snake_case = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] ) ->int: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : int=False ) ->List[str]: """simple docstring""" a = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ , ) a = inputs_dict['''labels'''] a = inputs_dict['''labels'''] a = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=snake_case_ , ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def __lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" a = OpenAIGPTModelTester(self ) a = ConfigTester(self , config_class=snake_case_ , n_embd=37 ) def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ) ->int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case_ ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case_ ) def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case_ ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case_ ) @slow def __lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = OpenAIGPTModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowercase_ ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" a = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(snake_case_ ) a = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=snake_case_ ) # the president is a = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the a = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].tolist() , snake_case_ )
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model") UpperCAmelCase__ = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = CamembertTokenizer __snake_case = CamembertTokenizerFast __snake_case = True __snake_case = True def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a = '''<pad>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_004 ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) a = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) a = '''I was born in 92000, and this is falsé.''' a = tokenizer.encode(__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = '''I was born in 92000, and this is falsé.''' a = tokenizer.tokenize(__UpperCAmelCase ) a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" a = {'''input_ids''': [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. a = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=__UpperCAmelCase , )
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowercase_ ( datasets.BuilderConfig ): '''simple docstring''' __snake_case = None def _a ( a :"pyspark.sql.DataFrame" , a :List[int] , ) -> List[str]: import pyspark def generate_fn(): a = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: a = df_with_partition_id.select('''*''' ).where(F"""part_id = {partition_id}""" ).drop('''part_id''' ) a = partition_df.collect() a = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowercase_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]=None , ) ->Optional[Any]: """simple docstring""" a = df a = partition_order or range(self.df.rdd.getNumPartitions() ) a = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ) ->int: """simple docstring""" yield from self.generate_examples_fn() def __lowerCAmelCase ( self : int , __UpperCAmelCase : str ) ->"SparkExamplesIterable": """simple docstring""" a = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(a__ ) return SparkExamplesIterable(self.df , partition_order=a__ ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->"SparkExamplesIterable": """simple docstring""" a = self.split_shard_indices_by_worker(a__ , a__ ) return SparkExamplesIterable(self.df , partition_order=a__ ) @property def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" return len(self.partition_order ) class lowercase_ ( datasets.DatasetBuilder ): '''simple docstring''' __snake_case = SparkConfig def __init__( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Any = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Union[str, Any] , ) ->Optional[Any]: """simple docstring""" import pyspark a = pyspark.sql.SparkSession.builder.getOrCreate() a = df a = working_dir super().__init__( cache_dir=a__ , config_name=str(self.df.semanticHash() ) , **a__ , ) def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" def create_cache_and_write_probe(__UpperCAmelCase : Any ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a__ ) a = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a__ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: a = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(a__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int ) ->Any: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] ) ->Optional[Any]: """simple docstring""" import pyspark def get_arrow_batch_size(__UpperCAmelCase : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) a = self.df.count() a = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. a = ( self.df.limit(a__ ) .repartition(1 ) .mapInArrow(a__ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) a = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. a = min(a__ , int(approx_total_size / max_shard_size ) ) a = self.df.repartition(a__ ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , ) ->Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark a = ParquetWriter if file_format == '''parquet''' else ArrowWriter a = os.path.join(self._working_dir , os.path.basename(a__ ) ) if self._working_dir else fpath a = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. a = self.config.features a = self._writer_batch_size a = self._fs.storage_options def write_arrow(__UpperCAmelCase : List[Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. a = pyspark.TaskContext().taskAttemptId() a = next(a__ , a__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) a = 0 a = writer_class( features=a__ , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=a__ , storage_options=a__ , embed_local_files=a__ , ) a = pa.Table.from_batches([first_batch] ) writer.write_table(a__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: a , a = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 a = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=a__ , storage_options=a__ , embed_local_files=a__ , ) a = pa.Table.from_batches([batch] ) writer.write_table(a__ ) if writer._num_bytes > 0: a , a = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a__ ) ): a = os.path.join(os.path.dirname(a__ ) , os.path.basename(a__ ) ) shutil.move(a__ , a__ ) a = ( self.df.mapInArrow(a__ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] = "arrow" , __UpperCAmelCase : Any = None , __UpperCAmelCase : Any = None , **__UpperCAmelCase : Optional[Any] , ) ->Dict: """simple docstring""" self._validate_cache_dir() a = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(a__ ) a = not is_remote_filesystem(self._fs ) a = os.path.join if is_local else posixpath.join a = '''-TTTTT-SSSSS-of-NNNNN''' a = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" a = path_join(self._output_dir , a__ ) a = 0 a = 0 a = 0 a = [] a = [] for task_id, content in self._prepare_split_single(a__ , a__ , a__ ): ( ( a ) , ( a ) , ( a ) , ( a ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(a__ ) a = total_num_examples a = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: a = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. a = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , ): rename( a__ , fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , F"""{global_shard_id:05d}""" ).replace('''NNNNN''' , F"""{total_shards:05d}""" ) , ) a = [] a = 0 for i in range(len(a__ ) ): a , a = task_id_and_num_shards[i] for shard_id in range(a__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(a__ , len(a__ ) ).map(lambda __UpperCAmelCase : _rename_shard(*a__ ) ).collect() else: # don't use any pattern a = 0 a = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace(a__ , '''''' ) , ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , ) ->SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
353
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = AltDiffusionPipeline __snake_case = TEXT_TO_IMAGE_PARAMS __snake_case = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) a = CLIPTextModel(UpperCamelCase_ ) a = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) a = 77 a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str=0 ) ->Union[str, Any]: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): a = torch.manual_seed(UpperCamelCase_ ) else: a = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = '''cpu''' # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() torch.manual_seed(0 ) a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder a = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) a = text_encoder a = AltDiffusionPipeline(**UpperCamelCase_ ) a = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) a = self.get_dummy_inputs(UpperCamelCase_ ) a = '''A photo of an astronaut''' a = alt_pipe(**UpperCamelCase_ ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = '''cpu''' # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder a = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) a = text_encoder a = AltDiffusionPipeline(**UpperCamelCase_ ) a = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) a = self.get_dummy_inputs(UpperCamelCase_ ) a = alt_pipe(**UpperCamelCase_ ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" a = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=UpperCamelCase_ ) a = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) a = '''A painting of a squirrel eating a burger''' a = torch.manual_seed(0 ) a = alt_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" a = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) a = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ ) a = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) a = '''A painting of a squirrel eating a burger''' a = torch.manual_seed(0 ) a = alt_pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''numpy''' ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
from pathlib import Path import numpy as np from PIL import Image def _a ( a :np.ndarray ) -> Tuple: a = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def _a ( a :np.ndarray ) -> Dict: return (gray > 127) & (gray <= 255) def _a ( a :np.ndarray , a :np.ndarray ) -> Optional[int]: a = np.zeros_like(lowerCamelCase_ ) a = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image a = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): a = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() a = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase__ = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' UpperCAmelCase__ = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase__ = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
355
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
0
from importlib import import_module from .logging import get_logger UpperCAmelCase__ = get_logger(__name__) class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any]=None ) ->Dict: """simple docstring""" a = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , _A , getattr(_A , _A ) ) a = module._original_module if isinstance(_A , _PatchedModuleObj ) else module class lowercase_ : '''simple docstring''' __snake_case = [] def __init__( self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]=None ) ->Union[str, Any]: """simple docstring""" a = obj a = target a = new a = target.split('''.''' )[0] a = {} a = attrs or [] def __enter__( self : Optional[Any] ) ->Optional[int]: """simple docstring""" a = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_A ) ): try: a = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a = getattr(self.obj , _A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_A , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): a = obj_attr # patch at top level setattr(self.obj , _A , _PatchedModuleObj(_A , attrs=self.attrs ) ) a = getattr(self.obj , _A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_A , _A , _PatchedModuleObj(getattr(_A , _A , _A ) , attrs=self.attrs ) ) a = getattr(_A , _A ) # finally set the target attribute setattr(_A , _A , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a = getattr(import_module('''.'''.join(_A ) ) , _A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _A ) is attr_value: a = getattr(self.obj , _A ) setattr(self.obj , _A , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a = globals()['__builtins__'][target_attr] setattr(self.obj , _A , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : List[Any] , *__UpperCAmelCase : Tuple ) ->Dict: """simple docstring""" for attr in list(self.original ): setattr(self.obj , _A , self.original.pop(_A ) ) def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" self.__enter__() self._active_patches.append(self ) def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _a ( a :str ) -> Optional[Any]: a = torch.exp(lowerCAmelCase__ ) a = torch.sum(lowerCAmelCase__ , dim=1 ) # sum of exp(x_i) a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCAmelCase__ ) - B / A class lowercase_( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" super().__init__() a = config.output_attentions a = config.output_hidden_states a = nn.ModuleList([BertLayer(A__ ) for _ in range(config.num_hidden_layers )] ) a = nn.ModuleList([BertHighway(A__ ) for _ in range(config.num_hidden_layers )] ) a = [-1 for _ in range(config.num_hidden_layers )] def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] ) ->int: """simple docstring""" if (type(A__ ) is float) or (type(A__ ) is int): for i in range(len(self.early_exit_entropy ) ): a = x else: a = x def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[Any]: """simple docstring""" a = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=None , ) ->Union[str, Any]: """simple docstring""" a = () a = () a = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: a = all_hidden_states + (hidden_states,) a = layer_module( A__ , A__ , head_mask[i] , A__ , A__ ) a = layer_outputs[0] if self.output_attentions: a = all_attentions + (layer_outputs[1],) a = (hidden_states,) if self.output_hidden_states: a = current_outputs + (all_hidden_states,) if self.output_attentions: a = current_outputs + (all_attentions,) a = self.highway[i](A__ ) # logits, pooled_output if not self.training: a = highway_exit[0] a = entropy(A__ ) a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy a = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A__ , i + 1 ) else: a = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: a = all_hidden_states + (hidden_states,) a = (hidden_states,) if self.output_hidden_states: a = outputs + (all_hidden_states,) if self.output_attentions: a = outputs + (all_attentions,) a = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : str ) ->Any: """simple docstring""" super().__init__(A__ ) a = config a = BertEmbeddings(A__ ) a = DeeBertEncoder(A__ ) a = BertPooler(A__ ) self.init_weights() def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" return self.embeddings.word_embeddings def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Dict: """simple docstring""" a = value def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] ) ->Optional[int]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A__ ) @add_start_docstrings_to_model_forward(A__ ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Dict=None , ) ->int: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: a = input_ids.size() elif inputs_embeds is not None: a = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: a = torch.ones(A__ , device=A__ ) if encoder_attention_mask is None: a = torch.ones(A__ , device=A__ ) if token_type_ids is None: a = torch.zeros(A__ , dtype=torch.long , device=A__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. a = self.get_extended_attention_mask(A__ , A__ , A__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: a = encoder_attention_mask[:, None, None, :] a = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility a = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] a = self.get_head_mask(A__ , self.config.num_hidden_layers ) a = self.embeddings( input_ids=A__ , position_ids=A__ , token_type_ids=A__ , inputs_embeds=A__ ) a = self.encoder( A__ , attention_mask=A__ , head_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) a = encoder_outputs[0] a = self.pooler(A__ ) a = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = message a = exit_layer # start from 1! class lowercase_( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" super().__init__() a = BertPooler(A__ ) a = nn.Dropout(config.hidden_dropout_prob ) a = nn.Linear(config.hidden_size , config.num_labels ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = encoder_outputs[0] a = self.pooler(A__ ) # "return" pooler_output # BertModel a = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification a = bmodel_output[1] a = self.dropout(A__ ) a = self.classifier(A__ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : str ) ->Any: """simple docstring""" super().__init__(A__ ) a = config.num_labels a = config.num_hidden_layers a = DeeBertModel(A__ ) a = nn.Dropout(config.hidden_dropout_prob ) a = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(A__ ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Tuple=False , ) ->Union[str, Any]: """simple docstring""" a = self.num_layers try: a = self.bert( A__ , attention_mask=A__ , token_type_ids=A__ , position_ids=A__ , head_mask=A__ , inputs_embeds=A__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits a = outputs[1] a = self.dropout(A__ ) a = self.classifier(A__ ) a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: a = e.message a = e.exit_layer a = outputs[0] if not self.training: a = entropy(A__ ) a = [] a = [] if labels is not None: if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits a = [] for highway_exit in outputs[-1]: a = highway_exit[0] if not self.training: highway_logits_all.append(A__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A__ ) if train_highway: a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: a = (loss,) + outputs if not self.training: a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
358
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
0
"""simple docstring""" def _a ( a :Optional[int] = 10**12 ) -> int: a = 1 a = 0 a = 1 a = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"""{solution() = }""")
359
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
0
import numpy as np class lowercase_ : '''simple docstring''' def __init__( self : Optional[int] ) ->List[str]: """simple docstring""" a = (0, 0) a = None a = 0 a = 0 a = 0 def __eq__( self : List[Any] , __UpperCAmelCase : int ) ->Dict: """simple docstring""" return self.position == cell.position def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" print(self.position ) class lowercase_ : '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : Any=(5, 5) ) ->Any: """simple docstring""" a = np.zeros(__A ) a = world_size[0] a = world_size[1] def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" print(self.w ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[Any] ) ->List[Any]: """simple docstring""" a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] a = cell.position[0] a = cell.position[1] a = [] for n in neughbour_cord: a = current_x + n[0] a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: a = Cell() a = (x, y) a = cell neighbours.append(__A ) return neighbours def _a ( a :Optional[int] , a :Tuple , a :Optional[Any] ) -> Tuple: a = [] a = [] _open.append(a ) while _open: a = np.argmin([n.f for n in _open] ) a = _open[min_f] _closed.append(_open.pop(a ) ) if current == goal: break for n in world.get_neigbours(a ): for c in _closed: if c == n: continue a = current.g + 1 a = n.position a = goal.position a = (ya - ya) ** 2 + (xa - xa) ** 2 a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(a ) a = [] while current.parent is not None: path.append(current.position ) a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase__ = Gridworld() # Start position and goal UpperCAmelCase__ = Cell() UpperCAmelCase__ = (0, 0) UpperCAmelCase__ = Cell() UpperCAmelCase__ = (4, 4) print(f"""path from {start.position} to {goal.position}""") UpperCAmelCase__ = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase__ = 1 print(world.w)
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
UpperCAmelCase__ = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCAmelCase__ = concatenate_datasets UpperCAmelCase__ = DownloadConfig UpperCAmelCase__ = DownloadManager UpperCAmelCase__ = DownloadMode UpperCAmelCase__ = DownloadConfig UpperCAmelCase__ = DownloadMode UpperCAmelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
361
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
0
def _a ( a :Tuple , a :Optional[Any] ) -> float: if digit_amount > 0: return round(number - int(UpperCAmelCase__ ) , UpperCAmelCase__ ) return number - int(UpperCAmelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
362
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
0
import pytest import datasets # Import fixture modules as plugins UpperCAmelCase__ = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def _a ( a :Optional[Any] , a :Optional[Any] ) -> Optional[Any]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def _a ( a :Optional[Any] ) -> List[str]: config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE_ ) def _a ( a :Union[str, Any] , a :Optional[int] ) -> str: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? a = tmp_path_factory.getbasetemp() / '''cache''' a = test_hf_cache_home / '''datasets''' a = test_hf_cache_home / '''metrics''' a = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(SCREAMING_SNAKE_CASE_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(SCREAMING_SNAKE_CASE_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(SCREAMING_SNAKE_CASE_ ) ) a = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE_ ) ) a = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE_ ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE_ , scope='''session''' ) def _a ( ) -> str: datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE_ ) def _a ( a :Optional[Any] ) -> Union[str, Any]: # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , SCREAMING_SNAKE_CASE_ ) @pytest.fixture def _a ( a :List[Any] ) -> Optional[int]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , SCREAMING_SNAKE_CASE_ )
363
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] = None , __UpperCAmelCase : str = None ) ->str: """simple docstring""" super().__init__() a = pad_token_id a = max_length a = vocab a = merges a = BytePairTokenizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sequence_length=SCREAMING_SNAKE_CASE_ ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , __UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" a = [' '.join(SCREAMING_SNAKE_CASE_ ) for m in tokenizer.bpe_ranks.keys()] a = tokenizer.get_vocab() return cls(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def __lowerCAmelCase ( cls : List[Any] , __UpperCAmelCase : Any , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return cls.from_tokenizer(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def __lowerCAmelCase ( cls : List[str] , __UpperCAmelCase : List[Any] ) ->str: """simple docstring""" return cls(**SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any = None ) ->Dict: """simple docstring""" a = self.tf_tokenizer(SCREAMING_SNAKE_CASE_ ) a = tf.ones_like(SCREAMING_SNAKE_CASE_ ) if self.pad_token_id is not None: # pad the tokens up to max length a = max_length if max_length is not None else self.max_length if max_length is not None: a = pad_model_inputs( SCREAMING_SNAKE_CASE_ , max_seq_length=SCREAMING_SNAKE_CASE_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : List[str]=18 , __UpperCAmelCase : int=30 , __UpperCAmelCase : List[Any]=400 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : int=True , ) ->str: """simple docstring""" a = size if size is not None else {'''height''': 18, '''width''': 18} a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size a = apply_ocr def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __snake_case = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = LayoutLMvaImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''apply_ocr''' ) ) def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __UpperCAmelCase ) self.assertIsInstance(encoding.boxes , __UpperCAmelCase ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" a = LayoutLMvaImageProcessor() from datasets import load_dataset a = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) a = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 a = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCAmelCase ) self.assertListEqual(encoding.boxes , __UpperCAmelCase ) # with apply_OCR = False a = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
365
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" a = tempfile.mkdtemp() a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) a = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } a = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def __lowerCAmelCase ( self : str , **__UpperCAmelCase : str ) ->Any: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def __lowerCAmelCase ( self : Tuple , **__UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def __lowerCAmelCase ( self : Dict , **__UpperCAmelCase : Union[str, Any] ) ->Tuple: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = self.get_tokenizer() a = self.get_rust_tokenizer() a = self.get_image_processor() a = AlignProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) a = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) a = AlignProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) a = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" a = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) a = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = AlignProcessor(tokenizer=__lowercase , image_processor=__lowercase ) a = self.prepare_image_inputs() a = image_processor(__lowercase , return_tensors='''np''' ) a = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = AlignProcessor(tokenizer=__lowercase , image_processor=__lowercase ) a = '''lower newer''' a = processor(text=__lowercase ) a = tokenizer(__lowercase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = AlignProcessor(tokenizer=__lowercase , image_processor=__lowercase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = AlignProcessor(tokenizer=__lowercase , image_processor=__lowercase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__lowercase ) a = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = AlignProcessor(tokenizer=__lowercase , image_processor=__lowercase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCAmelCase__ = ['small', 'medium', 'large'] UpperCAmelCase__ = 'lm_head.decoder.weight' UpperCAmelCase__ = 'lm_head.weight' def _a ( a :str , a :str ) -> Dict: a = torch.load(snake_case_ ) a = d.pop(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) torch.save(snake_case_ , os.path.join(snake_case_ , snake_case_ ) ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) UpperCAmelCase__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCAmelCase__ = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") UpperCAmelCase__ = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
367
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=_UpperCamelCase ): '''simple docstring''' __snake_case = ['note_seq'] def __init__( self : Optional[int] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : int ) ->List[Any]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : str ) ->Optional[int]: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Union[str, Any] ) ->Optional[int]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[Any]=13 , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : int=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : List[str]=99 , __UpperCAmelCase : List[str]=16 , __UpperCAmelCase : Dict=36 , __UpperCAmelCase : Optional[int]=6 , __UpperCAmelCase : List[str]=6 , __UpperCAmelCase : Dict=6 , __UpperCAmelCase : List[Any]=37 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Tuple=None , ) ->int: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = embedding_size a = hidden_size a = num_hidden_layers a = num_hidden_groups a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ) ->Tuple: """simple docstring""" a = AlbertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) a = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) a = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = AlbertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() a = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , sentence_order_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) ->Dict: """simple docstring""" a = AlbertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ) ->Tuple: """simple docstring""" a = AlbertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() a = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) ->Union[str, Any]: """simple docstring""" a = self.num_labels a = AlbertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : str ) ->int: """simple docstring""" a = self.num_labels a = AlbertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ) ->Optional[Any]: """simple docstring""" a = self.num_choices a = AlbertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" a = self.prepare_config_and_inputs() ( a ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase_ ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __snake_case = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]=False ) ->str: """simple docstring""" a = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = AlbertModelTester(self ) a = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __lowerCAmelCase ( self : Dict ) ->List[str]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = AlbertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = AlbertModel.from_pretrained('''albert-base-v2''' ) a = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] a = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) a = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __snake_case = CodeGenTokenizer __snake_case = CodeGenTokenizerFast __snake_case = True __snake_case = {"add_prefix_space": True} __snake_case = False def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] a = dict(zip(A_ , range(len(A_ ) ) ) ) a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a = {'''unk_token''': '''<unk>'''} a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A_ ) ) def __lowerCAmelCase ( self : Tuple , **__UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __lowerCAmelCase ( self : str , **__UpperCAmelCase : int ) ->List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Tuple ) ->str: """simple docstring""" a = '''lower newer''' a = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a = '''lower newer''' a = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a = tokenizer.tokenize(A_ , add_prefix_space=A_ ) self.assertListEqual(A_ , A_ ) a = tokens + [tokenizer.unk_token] a = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def __lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer(add_prefix_space=A_ ) a = '''lower newer''' # Testing tokenization a = tokenizer.tokenize(A_ , add_prefix_space=A_ ) a = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) # Testing conversion to ids without special tokens a = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) a = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) # Testing conversion to ids with special tokens a = self.get_rust_tokenizer(add_prefix_space=A_ ) a = tokenizer.encode(A_ , add_prefix_space=A_ ) a = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # Testing the unknown token a = tokens + [rust_tokenizer.unk_token] a = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def __lowerCAmelCase ( self : List[str] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ) ->Optional[int]: """simple docstring""" pass def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str=15 ) ->List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) # Simple input a = '''This is a simple input''' a = ['''This is a simple input 1''', '''This is a simple input 2'''] a = ('''This is a simple input''', '''This is a pair''') a = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='''max_length''' ) # Simple input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='''max_length''' ) # Simple input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='''max_length''' , ) # Pair input self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='''max_length''' ) # Pair input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='''max_length''' ) # Pair input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='''max_length''' , ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input a = '''This is a simple input''' a = ['''This is a simple input looooooooong''', '''This is a simple input'''] a = ('''This is a simple input''', '''This is a pair''') a = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] a = tokenizer.pad_token_id a = tokenizer(A_ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) a = tokenizer(A_ , padding=A_ , truncate=A_ , return_tensors='''np''' ) a = tokenizer(*A_ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) a = tokenizer(A_ , padding=A_ , truncate=A_ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = '''$$$''' a = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=A_ , add_bos_token=A_ ) a = '''This is a simple input''' a = ['''This is a simple input 1''', '''This is a simple input 2'''] a = tokenizer.bos_token_id a = tokenizer(A_ ) a = tokenizer(A_ ) self.assertEqual(out_s.input_ids[0] , A_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) a = tokenizer.decode(out_s.input_ids ) a = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , A_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" a = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) a = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' a = '''\nif len_a > len_b: result = a\nelse: result = b''' a = tokenizer.encode(A_ ) a = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] a = tokenizer.decode(A_ , truncate_before_pattern=A_ ) self.assertEqual(A_ , A_ ) def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" pass
371
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCAmelCase__ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCAmelCase__ = typing.Union[np.floataa, int, float] # noqa: UP007 def _a ( a :Vector , a :Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(a ) - np.asarray(a )) ** 2 ) ) def _a ( a :Vector , a :Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(a , a ) ) ** (1 / 2) if __name__ == "__main__": def _a ( ) -> None: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
350
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class lowercase_ ( lowercase ): __snake_case = '''dpt''' def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=768 , __UpperCAmelCase : Tuple=12 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : Union[str, Any]=3_072 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Dict=1e-1_2 , __UpperCAmelCase : int=384 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[str]=[2, 5, 8, 11] , __UpperCAmelCase : List[Any]="project" , __UpperCAmelCase : Optional[int]=[4, 2, 1, 0.5] , __UpperCAmelCase : Union[str, Any]=[96, 192, 384, 768] , __UpperCAmelCase : List[Any]=256 , __UpperCAmelCase : Dict=-1 , __UpperCAmelCase : str=False , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : int=0.4 , __UpperCAmelCase : Union[str, Any]=255 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[int]=[1, 1_024, 24, 24] , __UpperCAmelCase : Dict=[0, 1] , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : List[str] , ) ->Tuple: """simple docstring""" super().__init__(**__UpperCAmelCase ) a = hidden_size a = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) a = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } a = BitConfig(**__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) a = BitConfig(**__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) a = backbone_featmap_shape a = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: a = None a = None a = [] a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) a = readout_type a = reassemble_factors a = neck_hidden_sizes a = fusion_hidden_size a = head_in_index a = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) a = use_auxiliary_head a = auxiliary_loss_weight a = semantic_loss_ignore_index a = semantic_classifier_dropout def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" a = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: a = self.backbone_config.to_dict() a = self.__class__.model_type return output
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = 42 class lowercase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : Any=3 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : int=("DownEncoderBlock2D",) , __UpperCAmelCase : Tuple=(64,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : Optional[Any]="silu" , __UpperCAmelCase : Union[str, Any]=True , ) ->str: """simple docstring""" super().__init__() a = layers_per_block a = torch.nn.Convad( __UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) a = None a = nn.ModuleList([] ) # down a = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): a = output_channel a = block_out_channels[i] a = i == len(__UpperCAmelCase ) - 1 a = get_down_block( __UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) self.down_blocks.append(__UpperCAmelCase ) # mid a = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # out a = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1e-6 ) a = nn.SiLU() a = 2 * out_channels if double_z else out_channels a = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 ) a = False def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str ) ->Tuple: """simple docstring""" a = x a = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : Union[str, Any] ): def custom_forward(*__UpperCAmelCase : str ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: a = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: a = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase ) # middle a = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase ) else: # down for down_block in self.down_blocks: a = down_block(__UpperCAmelCase ) # middle a = self.mid_block(__UpperCAmelCase ) # post-process a = self.conv_norm_out(__UpperCAmelCase ) a = self.conv_act(__UpperCAmelCase ) a = self.conv_out(__UpperCAmelCase ) return sample class lowercase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : List[Any]=(64,) , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[Any]=32 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Union[str, Any]="group" , ) ->List[str]: """simple docstring""" super().__init__() a = layers_per_block a = nn.Convad( __UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) a = None a = nn.ModuleList([] ) a = in_channels if norm_type == '''spatial''' else None # mid a = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # up a = list(reversed(__UpperCAmelCase ) ) a = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): a = output_channel a = reversed_block_out_channels[i] a = i == len(__UpperCAmelCase ) - 1 a = get_up_block( __UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , ) self.up_blocks.append(__UpperCAmelCase ) a = output_channel # out if norm_type == "spatial": a = SpatialNorm(block_out_channels[0] , __UpperCAmelCase ) else: a = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1e-6 ) a = nn.SiLU() a = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 ) a = False def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=None ) ->Optional[Any]: """simple docstring""" a = z a = self.conv_in(__UpperCAmelCase ) a = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : str ): def custom_forward(*__UpperCAmelCase : Optional[int] ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) a = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: a = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase ) a = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: a = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) else: # middle a = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) a = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: a = up_block(__UpperCAmelCase , __UpperCAmelCase ) # post-process if latent_embeds is None: a = self.conv_norm_out(__UpperCAmelCase ) else: a = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase ) a = self.conv_act(__UpperCAmelCase ) a = self.conv_out(__UpperCAmelCase ) return sample class lowercase_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]="random" , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Optional[int]=True ) ->Optional[Any]: """simple docstring""" super().__init__() a = n_e a = vq_embed_dim a = beta a = legacy a = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) a = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) a = self.used.shape[0] a = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": a = self.re_embed a = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: a = n_e a = sane_index_shape def __lowerCAmelCase ( self : str , __UpperCAmelCase : int ) ->Tuple: """simple docstring""" a = inds.shape assert len(__UpperCAmelCase ) > 1 a = inds.reshape(ishape[0] , -1 ) a = self.used.to(__UpperCAmelCase ) a = (inds[:, :, None] == used[None, None, ...]).long() a = match.argmax(-1 ) a = match.sum(2 ) < 1 if self.unknown_index == "random": a = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: a = self.unknown_index return new.reshape(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] ) ->Optional[Any]: """simple docstring""" a = inds.shape assert len(__UpperCAmelCase ) > 1 a = inds.reshape(ishape[0] , -1 ) a = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token a = 0 # simply set to zero a = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any ) ->Any: """simple docstring""" a = z.permute(0 , 2 , 3 , 1 ).contiguous() a = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z a = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 ) a = self.embedding(__UpperCAmelCase ).view(z.shape ) a = None a = None # compute loss for embedding if not self.legacy: a = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: a = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients a = z + (z_q - z).detach() # reshape back to match original input shape a = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: a = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis a = self.remap_to_used(__UpperCAmelCase ) a = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: a = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) ->List[str]: """simple docstring""" if self.remap is not None: a = indices.reshape(shape[0] , -1 ) # add batch axis a = self.unmap_to_all(__UpperCAmelCase ) a = indices.reshape(-1 ) # flatten again # get quantized latent vectors a = self.embedding(__UpperCAmelCase ) if shape is not None: a = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape a = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=False ) ->Optional[int]: """simple docstring""" a = parameters a , a = torch.chunk(__UpperCAmelCase , 2 , dim=1 ) a = torch.clamp(self.logvar , -30.0 , 20.0 ) a = deterministic a = torch.exp(0.5 * self.logvar ) a = torch.exp(self.logvar ) if self.deterministic: a = a = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) ->torch.FloatTensor: """simple docstring""" a = randn_tensor( self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) a = self.mean + self.std * sample return x def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Any=None ) ->int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=[1, 2, 3] ) ->List[Any]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) a = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return self.mean
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase_ ( lowercase ): '''simple docstring''' @slow @require_torch def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) a = bertabert.config.encoder.vocab_size a = tokenizer.sep_token_id a = tokenizer.cls_token_id a = 128 a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) a = train_dataset.select(range(32 ) ) a = val_dataset.select(range(16 ) ) a = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) a = inputs.input_ids a = inputs.attention_mask a = outputs.input_ids a = outputs.input_ids.copy() a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] a = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase : int ): a = pred.label_ids a = pred.predictions # all unnecessary tokens are removed a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) a = self.get_auto_remove_tmp_dir() a = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer a = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
353
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''transfo-xl''' __snake_case = ['''mems'''] __snake_case = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , __UpperCAmelCase : Optional[Any]=267_735 , __UpperCAmelCase : str=[20_000, 40_000, 200_000] , __UpperCAmelCase : List[str]=1_024 , __UpperCAmelCase : int=1_024 , __UpperCAmelCase : int=16 , __UpperCAmelCase : List[str]=64 , __UpperCAmelCase : Tuple=4_096 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[int]=18 , __UpperCAmelCase : Optional[Any]=1_600 , __UpperCAmelCase : Tuple=1_000 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]="normal" , __UpperCAmelCase : Optional[int]=0.01 , __UpperCAmelCase : Optional[int]=0.01 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Dict=1e-5 , __UpperCAmelCase : List[Any]=0 , **__UpperCAmelCase : int , ) ->Tuple: """simple docstring""" a = vocab_size a = [] self.cutoffs.extend(__UpperCAmelCase ) if proj_share_all_but_first: a = [False] + [True] * len(self.cutoffs ) else: a = [False] + [False] * len(self.cutoffs ) a = d_model a = d_embed a = d_head a = d_inner a = div_val a = pre_lnorm a = n_layer a = n_head a = mem_len a = same_length a = attn_type a = clamp_len a = sample_softmax a = adaptive a = dropout a = dropatt a = untie_r a = init a = init_range a = proj_init_std a = init_std a = layer_norm_epsilon super().__init__(eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __lowerCAmelCase ( self : str , __UpperCAmelCase : Any ) ->Tuple: """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''rwkv''' __snake_case = {'''max_position_embeddings''': '''context_length'''} def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[int]=50_277 , __UpperCAmelCase : str=1_024 , __UpperCAmelCase : Tuple=4_096 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=1e-5 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Dict=0 , __UpperCAmelCase : Dict=6 , __UpperCAmelCase : int=False , __UpperCAmelCase : Union[str, Any]=True , **__UpperCAmelCase : List[str] , ) ->Optional[int]: """simple docstring""" a = vocab_size a = context_length a = hidden_size a = num_hidden_layers a = attention_hidden_size if attention_hidden_size is not None else hidden_size a = intermediate_size if intermediate_size is not None else 4 * hidden_size a = layer_norm_epsilon a = rescale_every a = use_cache a = bos_token_id a = eos_token_id super().__init__( tie_word_embeddings=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
355
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : int = 32 , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[int, float] = 1 / 255 , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , __UpperCAmelCase : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : List[Any]=30 , __UpperCAmelCase : List[str]=400 , __UpperCAmelCase : Union[str, Any]=3 , ) ->List[str]: """simple docstring""" a = parent a = do_resize a = size if size is not None else {'''shortest_edge''': 288} a = size_divisor a = do_rescale a = rescale_factor a = do_normalize a = do_center_crop a = image_mean a = image_std a = do_pad a = batch_size a = num_channels a = min_resolution a = max_resolution def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple=False ) ->Dict: """simple docstring""" if not batched: a = self.size['''shortest_edge'''] a = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): a , a = image.size else: a , a = image.shape[1], image.shape[2] a = size / min(__UpperCAmelCase , __UpperCAmelCase ) if h < w: a , a = size, scale * w else: a , a = scale * h, size a = int((1_333 / 800) * size ) if max(__UpperCAmelCase , __UpperCAmelCase ) > max_size: a = max_size / max(__UpperCAmelCase , __UpperCAmelCase ) a = newh * scale a = neww * scale a , a = int(newh + 0.5 ), int(neww + 0.5 ) a , a = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: a = [] for image in image_inputs: a , a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BridgeTowerImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" a = BridgeTowerImageProcessingTester(self ) @property def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size_divisor''' ) ) def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" pass def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase__ = 6378137.0 UpperCAmelCase__ = 6356752.314245 UpperCAmelCase__ = 6378137 def _a ( a :float , a :float , a :float , a :float ) -> float: a = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude a = atan((1 - flattening) * tan(radians(a ) ) ) a = atan((1 - flattening) * tan(radians(a ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius a = haversine_distance(a , a , a , a ) / EQUATORIAL_RADIUS # Intermediate P and Q values a = (b_lata + b_lata) / 2 a = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) a = (sin(a ) ** 2) * (cos(a ) ** 2) a = cos(sigma / 2 ) ** 2 a = (sigma - sin(a )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) a = (cos(a ) ** 2) * (sin(a ) ** 2) a = sin(sigma / 2 ) ** 2 a = (sigma + sin(a )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
358
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model") UpperCAmelCase__ = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = CamembertTokenizer __snake_case = CamembertTokenizerFast __snake_case = True __snake_case = True def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" a = '''<pad>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_004 ) def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" a = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) a = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) a = '''I was born in 92000, and this is falsé.''' a = tokenizer.encode(__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = '''I was born in 92000, and this is falsé.''' a = tokenizer.tokenize(__UpperCAmelCase ) a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {'''input_ids''': [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. a = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=__UpperCAmelCase , )
359
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( a :Union[str, Any] , a :List[Any] ) -> List[Any]: a = checkpoint a = {} a = vae_state_dict['''encoder.conv_in.weight'''] a = vae_state_dict['''encoder.conv_in.bias'''] a = vae_state_dict['''encoder.conv_out.weight'''] a = vae_state_dict['''encoder.conv_out.bias'''] a = vae_state_dict['''encoder.norm_out.weight'''] a = vae_state_dict['''encoder.norm_out.bias'''] a = vae_state_dict['''decoder.conv_in.weight'''] a = vae_state_dict['''decoder.conv_in.bias'''] a = vae_state_dict['''decoder.conv_out.weight'''] a = vae_state_dict['''decoder.conv_out.bias'''] a = vae_state_dict['''decoder.norm_out.weight'''] a = vae_state_dict['''decoder.norm_out.bias'''] a = vae_state_dict['''quant_conv.weight'''] a = vae_state_dict['''quant_conv.bias'''] a = vae_state_dict['''post_quant_conv.weight'''] a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) a = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a ) } for i in range(a ): a = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a = renew_vae_resnet_paths(a ) a = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): a = num_up_blocks - 1 - i a = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] a = 2 for i in range(1 , num_mid_res_blocks + 1 ): a = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a = renew_vae_resnet_paths(a ) a = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] a = renew_vae_attention_paths(a ) a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def _a ( a :str , a :str , ) -> List[str]: # Only support V1 a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) a = io.BytesIO(r.content ) a = OmegaConf.load(a ) a = 512 a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open a = {} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): a = f.get_tensor(a ) else: a = torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. a = create_vae_diffusers_config(a , image_size=a ) a = custom_convert_ldm_vae_checkpoint(a , a ) a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
26
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _a ( a :List[str] ) -> List[str]: if "cls_token" in name: a = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: a = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: a = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: a = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: a = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: a = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: a = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: a = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: a = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: a = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: a = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: a = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: a = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: a = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def _a ( a :List[Any] , a :Dict ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(a ) if "qkv" in key: a = key.split('''.''' ) a = int(key_split[1] ) if "decoder_blocks" in key: a = config.decoder_hidden_size a = '''decoder.decoder_layers.''' if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] elif "bias" in key: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] else: a = config.hidden_size a = '''vit.encoder.layer.''' if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] elif "bias" in key: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] else: a = val return orig_state_dict def _a ( a :Dict , a :int ) -> List[Any]: a = ViTMAEConfig() if "large" in checkpoint_url: a = 1_024 a = 4_096 a = 24 a = 16 elif "huge" in checkpoint_url: a = 14 a = 1_280 a = 5_120 a = 32 a = 16 a = ViTMAEForPreTraining(a ) a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' )['''model'''] a = ViTMAEImageProcessor(size=config.image_size ) a = convert_state_dict(a , a ) model.load_state_dict(a ) model.eval() a = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) a = ViTMAEImageProcessor(size=config.image_size ) a = image_processor(images=a , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) a = model(**a ) a = outputs.logits if "large" in checkpoint_url: a = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: a = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: a = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , a , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowercase_ : '''simple docstring''' __snake_case = 42 __snake_case = None # Automatically constructed __snake_case = '''dict''' __snake_case = None __snake_case = field(default='''Translation''' , init=lowercase , repr=lowercase ) def __call__( self : int ) ->List[Any]: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCAmelCase ( self : Optional[int] ) ->Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class lowercase_ : '''simple docstring''' __snake_case = None __snake_case = None __snake_case = None # Automatically constructed __snake_case = '''dict''' __snake_case = None __snake_case = field(default='''TranslationVariableLanguages''' , init=lowercase , repr=lowercase ) def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" a = sorted(set(self.languages ) ) if self.languages else None a = len(self.languages ) if self.languages else None def __call__( self : int ) ->Union[str, Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Tuple ) ->Any: """simple docstring""" a = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({', '.join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(__UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a , a = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __lowerCAmelCase ( self : List[Any] ) ->Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
361
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = DistilBertTokenizer def __init__( self : Dict , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : str="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Any="[CLS]" , __UpperCAmelCase : int="[MASK]" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) ->Optional[Any]: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
26
0
def _a ( a :bytes ) -> str: return "".join([hex(a )[2:].zfill(2 ).upper() for byte in list(a )] ) def _a ( a :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(a ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
362
from __future__ import annotations import typing from collections import Counter def _a ( a :int ) -> typing.Counter[int]: a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( a :int = 1_000 ) -> int: a = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
26
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = 0 @slow def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__UpperCAmelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__UpperCAmelCase ) , 0 ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) # Check that tokenizer_type ≠ model_type a = AutoTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__UpperCAmelCase , '''vocab.txt''' ) ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase , tokenizer_type='''bert''' , use_fast=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__UpperCAmelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__UpperCAmelCase , '''merges.txt''' ) ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase , tokenizer_type='''gpt2''' , use_fast=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @require_tokenizers def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__UpperCAmelCase , '''vocab.txt''' ) ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__UpperCAmelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__UpperCAmelCase , '''merges.txt''' ) ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" with pytest.raises(__UpperCAmelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: a = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __UpperCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case , __UpperCAmelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __UpperCAmelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): a = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" a = TOKENIZER_MAPPING.values() a = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__UpperCAmelCase ) @require_tokenizers def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __UpperCAmelCase ) @require_tokenizers def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__UpperCAmelCase ) a = '''Hello, world. How are you?''' a = tokenizer.tokenize(__UpperCAmelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) a = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__UpperCAmelCase ) a = tokenizer.tokenize(__UpperCAmelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" a = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def __lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" a = get_tokenizer_config('''bert-base-cased''' ) a = config.pop('''_commit_hash''' , __UpperCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__UpperCAmelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. a = get_tokenizer_config(__UpperCAmelCase ) self.assertDictEqual(__UpperCAmelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) a = get_tokenizer_config(__UpperCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" try: AutoConfig.register('''custom''' , __UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) a = CustomTokenizer.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" try: AutoConfig.register('''custom''' , __UpperCAmelCase ) # Can register in two steps AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__UpperCAmelCase , fast_tokenizer_class=__UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase , fast_tokenizer_class=__UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoTokenizer.register(__UpperCAmelCase , fast_tokenizer_class=__UpperCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: a = BertTokenizerFast.from_pretrained(__UpperCAmelCase ) bert_tokenizer.save_pretrained(__UpperCAmelCase ) a = CustomTokenizerFast.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" with self.assertRaises(__UpperCAmelCase ): a = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): a = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__UpperCAmelCase ) a = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version a = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) a = AutoTokenizer.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = False class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = NewTokenizer __snake_case = False try: AutoConfig.register('''custom''' , __UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , fast_tokenizer_class=__UpperCAmelCase ) # If remote code is not set, the default is to use local a = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) a = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. a = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) a = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub a = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) a = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version a = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" with self.assertRaisesRegex( __UpperCAmelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): a = AutoTokenizer.from_pretrained('''bert-base''' ) def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" with self.assertRaisesRegex( __UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a = AutoTokenizer.from_pretrained(__UpperCAmelCase , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
363
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
0
from __future__ import annotations def _a ( a :list , a :int , a :int , a :int ) -> list: a = [] a , a = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) a = result + left + right return input_list def _a ( a :list ) -> list: if len(a ) <= 1: return input_list a = list(a ) # iteration for two-way merging a = 2 while p <= len(a ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(a ) , a ): a = i a = i + p - 1 a = (low + high + 1) // 2 a = merge(a , a , a , a ) # final merge of last two parts if p * 2 >= len(a ): a = i a = merge(a , 0 , a , len(a ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": UpperCAmelCase__ = [] else: UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
import requests from bsa import BeautifulSoup def _a ( a :str = "AAPL" ) -> str: a = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" a = BeautifulSoup(requests.get(a ).text , '''html.parser''' ) a = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
365
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _a ( a :List[Any] ) -> int: a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(a , a ) def _a ( a :List[str] ) -> Tuple: a , a = emb.weight.shape a = nn.Linear(a , a , bias=a ) a = emb.weight.data return lin_layer def _a ( a :Optional[int] , a :Optional[int]="facebook/mbart-large-en-ro" , a :str=False , a :str=False ) -> List[Any]: a = torch.load(a , map_location='''cpu''' )['''model'''] remove_ignore_keys_(a ) a = state_dict['''encoder.embed_tokens.weight'''].shape[0] a = MBartConfig.from_pretrained(a , vocab_size=a ) if mbart_aa and finetuned: a = '''relu''' a = state_dict['''decoder.embed_tokens.weight'''] a = MBartForConditionalGeneration(a ) model.model.load_state_dict(a ) if finetuned: a = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
def _a ( a :str , a :str ) -> str: a = len(a ) a = len(a ) a = ( first_str_length if first_str_length > second_str_length else second_str_length ) a = [] for char_count in range(a ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
367
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=lowercase ): '''simple docstring''' __snake_case = ['''note_seq'''] def __init__( self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[int] ) ->List[Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) a = VideoClassificationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase , top_k=2 ) a = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict ) ->int: """simple docstring""" for example in examples: a = video_classifier(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )}, {'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )}, ] , ) @require_torch def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" a = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' a = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) a = pipeline( '''video-classification''' , model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , frame_sampling_rate=4 ) a = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) a = video_classifier(__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) a = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" pass
370
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
371
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import os from datetime import datetime as dt from github import Github UpperCAmelCase__ = [ "good first issue", "feature request", "wip", ] def _a ( ) -> List[Any]: a = Github(os.environ['''GITHUB_TOKEN'''] ) a = g.get_repo('''huggingface/accelerate''' ) a = repo.get_issues(state='''open''' ) for issue in open_issues: a = sorted([comment for comment in issue.get_comments()] , key=lambda a : i.created_at , reverse=a ) a = comments[0] if len(a ) > 0 else None a = dt.utcnow() a = (current_time - issue.updated_at).days a = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
350
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
from __future__ import annotations def _a ( a :list[float] , a :list[float] ) -> float: a = sorted(numsa + numsa ) a , a = divmod(len(a ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = [float(x) for x in input("Enter the elements of first array: ").split()] UpperCAmelCase__ = [float(x) for x in input("Enter the elements of second array: ").split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
from __future__ import annotations import bisect def _a ( a :list[int] , a :int , a :int = 0 , a :int = -1 ) -> int: if hi < 0: a = len(a ) while lo < hi: a = lo + (hi - lo) // 2 if sorted_collection[mid] < item: a = mid + 1 else: a = mid return lo def _a ( a :list[int] , a :int , a :int = 0 , a :int = -1 ) -> int: if hi < 0: a = len(a ) while lo < hi: a = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: a = mid + 1 else: a = mid return lo def _a ( a :list[int] , a :int , a :int = 0 , a :int = -1 ) -> None: sorted_collection.insert(bisect_left(a , a , a , a ) , a ) def _a ( a :list[int] , a :int , a :int = 0 , a :int = -1 ) -> None: sorted_collection.insert(bisect_right(a , a , a , a ) , a ) def _a ( a :list[int] , a :int ) -> int | None: a = 0 a = len(a ) - 1 while left <= right: a = left + (right - left) // 2 a = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: a = midpoint - 1 else: a = midpoint + 1 return None def _a ( a :list[int] , a :int ) -> int | None: a = bisect.bisect_left(a , a ) if index != len(a ) and sorted_collection[index] == item: return index return None def _a ( a :list[int] , a :int , a :int , a :int ) -> int | None: if right < left: return None a = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(a , a , a , midpoint - 1 ) else: return binary_search_by_recursion(a , a , midpoint + 1 , a ) if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by comma:\n").strip() UpperCAmelCase__ = sorted(int(item) for item in user_input.split(",")) UpperCAmelCase__ = int(input("Enter a single number to be found in the list:\n")) UpperCAmelCase__ = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _a ( a :str=None ) -> Tuple: if subparsers is not None: a = subparsers.add_parser('''test''' ) else: a = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a ) return parser def _a ( a :Optional[Any] ) -> Dict: a = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: a = script_name else: a = F"""--config_file={args.config_file} {script_name}""" a = ['''accelerate-launch'''] + test_args.split() a = execute_subprocess_async(a , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def _a ( ) -> Optional[int]: a = test_command_parser() a = parser.parse_args() test_command(a ) if __name__ == "__main__": main()
353
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowercase_ ( unittest.TestCase , lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = load_tool('''text-classification''' ) self.tool.setup() a = load_tool('''text-classification''' , remote=__UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" a = self.tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(__UpperCAmelCase , '''positive''' ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(__UpperCAmelCase , '''positive''' ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" a = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(__UpperCAmelCase , '''positive''' ) def __lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" a = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(__UpperCAmelCase , '''positive''' )
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :Optional[int] , a :int ) -> Union[str, Any]: a = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def _a ( a :List[Any] , a :Optional[int] ) -> int: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) a = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) a = in_proj_weight[ : encoder_config.hidden_size, : ] a = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] a = in_proj_weight[ -encoder_config.hidden_size :, : ] def _a ( a :Dict , a :int , a :int ) -> Optional[int]: a = dct.pop(a ) a = val def _a ( a :List[Any] ) -> List[Any]: if "handwritten" in checkpoint_url: a = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: a = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' a = Image.open(requests.get(a , stream=a ).raw ).convert('''RGB''' ) return im @torch.no_grad() def _a ( a :Dict , a :List[Any] ) -> str: a = ViTConfig(image_size=384 , qkv_bias=a ) a = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: a = 768 elif "large" in checkpoint_url: # use ViT-large encoder a = 1_024 a = 4_096 a = 24 a = 16 a = 1_024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: a = False a = '''relu''' a = 1_024 a = True a = False a = False # load HuggingFace model a = ViTModel(a , add_pooling_layer=a ) a = TrOCRForCausalLM(a ) a = VisionEncoderDecoderModel(encoder=a , decoder=a ) model.eval() # load state_dict of original model, rename some keys a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a )['''model'''] a = create_rename_keys(a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): a = state_dict.pop(a ) if key.startswith('''decoder''' ) and "output_projection" not in key: a = val else: a = val # load state dict model.load_state_dict(a ) # Check outputs on an image a = ViTImageProcessor(size=encoder_config.image_size ) a = RobertaTokenizer.from_pretrained('''roberta-large''' ) a = TrOCRProcessor(a , a ) a = processor(images=prepare_img(a ) , return_tensors='''pt''' ).pixel_values # verify logits a = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) a = model(pixel_values=a , decoder_input_ids=a ) a = outputs.logits a = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: a = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: a = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: a = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: a = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , a , atol=1e-3 ), "First elements of logits not as expected" Path(a ).mkdir(exist_ok=a ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
355
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
0
import requests def _a ( a :str , a :str ) -> None: a = {'''Content-Type''': '''application/json'''} a = requests.post(a , json={'''text''': message_body} , headers=a ) if response.status_code != 200: a = ( '''Request to slack returned an error ''' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(a ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = torch.device("cpu") def _a ( ) -> Union[str, Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im def _a ( a :Dict ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _a ( a :int , a :Any , a :Union[str, Any] ) -> int: a = dct.pop(a ) a = val def _a ( a :Any ) -> Dict: a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( a :List[Any] , a :Tuple , a :List[str] ) -> Union[str, Any]: a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 10, 5] a = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 12, 6] a = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , check_hash=a ) else: a = torch.load(a , map_location='''cpu''' ) a = checkpoint a = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model a = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=a , return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(a ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCAmelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
26
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''openai/whisper-base''' __snake_case = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) __snake_case = '''transcriber''' __snake_case = WhisperProcessor __snake_case = WhisperForConditionalGeneration __snake_case = ['''audio'''] __snake_case = ['''text'''] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" return self.pre_processor(__UpperCAmelCase , return_tensors='''pt''' ).input_features def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int ) ->List[Any]: """simple docstring""" return self.model.generate(inputs=__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[Any] ) ->Any: """simple docstring""" return self.pre_processor.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )[0]
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
0