code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def A_ ( snake_case_ : Optional[int] ,snake_case_ : Optional[int] ,snake_case_ : List[Any]=[] ):
'''simple docstring'''
UpperCamelCase : List[str] = size[0] - overlap_pixels * 2
UpperCamelCase : Optional[Any] = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
UpperCamelCase : List[Any] = np.ones((size_y, size_x) ,dtype=np.uinta ) * 2_5_5
UpperCamelCase : Any = np.pad(snake_case_ ,mode="""linear_ramp""" ,pad_width=snake_case_ ,end_values=0 )
if "l" in remove_borders:
UpperCamelCase : int = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
UpperCamelCase : List[str] = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
UpperCamelCase : Union[str, Any] = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
UpperCamelCase : List[str] = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def A_ ( snake_case_ : Tuple ,snake_case_ : Any ,snake_case_ : Optional[Any] ):
'''simple docstring'''
return max(snake_case_ ,min(snake_case_ ,snake_case_ ) )
def A_ ( snake_case_ : [int] ,snake_case_ : [int] ,snake_case_ : [int] ):
'''simple docstring'''
return (
clamp(rect[0] ,min[0] ,max[0] ),
clamp(rect[1] ,min[1] ,max[1] ),
clamp(rect[2] ,min[0] ,max[0] ),
clamp(rect[3] ,min[1] ,max[1] ),
)
def A_ ( snake_case_ : [int] ,snake_case_ : int ,snake_case_ : [int] ):
'''simple docstring'''
UpperCamelCase : int = list(snake_case_ )
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
UpperCamelCase : List[str] = clamp_rect(snake_case_ ,[0, 0] ,[image_size[0], image_size[1]] )
return rect
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int] ,snake_case_ : Tuple ,snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : int = Image.new("""RGB""" ,(tile.size[0] + original_slice, tile.size[1]) )
result.paste(
original_image.resize((tile.size[0], tile.size[1]) ,Image.BICUBIC ).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1]) ) ,(0, 0) ,)
result.paste(snake_case_ ,(original_slice, 0) )
return result
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : List[str] = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
UpperCamelCase : int = tile.crop(snake_case_ )
return tile
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Any ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = n % d
return n - divisor
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 350 , ):
super().__init__(
vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , max_noise_level=SCREAMING_SNAKE_CASE_ , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
torch.manual_seed(0 )
UpperCamelCase : Dict = (
min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ),
min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ),
min(image.size[0] , (x + 1) * tile_size ),
min(image.size[1] , (y + 1) * tile_size ),
)
UpperCamelCase : Optional[int] = add_overlap_rect(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , image.size )
UpperCamelCase : Optional[int] = image.crop(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
UpperCamelCase : int = translated_slice_x - (original_image_slice / 2)
UpperCamelCase : List[str] = max(0 , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = squeeze_tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = to_input.size
UpperCamelCase : List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC )
UpperCamelCase : Optional[int] = super(SCREAMING_SNAKE_CASE_ , self ).__call__(image=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).images[0]
UpperCamelCase : Optional[Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC )
UpperCamelCase : int = unsqueeze_tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC )
UpperCamelCase : List[Any] = []
if x == 0:
remove_borders.append("""l""" )
elif crop_rect[2] == image.size[0]:
remove_borders.append("""r""" )
if y == 0:
remove_borders.append("""t""" )
elif crop_rect[3] == image.size[1]:
remove_borders.append("""b""" )
UpperCamelCase : Optional[Any] = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=SCREAMING_SNAKE_CASE_ ) , mode="""L""" , )
final_image.paste(
SCREAMING_SNAKE_CASE_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 75 , SCREAMING_SNAKE_CASE_ = 9.0 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , ):
UpperCamelCase : int = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) )
UpperCamelCase : Optional[Any] = math.ceil(image.size[0] / tile_size )
UpperCamelCase : Optional[int] = math.ceil(image.size[1] / tile_size )
UpperCamelCase : Tuple = tcx * tcy
UpperCamelCase : Optional[Any] = 0
for y in range(SCREAMING_SNAKE_CASE_ ):
for x in range(SCREAMING_SNAKE_CASE_ ):
self._process_tile(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prompt=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , noise_level=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , )
current_count += 1
if callback is not None:
callback({"""progress""": current_count / total_tile_count, """image""": final_image} )
return final_image
def A_ ( ):
'''simple docstring'''
# Run a demo
UpperCamelCase : int = """stabilityai/stable-diffusion-x4-upscaler"""
UpperCamelCase : Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case_ ,revision="""fp16""" ,torch_dtype=torch.floataa )
UpperCamelCase : Any = pipe.to("""cuda""" )
UpperCamelCase : List[Any] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" )
def callback(snake_case_ : Any ):
print(f'progress: {obj["progress"]:.4f}' )
obj["image"].save("""diffusers_library_progress.jpg""" )
UpperCamelCase : Optional[int] = pipe(image=snake_case_ ,prompt="""Black font, white background, vector""" ,noise_level=4_0 ,callback=snake_case_ )
final_image.save("""diffusers_library.jpg""" )
if __name__ == "__main__":
main()
| 27 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : str = batch_size
UpperCamelCase : int = seq_length
UpperCamelCase : Optional[Any] = is_training
UpperCamelCase : Any = use_input_lengths
UpperCamelCase : Tuple = use_token_type_ids
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = gelu_activation
UpperCamelCase : Dict = sinusoidal_embeddings
UpperCamelCase : Optional[int] = causal
UpperCamelCase : List[Any] = asm
UpperCamelCase : int = n_langs
UpperCamelCase : Optional[Any] = vocab_size
UpperCamelCase : str = n_special
UpperCamelCase : Dict = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : Any = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : str = num_labels
UpperCamelCase : Union[str, Any] = num_choices
UpperCamelCase : List[str] = summary_type
UpperCamelCase : int = use_proj
UpperCamelCase : List[str] = scope
UpperCamelCase : Dict = bos_token_id
def a_ ( self ):
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Union[str, Any] = None
if self.use_input_lengths:
UpperCamelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCamelCase : int = None
UpperCamelCase : Dict = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float()
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : List[str] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , )
((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = self.num_labels
UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = self.num_choices
UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : int = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : List[Any] = config_and_inputs
UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase : List[Any] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase : Optional[Any] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCamelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def a_ ( self ):
UpperCamelCase : List[Any] = XLMModelTester(self )
UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : int = min_length + idx + 1
UpperCamelCase : Tuple = min_length + idx + 1
UpperCamelCase : Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : List[str] = min_length + idx + 1
UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , )
pass
@slow
def a_ ( self ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president
UpperCamelCase : List[Any] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def A_ ( snake_case_ : List[str] ,snake_case_ : str=None ):
'''simple docstring'''
UpperCamelCase : List[str] = None
if token is not None:
UpperCamelCase : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'}
UpperCamelCase : List[str] = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'
UpperCamelCase : Optional[Any] = requests.get(snake_case_ ,headers=snake_case_ ).json()
UpperCamelCase : List[Any] = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
UpperCamelCase : List[Any] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(snake_case_ ):
UpperCamelCase : List[Any] = requests.get(url + f'&page={i + 2}' ,headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : List[str]=None ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = None
if token is not None:
UpperCamelCase : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'}
UpperCamelCase : Optional[int] = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'
UpperCamelCase : Optional[int] = requests.get(snake_case_ ,headers=snake_case_ ).json()
UpperCamelCase : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
UpperCamelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(snake_case_ ):
UpperCamelCase : Tuple = requests.get(url + f'&page={i + 2}' ,headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
def A_ ( snake_case_ : Dict ,snake_case_ : Dict ,snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : int = None
if token is not None:
UpperCamelCase : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'}
UpperCamelCase : int = requests.get(snake_case_ ,headers=snake_case_ ,allow_redirects=snake_case_ )
UpperCamelCase : Optional[Any] = result.headers["""Location"""]
UpperCamelCase : Dict = requests.get(snake_case_ ,allow_redirects=snake_case_ )
UpperCamelCase : List[Any] = os.path.join(snake_case_ ,f'{artifact_name}.zip' )
with open(snake_case_ ,"""wb""" ) as fp:
fp.write(response.content )
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : List[str]=None ):
'''simple docstring'''
UpperCamelCase : Dict = []
UpperCamelCase : Optional[int] = []
UpperCamelCase : List[Any] = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
UpperCamelCase : Union[str, Any] = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
UpperCamelCase : Union[str, Any] = line[: line.index(""": """ )]
UpperCamelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
UpperCamelCase : str = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
UpperCamelCase : int = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '
f'and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'
""" problem.""" )
UpperCamelCase : Any = None
if job_name and job_links:
UpperCamelCase : List[str] = job_links.get(snake_case_ ,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
UpperCamelCase : Any = [x + [y] + [job_link] for x, y in zip(snake_case_ ,snake_case_ )]
return result
def A_ ( snake_case_ : List[str] ,snake_case_ : Tuple=None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = []
UpperCamelCase : Optional[int] = [os.path.join(snake_case_ ,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_ ,job_links=snake_case_ ) )
return errors
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Optional[Any]=None ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = Counter()
counter.update([x[1] for x in logs] )
UpperCamelCase : str = counter.most_common()
UpperCamelCase : Dict = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
UpperCamelCase : Tuple = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
UpperCamelCase : Tuple = dict(sorted(r.items() ,key=lambda snake_case_ : item[1]["count"] ,reverse=snake_case_ ) )
return r
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
UpperCamelCase : List[str] = test.split("""/""" )[2]
else:
UpperCamelCase : Optional[Any] = None
return test
def A_ ( snake_case_ : Tuple ,snake_case_ : List[str]=None ):
'''simple docstring'''
UpperCamelCase : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs]
UpperCamelCase : str = [x for x in logs if x[2] is not None]
UpperCamelCase : Optional[int] = {x[2] for x in logs}
UpperCamelCase : int = {}
for test in tests:
UpperCamelCase : List[str] = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
UpperCamelCase : Union[str, Any] = counter.most_common()
UpperCamelCase : List[Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
UpperCamelCase : Union[str, Any] = sum(error_counts.values() )
if n_errors > 0:
UpperCamelCase : List[Any] = {"""count""": n_errors, """errors""": error_counts}
UpperCamelCase : str = dict(sorted(r.items() ,key=lambda snake_case_ : item[1]["count"] ,reverse=snake_case_ ) )
return r
def A_ ( snake_case_ : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = """| no. | error | status |"""
UpperCamelCase : Any = """|-:|:-|:-|"""
UpperCamelCase : Optional[Any] = [header, sep]
for error in reduced_by_error:
UpperCamelCase : Optional[Any] = reduced_by_error[error]["""count"""]
UpperCamelCase : List[str] = f'| {count} | {error[:1_0_0]} | |'
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : int = """| model | no. of errors | major error | count |"""
UpperCamelCase : Union[str, Any] = """|-:|-:|-:|-:|"""
UpperCamelCase : int = [header, sep]
for model in reduced_by_model:
UpperCamelCase : Tuple = reduced_by_model[model]["""count"""]
UpperCamelCase , UpperCamelCase : List[Any] = list(reduced_by_model[model]["""errors"""].items() )[0]
UpperCamelCase : Optional[int] = f'| {model} | {count} | {error[:6_0]} | {_count} |'
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
__A : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
__A : Tuple = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
__A : Any = get_job_links(args.workflow_run_id, token=args.token)
__A : int = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
__A : List[Any] = k.find(''' / ''')
__A : Tuple = k[index + len(''' / ''') :]
__A : Any = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
__A : Any = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
__A : Optional[int] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
__A : Any = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
__A : Dict = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
__A : str = reduce_by_error(errors)
__A : str = reduce_by_model(errors)
__A : List[Any] = make_github_table(reduced_by_error)
__A : Tuple = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
| 27 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__A : int = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 | 1 |
"""simple docstring"""
import numpy as np
import qiskit
def A_ ( snake_case_ : int = 8 ,snake_case_ : int | None = None ):
'''simple docstring'''
UpperCamelCase : Dict = np.random.default_rng(seed=snake_case_ )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
UpperCamelCase : str = 6 * key_len
# Measurement basis for Alice's qubits.
UpperCamelCase : Union[str, Any] = rng.integers(2 ,size=snake_case_ )
# The set of states Alice will prepare.
UpperCamelCase : int = rng.integers(2 ,size=snake_case_ )
# Measurement basis for Bob's qubits.
UpperCamelCase : str = rng.integers(2 ,size=snake_case_ )
# Quantum Circuit to simulate BB84
UpperCamelCase : str = qiskit.QuantumCircuit(snake_case_ ,name="""BB84""" )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(snake_case_ ):
if alice_state[index] == 1:
bbaa_circ.x(snake_case_ )
if alice_basis[index] == 1:
bbaa_circ.h(snake_case_ )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(snake_case_ ):
if bob_basis[index] == 1:
bbaa_circ.h(snake_case_ )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
UpperCamelCase : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
UpperCamelCase : Union[str, Any] = qiskit.execute(snake_case_ ,snake_case_ ,shots=1 ,seed_simulator=snake_case_ )
# Returns the result of measurement.
UpperCamelCase : List[Any] = job.result().get_counts(snake_case_ ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
UpperCamelCase : Optional[int] = """""".join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
snake_case_ ,snake_case_ ,snake_case_ )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
UpperCamelCase : Union[str, Any] = gen_key[:key_len] if len(snake_case_ ) >= key_len else gen_key.ljust(snake_case_ ,"""0""" )
return key
if __name__ == "__main__":
print(F'''The generated key is : {bbaa(8, seed=0)}''')
from doctest import testmod
testmod()
| 27 |
"""simple docstring"""
import torch
from transformers import AutoModel
class lowerCamelCase ( torch.nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_="sayef/fsner-bert-base-uncased" ):
super(SCREAMING_SNAKE_CASE_ , self ).__init__()
UpperCamelCase : int = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCamelCase : Any = torch.nn.Softmax(dim=1 )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return self.bert(**SCREAMING_SNAKE_CASE_ ).last_hidden_state
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return token_embeddings.sum(2 , keepdim=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ):
return self.softmax(T * self.cos(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = W_supports["""sizes"""].tolist()
UpperCamelCase : List[str] = W_supports["""start_token_id"""].item()
UpperCamelCase : List[Any] = W_supports["""end_token_id"""].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCamelCase : List[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Tuple = W_supports["""input_ids"""] == start_token_id
UpperCamelCase : Optional[Any] = W_supports["""input_ids"""] == end_token_id
for i, size in enumerate(SCREAMING_SNAKE_CASE_ ):
if i == 0:
UpperCamelCase : int = 0
else:
UpperCamelCase : Optional[int] = support_sizes[i - 1]
UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]]
UpperCamelCase : int = S[s : s + size][end_token_masks[s : s + size]]
UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) )
UpperCamelCase : Optional[Any] = torch.vstack((p_ends, p_end) )
else:
UpperCamelCase : Optional[int] = p_start
UpperCamelCase : Tuple = p_end
return p_starts, p_ends
| 27 | 1 |
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A : str = logging.get_logger(__name__)
__A : List[str] = {'''vocab_file''': '''spiece.model'''}
__A : List[Any] = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
}
}
__A : List[str] = {
'''google/bigbird-roberta-base''': 4096,
'''google/bigbird-roberta-large''': 4096,
'''google/bigbird-base-trivia-itc''': 4096,
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : int = VOCAB_FILES_NAMES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] = ['input_ids', 'attention_mask']
lowercase : List[int] = []
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
UpperCamelCase : Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
UpperCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Dict = vocab_file
UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(SCREAMING_SNAKE_CASE_ )
@property
def a_ ( self ):
return self.sp_model.get_piece_size()
def a_ ( self ):
UpperCamelCase : Any = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
UpperCamelCase : Dict = self.__dict__.copy()
UpperCamelCase : List[str] = None
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCamelCase : Optional[Any] = {}
UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ )
return token
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = []
UpperCamelCase : Dict = """"""
UpperCamelCase : Tuple = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token
UpperCamelCase : List[str] = True
UpperCamelCase : str = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = False
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ )
return out_string.strip()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = kwargs.pop("""use_source_tokenizer""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
UpperCamelCase : Dict = []
UpperCamelCase : Union[str, Any] = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Any = []
sub_texts.append(SCREAMING_SNAKE_CASE_ )
else:
current_sub_text.append(SCREAMING_SNAKE_CASE_ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
UpperCamelCase : List[Any] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(SCREAMING_SNAKE_CASE_ ) )
else:
UpperCamelCase : int = """""".join(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
UpperCamelCase : Union[str, Any] = self.clean_up_tokenization(SCREAMING_SNAKE_CASE_ )
return clean_text
else:
return text
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi:
UpperCamelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase : Optional[int] = [self.cls_token_id]
UpperCamelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : str = [self.sep_token_id]
UpperCamelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 27 |
"""simple docstring"""
from typing import Any
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = data
UpperCamelCase : Optional[Any] = None
def __repr__( self ):
return f'Node({self.data})'
class lowerCamelCase :
def __init__( self ):
UpperCamelCase : Dict = None
def __iter__( self ):
UpperCamelCase : int = self.head
while node:
yield node.data
UpperCamelCase : Union[str, Any] = node.next
def __len__( self ):
return sum(1 for _ in self )
def __repr__( self ):
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
UpperCamelCase : List[Any] = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = current.next
UpperCamelCase : Optional[Any] = data
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index <= len(self ):
raise IndexError("""list index out of range""" )
UpperCamelCase : Optional[Any] = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
UpperCamelCase : Dict = new_node
elif index == 0:
UpperCamelCase : Any = self.head # link new_node to head
UpperCamelCase : Any = new_node
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : str = temp.next
UpperCamelCase : Any = temp.next
UpperCamelCase : Optional[Any] = new_node
def a_ ( self ): # print every node data
print(self )
def a_ ( self ):
return self.delete_nth(0 )
def a_ ( self ): # delete from tail
return self.delete_nth(len(self ) - 1 )
def a_ ( self , SCREAMING_SNAKE_CASE_ = 0 ):
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("""List index out of range.""" )
UpperCamelCase : Union[str, Any] = self.head # default first node
if index == 0:
UpperCamelCase : Optional[Any] = self.head.next
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : int = temp.next
UpperCamelCase : Optional[Any] = temp.next
UpperCamelCase : Dict = temp.next.next
return delete_node.data
def a_ ( self ):
return self.head is None
def a_ ( self ):
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Union[str, Any] = self.head
while current:
# Store the current node's next node.
UpperCamelCase : Optional[int] = current.next
# Make the current node's next point backwards
UpperCamelCase : Optional[Any] = prev
# Make the previous node be the current node
UpperCamelCase : int = current
# Make the current node the next node (to progress iteration)
UpperCamelCase : Optional[int] = next_node
# Return prev in order to put the head at the end
UpperCamelCase : Optional[int] = prev
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case_ ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(snake_case_ ) == i
linked_list.insert_nth(snake_case_ ,i + 1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 ,1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(snake_case_ ) == 9
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
UpperCamelCase : Optional[Any] = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8 ,1 ) )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
"""dlrow olleH""",
7,
5_5_5_5,
0,
-192.55555,
"""Hello, world!""",
77.9,
Node(1_0 ),
None,
None,
12.20,
]
UpperCamelCase : List[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case_ )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
UpperCamelCase : Dict = linked_list.delete_head()
assert result == -9
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
UpperCamelCase : int = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
UpperCamelCase : Optional[Any] = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("""Hello again, world!""" ) )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case_ )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case_ )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ):
'''simple docstring'''
from doctest import testmod
testmod()
UpperCamelCase : List[Any] = LinkedList()
linked_list.insert_head(input("""Inserting 1st at head """ ).strip() )
linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() )
linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nDelete head""" )
linked_list.delete_head()
print("""Delete tail""" )
linked_list.delete_tail()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nReverse linked list""" )
linked_list.reverse()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nString representation of linked list:""" )
print(snake_case_ )
print("""\nReading/changing Node data using indexing:""" )
print(f'Element at Position 1: {linked_list[1]}' )
UpperCamelCase : List[Any] = input("""Enter New Value: """ ).strip()
print("""New list:""" )
print(snake_case_ )
print(f'length of linked_list is : {len(snake_case_ )}' )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
__A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 100 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ):
if audio_length_in_s is None:
UpperCamelCase : Any = self.unet.config.sample_size / self.unet.config.sample_rate
UpperCamelCase : int = audio_length_in_s * self.unet.config.sample_rate
UpperCamelCase : Dict = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'
f' {3 * down_scale_factor / self.unet.config.sample_rate}.' )
UpperCamelCase : Dict = int(SCREAMING_SNAKE_CASE_ )
if sample_size % down_scale_factor != 0:
UpperCamelCase : Dict = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'
f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'
""" process.""" )
UpperCamelCase : List[Any] = int(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = next(iter(self.unet.parameters() ) ).dtype
UpperCamelCase : int = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size:
raise ValueError(
f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch'
f' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
UpperCamelCase : Optional[int] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=audio.device )
UpperCamelCase : Optional[Any] = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCamelCase : Dict = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample
# 2. compute previous image: x_t -> t_t-1
UpperCamelCase : Optional[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample
UpperCamelCase : Any = audio.clamp(-1 , 1 ).float().cpu().numpy()
UpperCamelCase : Dict = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Dict = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
__A : Union[str, Any] = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : Tuple = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = 0
UpperCamelCase : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : int = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Any = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Any = [lines[index + 1]]
index += 1
else:
UpperCamelCase : List[str] = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
def _inner(snake_case_ : Tuple ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Dict ):
return x
if key is None:
UpperCamelCase : int = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Tuple = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : int ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : List[Any] ):
UpperCamelCase : Any = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[str] = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : str = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[Any] = keys[:-1]
UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ):
'''simple docstring'''
with open(snake_case_ ,"""r""" ) as f:
UpperCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : Dict = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Optional[Any] = main_blocks[block_idx]
UpperCamelCase : Optional[int] = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : Union[str, Any] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : List[str] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[Any] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Any = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'EncodecFeatureExtractor'
lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.feature_extractor
UpperCamelCase : Any = False
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ):
return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Any = args[0]
UpperCamelCase : str = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is not None:
UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase : int = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""]
return inputs
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Optional[int] = args[0]
UpperCamelCase : Any = args[1:]
if audio_values is not None:
return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ )
else:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape
if padding_mask is None:
return list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1]
UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value
UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audio_values.tolist()
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 )
return audio_values
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : list[int] ):
'''simple docstring'''
if not numbers:
return 0
if not isinstance(snake_case_ ,(list, tuple) ) or not all(
isinstance(snake_case_ ,snake_case_ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
UpperCamelCase : int = numbers[0]
for i in range(1 ,len(snake_case_ ) ):
# update the maximum and minimum subarray products
UpperCamelCase : List[str] = numbers[i]
if number < 0:
UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now
UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number )
UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number )
# update the maximum product found till now
UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ )
return max_prod
| 27 | 1 |
"""simple docstring"""
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ):
UpperCamelCase : Dict = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : Optional[int] = seq_length
UpperCamelCase : int = is_training
UpperCamelCase : Optional[Any] = use_token_type_ids
UpperCamelCase : Any = use_input_mask
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = use_mc_token_ids
UpperCamelCase : List[str] = vocab_size
UpperCamelCase : int = hidden_size
UpperCamelCase : Optional[int] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : int = intermediate_size
UpperCamelCase : Union[str, Any] = hidden_act
UpperCamelCase : Optional[int] = hidden_dropout_prob
UpperCamelCase : List[Any] = attention_probs_dropout_prob
UpperCamelCase : Optional[int] = max_position_embeddings
UpperCamelCase : Optional[Any] = type_vocab_size
UpperCamelCase : List[Any] = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : int = num_labels
UpperCamelCase : str = num_choices
UpperCamelCase : int = scope
UpperCamelCase : Any = self.vocab_size - 1
def a_ ( self ):
UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = None
if self.use_input_mask:
UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Optional[int] = None
if self.use_token_type_ids:
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase : Optional[int] = None
if self.use_mc_token_ids:
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length )
UpperCamelCase : str = None
UpperCamelCase : List[Any] = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Any = self.get_config()
UpperCamelCase : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def a_ ( self ):
return CTRLConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = CTRLModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ )
model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = CTRLLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self ):
UpperCamelCase : str = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : Optional[Any] = config_and_inputs
UpperCamelCase : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask}
return config, inputs_dict
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.num_labels
UpperCamelCase : List[Any] = CTRLForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : List[str] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
lowercase : str = (CTRLLMHeadModel,) if is_torch_available() else ()
lowercase : List[Any] = (
{
'feature-extraction': CTRLModel,
'text-classification': CTRLForSequenceClassification,
'text-generation': CTRLLMHeadModel,
'zero-shot': CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Optional[int] = True
lowercase : Dict = False
lowercase : List[str] = False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def a_ ( self ):
UpperCamelCase : List[Any] = CTRLModelTester(self )
UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def a_ ( self ):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE_ )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def a_ ( self ):
pass
@slow
def a_ ( self ):
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : List[Any] = CTRLModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def a_ ( self ):
pass
@require_torch
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def a_ ( self ):
UpperCamelCase : Tuple = CTRLLMHeadModel.from_pretrained("""ctrl""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor(
[[1_1859, 0, 1611, 8]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # Legal the president is
UpperCamelCase : Any = [
1_1859,
0,
1611,
8,
5,
150,
2_6449,
2,
19,
348,
469,
3,
2595,
48,
2_0740,
24_6533,
24_6533,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
UpperCamelCase : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Any = AudioLDMPipeline
lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS
lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS
lowercase : Tuple = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Optional[Any] = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
UpperCamelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase : int = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
UpperCamelCase : Tuple = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def a_ ( self ):
UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Any = self.get_dummy_components()
UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Tuple = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[str] = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : str = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
UpperCamelCase : Tuple = prompt_embeds
# forward
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : List[str] = self.get_dummy_components()
UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""]
UpperCamelCase : List[Any] = negative_prompt
UpperCamelCase : str = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[Any] = []
for p in [prompt, negative_prompt]:
UpperCamelCase : int = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
embeds.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Tuple = embeds
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Optional[int] = self.get_dummy_components()
UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = """egg cracking"""
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Union[str, Any] = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
UpperCamelCase : Dict = 2
UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
UpperCamelCase : List[str] = 2
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
UpperCamelCase : Any = 2
UpperCamelCase : str = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Tuple = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016
UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = ["""hey"""]
UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : str = output.audios.shape
assert audio_shape == (1, 256)
UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : List[str] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def a_ ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def a_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@slow
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) )
UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def a_ ( self ):
UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 25
UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240]
UpperCamelCase : Optional[Any] = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def a_ ( self ):
UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790]
UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 27 | 1 |
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def A_ ( snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : int = int(number**0.5 )
return number == sq * sq
def A_ ( snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
UpperCamelCase : int = x_den * y_den * z_den
UpperCamelCase : int = gcd(snake_case_ ,snake_case_ )
top //= hcf
bottom //= hcf
return top, bottom
def A_ ( snake_case_ : int = 3_5 ):
'''simple docstring'''
UpperCamelCase : set = set()
UpperCamelCase : int
UpperCamelCase : Fraction = Fraction(0 )
UpperCamelCase : tuple[int, int]
for x_num in range(1 ,order + 1 ):
for x_den in range(x_num + 1 ,order + 1 ):
for y_num in range(1 ,order + 1 ):
for y_den in range(y_num + 1 ,order + 1 ):
# n=1
UpperCamelCase : Union[str, Any] = x_num * y_den + x_den * y_num
UpperCamelCase : Any = x_den * y_den
UpperCamelCase : List[str] = gcd(snake_case_ ,snake_case_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCamelCase : Union[str, Any] = add_three(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
unique_s.add(snake_case_ )
# n=2
UpperCamelCase : str = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
UpperCamelCase : int = x_den * x_den * y_den * y_den
if is_sq(snake_case_ ) and is_sq(snake_case_ ):
UpperCamelCase : Optional[Any] = int(sqrt(snake_case_ ) )
UpperCamelCase : int = int(sqrt(snake_case_ ) )
UpperCamelCase : Optional[int] = gcd(snake_case_ ,snake_case_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCamelCase : Union[str, Any] = add_three(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
unique_s.add(snake_case_ )
# n=-1
UpperCamelCase : Optional[Any] = x_num * y_num
UpperCamelCase : Any = x_den * y_num + x_num * y_den
UpperCamelCase : Optional[Any] = gcd(snake_case_ ,snake_case_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCamelCase : List[str] = add_three(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
unique_s.add(snake_case_ )
# n=2
UpperCamelCase : Union[str, Any] = x_num * x_num * y_num * y_num
UpperCamelCase : List[Any] = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(snake_case_ ) and is_sq(snake_case_ ):
UpperCamelCase : List[str] = int(sqrt(snake_case_ ) )
UpperCamelCase : List[str] = int(sqrt(snake_case_ ) )
UpperCamelCase : str = gcd(snake_case_ ,snake_case_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCamelCase : Optional[Any] = add_three(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
unique_s.add(snake_case_ )
for num, den in unique_s:
total += Fraction(snake_case_ ,snake_case_ )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'''{solution() = }''')
| 27 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase : List[str] = args.log_outputs
UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] )
# load metric
UpperCamelCase : List[Any] = load_metric("""wer""" )
UpperCamelCase : Any = load_metric("""cer""" )
# compute metrics
UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
# print & log results
UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case_ )
with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt'
UpperCamelCase : str = f'log_{dataset_id}_targets.txt'
with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
p.write(f'{i}' + """\n""" )
p.write(batch["""prediction"""] + """\n""" )
t.write(f'{i}' + """\n""" )
t.write(batch["""target"""] + """\n""" )
result.map(snake_case_ ,with_indices=snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """]
for t in token_sequences_to_ignore:
UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) )
return text
def A_ ( snake_case_ : str ):
'''simple docstring'''
# load dataset
UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase : Dict = feature_extractor.sampling_rate
# resample audio
UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase : int = 0 if torch.cuda.is_available() else -1
UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Union[str, Any] ):
UpperCamelCase : List[Any] = asr(
batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s )
UpperCamelCase : Union[str, Any] = prediction["""text"""]
UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] )
return batch
# run inference on all examples
UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ ,snake_case_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers'''
)
parser.add_argument(
'''--dataset''',
type=str,
required=True,
help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''',
)
parser.add_argument(
'''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice'''
)
parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''')
parser.add_argument(
'''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.'''
)
parser.add_argument(
'''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.'''
)
parser.add_argument(
'''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.'''
)
parser.add_argument(
'''--device''',
type=int,
default=None,
help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''',
)
__A : Optional[Any] = parser.parse_args()
main(args)
| 27 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__A : Any = logging.get_logger(__name__)
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = size if size is not None else {"""height""": 384, """width""": 384}
UpperCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = do_resize
UpperCamelCase : Optional[int] = size
UpperCamelCase : List[str] = resample
UpperCamelCase : str = do_rescale
UpperCamelCase : Any = rescale_factor
UpperCamelCase : Tuple = do_normalize
UpperCamelCase : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCamelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCamelCase : Any = do_convert_rgb
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' )
UpperCamelCase : Any = (size["""height"""], size["""width"""])
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Any = do_resize if do_resize is not None else self.do_resize
UpperCamelCase : str = resample if resample is not None else self.resample
UpperCamelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean
UpperCamelCase : Any = image_std if image_std is not None else self.image_std
UpperCamelCase : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCamelCase : Optional[int] = size if size is not None else self.size
UpperCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCamelCase : Optional[Any] = [convert_to_rgb(SCREAMING_SNAKE_CASE_ ) for image in images]
# All transformations expect numpy arrays.
UpperCamelCase : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
UpperCamelCase : Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
UpperCamelCase : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
UpperCamelCase : int = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : List[str] = BatchFeature(data={"""pixel_values""": images} , tensor_type=SCREAMING_SNAKE_CASE_ )
return encoded_outputs
| 27 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'EncodecFeatureExtractor'
lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.feature_extractor
UpperCamelCase : Any = False
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ):
return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Any = args[0]
UpperCamelCase : str = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is not None:
UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase : int = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""]
return inputs
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Optional[int] = args[0]
UpperCamelCase : Any = args[1:]
if audio_values is not None:
return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ )
else:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape
if padding_mask is None:
return list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1]
UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value
UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audio_values.tolist()
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 )
return audio_values
| 27 | 1 |
"""simple docstring"""
def A_ ( snake_case_ : list[int] ):
'''simple docstring'''
if not numbers:
return 0
if not isinstance(snake_case_ ,(list, tuple) ) or not all(
isinstance(snake_case_ ,snake_case_ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
UpperCamelCase : int = numbers[0]
for i in range(1 ,len(snake_case_ ) ):
# update the maximum and minimum subarray products
UpperCamelCase : List[str] = numbers[i]
if number < 0:
UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now
UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number )
UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number )
# update the maximum product found till now
UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ )
return max_prod
| 27 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ):
'''simple docstring'''
UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" )
UpperCamelCase : Optional[int] = soup.findAll("""h1""" )
UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} )
values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''')
| 27 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = ['image_processor', 'tokenizer']
lowercase : int = 'FlavaImageProcessor'
lowercase : Optional[Any] = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = kwargs.pop("""feature_extractor""" )
UpperCamelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
UpperCamelCase : List[Any] = self.tokenizer(
text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if images is not None:
UpperCamelCase : Optional[Any] = self.image_processor(
SCREAMING_SNAKE_CASE_ , return_image_mask=SCREAMING_SNAKE_CASE_ , return_codebook_pixels=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if text is not None and images is not None:
encoding.update(SCREAMING_SNAKE_CASE_ )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def a_ ( self ):
UpperCamelCase : Dict = self.tokenizer.model_input_names
UpperCamelCase : str = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def a_ ( self ):
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , SCREAMING_SNAKE_CASE_ , )
return self.image_processor_class
@property
def a_ ( self ):
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , SCREAMING_SNAKE_CASE_ , )
return self.image_processor
| 27 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ):
UpperCamelCase : Tuple = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : Optional[Any] = seq_length
UpperCamelCase : int = is_training
UpperCamelCase : Union[str, Any] = use_input_mask
UpperCamelCase : Union[str, Any] = use_token_type_ids
UpperCamelCase : Dict = use_labels
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : Tuple = num_hidden_layers
UpperCamelCase : Any = num_attention_heads
UpperCamelCase : int = intermediate_size
UpperCamelCase : str = hidden_act
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : List[Any] = max_position_embeddings
UpperCamelCase : Optional[Any] = type_vocab_size
UpperCamelCase : int = type_sequence_label_size
UpperCamelCase : Dict = initializer_range
UpperCamelCase : Dict = num_labels
UpperCamelCase : Tuple = num_choices
UpperCamelCase : Optional[int] = scope
UpperCamelCase : List[Any] = q_groups
UpperCamelCase : Tuple = k_groups
UpperCamelCase : Any = v_groups
UpperCamelCase : List[str] = post_attention_groups
UpperCamelCase : Tuple = intermediate_groups
UpperCamelCase : int = output_groups
def a_ ( self ):
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Tuple = None
if self.use_input_mask:
UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Optional[int] = None
UpperCamelCase : List[Any] = None
UpperCamelCase : Dict = None
if self.use_labels:
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : str = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.num_labels
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.num_labels
UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = self.num_choices
UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : Optional[int] = self.prepare_config_and_inputs()
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs
UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
lowercase : Dict = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Dict = False
lowercase : str = True
lowercase : str = False
def a_ ( self ):
UpperCamelCase : Any = SqueezeBertModelTester(self )
UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def a_ ( self ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0]
UpperCamelCase : Optional[Any] = torch.Size((1, 3) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 27 | 1 |
"""simple docstring"""
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
__A : Union[str, Any] = {
'''return_dict''': False,
'''output_hidden_states''': True,
'''output_attentions''': True,
'''torchscript''': True,
'''torch_dtype''': '''float16''',
'''use_bfloat16''': True,
'''tf_legacy_loss''': True,
'''pruned_heads''': {'''a''': 1},
'''tie_word_embeddings''': False,
'''is_decoder''': True,
'''cross_attention_hidden_size''': 128,
'''add_cross_attention''': True,
'''tie_encoder_decoder''': True,
'''max_length''': 50,
'''min_length''': 3,
'''do_sample''': True,
'''early_stopping''': True,
'''num_beams''': 3,
'''num_beam_groups''': 3,
'''diversity_penalty''': 0.5,
'''temperature''': 2.0,
'''top_k''': 10,
'''top_p''': 0.7,
'''typical_p''': 0.2,
'''repetition_penalty''': 0.8,
'''length_penalty''': 0.8,
'''no_repeat_ngram_size''': 5,
'''encoder_no_repeat_ngram_size''': 5,
'''bad_words_ids''': [1, 2, 3],
'''num_return_sequences''': 3,
'''chunk_size_feed_forward''': 5,
'''output_scores''': True,
'''return_dict_in_generate''': True,
'''forced_bos_token_id''': 2,
'''forced_eos_token_id''': 3,
'''remove_invalid_values''': True,
'''architectures''': ['''BertModel'''],
'''finetuning_task''': '''translation''',
'''id2label''': {0: '''label'''},
'''label2id''': {'''label''': '''0'''},
'''tokenizer_class''': '''BertTokenizerFast''',
'''prefix''': '''prefix''',
'''bos_token_id''': 6,
'''pad_token_id''': 7,
'''eos_token_id''': 8,
'''sep_token_id''': 9,
'''decoder_start_token_id''': 10,
'''exponential_decay_length_penalty''': (5, 1.01),
'''suppress_tokens''': [0, 1],
'''begin_suppress_tokens''': 2,
'''task_specific_params''': {'''translation''': '''some_params'''},
'''problem_type''': '''regression''',
}
@is_staging_test
class lowerCamelCase ( unittest.TestCase ):
@classmethod
def a_ ( cls ):
UpperCamelCase : List[Any] = TOKEN
HfFolder.save_token(SCREAMING_SNAKE_CASE_ )
@classmethod
def a_ ( cls ):
try:
delete_repo(token=cls._token , repo_id="""test-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-config""" )
except HTTPError:
pass
def a_ ( self ):
UpperCamelCase : Any = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("""test-config""" , use_auth_token=self._token )
UpperCamelCase : str = BertConfig.from_pretrained(f'{USER}/test-config' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(SCREAMING_SNAKE_CASE_ , repo_id="""test-config""" , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token )
UpperCamelCase : Optional[int] = BertConfig.from_pretrained(f'{USER}/test-config' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a_ ( self ):
UpperCamelCase : int = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token )
UpperCamelCase : Optional[int] = BertConfig.from_pretrained("""valid_org/test-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
SCREAMING_SNAKE_CASE_ , repo_id="""valid_org/test-config-org""" , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token )
UpperCamelCase : Union[str, Any] = BertConfig.from_pretrained("""valid_org/test-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a_ ( self ):
CustomConfig.register_for_auto_class()
UpperCamelCase : Any = CustomConfig(attribute=42 )
config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} )
UpperCamelCase : Dict = AutoConfig.from_pretrained(f'{USER}/test-dynamic-config' , trust_remote_code=SCREAMING_SNAKE_CASE_ )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" )
self.assertEqual(new_config.attribute , 42 )
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
UpperCamelCase : str = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
UpperCamelCase : Dict = c.n_embd + 1 # int
UpperCamelCase : Dict = c.resid_pdrop + 1.0 # float
UpperCamelCase : Union[str, Any] = not c.scale_attn_weights # bool
UpperCamelCase : Tuple = c.summary_type + """foo""" # str
c.update_from_string(
f'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , c.n_embd , """mismatch for key: n_embd""" )
self.assertEqual(SCREAMING_SNAKE_CASE_ , c.resid_pdrop , """mismatch for key: resid_pdrop""" )
self.assertEqual(SCREAMING_SNAKE_CASE_ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" )
self.assertEqual(SCREAMING_SNAKE_CASE_ , c.summary_type , """mismatch for key: summary_type""" )
def a_ ( self ):
UpperCamelCase : Union[str, Any] = PretrainedConfig()
UpperCamelCase : int = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] )
UpperCamelCase : Tuple = [key for key, value in config_common_kwargs.items() if value == getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
if len(SCREAMING_SNAKE_CASE_ ) > 0:
raise ValueError(
"""The following keys are set with the default values in"""
""" `test_configuration_common.config_common_kwargs` pick another value for them:"""
f' {", ".join(SCREAMING_SNAKE_CASE_ )}.' )
def a_ ( self ):
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
# config is in subfolder, the following should not work without specifying the subfolder
UpperCamelCase : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" )
UpperCamelCase : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
# A mock response for an HTTP head request to emulate server down
UpperCamelCase : str = mock.Mock()
UpperCamelCase : Union[str, Any] = 500
UpperCamelCase : Optional[int] = {}
UpperCamelCase : List[Any] = HTTPError
UpperCamelCase : Union[str, Any] = {}
# Download this model to make sure it's in the cache.
UpperCamelCase : Optional[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("""requests.Session.request""" , return_value=SCREAMING_SNAKE_CASE_ ) as mock_head:
UpperCamelCase : Tuple = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# This check we did call the fake head request
mock_head.assert_called()
def a_ ( self ):
# This test is for deprecated behavior and can be removed in v5
UpperCamelCase : int = BertConfig.from_pretrained(
"""https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" )
def a_ ( self ):
UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained("""bert-base-cased""" )
UpperCamelCase : Optional[Any] = ["""config.4.0.0.json"""]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 2
json.dump(configuration.to_dict() , open(os.path.join(SCREAMING_SNAKE_CASE_ , """config.4.0.0.json""" ) , """w""" ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
UpperCamelCase : List[Any] = ["""config.42.0.0.json"""]
UpperCamelCase : Optional[int] = 768
configuration.save_pretrained(SCREAMING_SNAKE_CASE_ )
shutil.move(os.path.join(SCREAMING_SNAKE_CASE_ , """config.4.0.0.json""" ) , os.path.join(SCREAMING_SNAKE_CASE_ , """config.42.0.0.json""" ) )
UpperCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertEqual(new_configuration.hidden_size , 768 )
def a_ ( self ):
# This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
UpperCamelCase : List[Any] = """hf-internal-testing/test-two-configs"""
import transformers as new_transformers
UpperCamelCase : Optional[Any] = """v4.0.0"""
UpperCamelCase , UpperCamelCase : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained(
SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
UpperCamelCase : Dict = """v3.0.0"""
UpperCamelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertEqual(old_configuration.hidden_size , 768 )
| 27 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCamelCase ( nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ):
super().__init__()
UpperCamelCase : int = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCamelCase : Optional[Any] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCamelCase : List[Any] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCamelCase : int = [1, 0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ):
UpperCamelCase : Dict = hidden_states
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCamelCase : str = self.transformer_index_for_condition[i]
UpperCamelCase : Any = self.transformers[transformer_index](
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCamelCase : List[str] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
__A : List[Any] = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: ''')))
print('''Googling.....''')
__A : Optional[Any] = F'''https://www.google.com/search?q={query}&num=100'''
__A : Optional[int] = requests.get(
url,
headers={'''User-Agent''': str(UserAgent().random)},
)
try:
__A : Optional[int] = (
BeautifulSoup(res.text, '''html.parser''')
.find('''div''', attrs={'''class''': '''yuRUbf'''})
.find('''a''')
.get('''href''')
)
except AttributeError:
__A : str = parse_qs(
BeautifulSoup(res.text, '''html.parser''')
.find('''div''', attrs={'''class''': '''kCrYT'''})
.find('''a''')
.get('''href''')
)['''url'''][0]
webbrowser.open(link)
| 27 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : Optional[int] = {
'''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''',
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = 'mvp'
lowercase : Optional[Any] = ['past_key_values']
lowercase : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_0267 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=800 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Dict = max_position_embeddings
UpperCamelCase : Optional[int] = d_model
UpperCamelCase : Optional[Any] = encoder_ffn_dim
UpperCamelCase : Any = encoder_layers
UpperCamelCase : List[Any] = encoder_attention_heads
UpperCamelCase : Optional[Any] = decoder_ffn_dim
UpperCamelCase : Optional[int] = decoder_layers
UpperCamelCase : Dict = decoder_attention_heads
UpperCamelCase : List[str] = dropout
UpperCamelCase : List[str] = attention_dropout
UpperCamelCase : List[Any] = activation_dropout
UpperCamelCase : Dict = activation_function
UpperCamelCase : List[str] = init_std
UpperCamelCase : int = encoder_layerdrop
UpperCamelCase : Dict = decoder_layerdrop
UpperCamelCase : Any = classifier_dropout
UpperCamelCase : Tuple = use_cache
UpperCamelCase : Dict = encoder_layers
UpperCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCamelCase : Optional[Any] = use_prompt
UpperCamelCase : Any = prompt_length
UpperCamelCase : List[Any] = prompt_mid_dim
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = self.bos_token_id
warnings.warn(
f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
"""The config can simply be saved and uploaded again to be fixed.""" )
| 27 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
UpperCamelCase : Union[str, Any] = tempfile.mkdtemp()
# fmt: off
UpperCamelCase : str = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
UpperCamelCase : Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
UpperCamelCase : Dict = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
UpperCamelCase : Tuple = {"""unk_token""": """<unk>"""}
UpperCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[int] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48145466, 0.4578275, 0.40821073],
"""image_std""": [0.26862954, 0.26130258, 0.27577711],
}
UpperCamelCase : List[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
shutil.rmtree(self.tmpdirname )
def a_ ( self ):
UpperCamelCase : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
UpperCamelCase : Any = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a_ ( self ):
UpperCamelCase : List[Any] = self.get_tokenizer()
UpperCamelCase : Optional[int] = self.get_rust_tokenizer()
UpperCamelCase : int = self.get_image_processor()
UpperCamelCase : Optional[int] = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
processor_slow.save_pretrained(self.tmpdirname )
UpperCamelCase : Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
processor_fast.save_pretrained(self.tmpdirname )
UpperCamelCase : List[str] = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCamelCase : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
UpperCamelCase : int = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 )
UpperCamelCase : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.get_image_processor()
UpperCamelCase : Optional[int] = self.get_tokenizer()
UpperCamelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = self.prepare_image_inputs()
UpperCamelCase : Optional[Any] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" )
UpperCamelCase : Optional[int] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def a_ ( self ):
UpperCamelCase : List[str] = self.get_image_processor()
UpperCamelCase : List[Any] = self.get_tokenizer()
UpperCamelCase : str = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = """lower newer"""
UpperCamelCase : Tuple = processor(text=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def a_ ( self ):
UpperCamelCase : Dict = self.get_image_processor()
UpperCamelCase : Optional[Any] = self.get_tokenizer()
UpperCamelCase : List[Any] = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = """lower newer"""
UpperCamelCase : Tuple = self.prepare_image_inputs()
UpperCamelCase : int = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def a_ ( self ):
UpperCamelCase : int = self.get_image_processor()
UpperCamelCase : Tuple = self.get_tokenizer()
UpperCamelCase : Optional[Any] = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.prepare_image_inputs()
UpperCamelCase : Dict = self.prepare_image_inputs()
UpperCamelCase : Tuple = processor(images=SCREAMING_SNAKE_CASE_ , visual_prompt=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def a_ ( self ):
UpperCamelCase : Union[str, Any] = self.get_image_processor()
UpperCamelCase : Dict = self.get_tokenizer()
UpperCamelCase : Any = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCamelCase : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A : Optional[Any] = 16
__A : str = 32
def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ):
'''simple docstring'''
UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
UpperCamelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" )
def tokenize_function(snake_case_ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase : Optional[Any] = datasets.map(
snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase : Optional[Any] = 1_6
elif accelerator.mixed_precision != "no":
UpperCamelCase : Any = 8
else:
UpperCamelCase : Optional[Any] = None
return tokenizer.pad(
snake_case_ ,padding="""longest""" ,max_length=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_tensors="""pt""" ,)
# Instantiate dataloaders.
UpperCamelCase : str = DataLoader(
tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
UpperCamelCase : Dict = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A : int = mocked_dataloaders # noqa: F811
def A_ ( snake_case_ : Tuple ,snake_case_ : Dict ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case_ ) == "1":
UpperCamelCase : Union[str, Any] = 2
# New Code #
UpperCamelCase : Dict = int(args.gradient_accumulation_steps )
UpperCamelCase : List[Any] = int(args.local_sgd_steps )
# Initialize accelerator
UpperCamelCase : str = Accelerator(
cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case_ )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase : Union[str, Any] = config["""lr"""]
UpperCamelCase : int = int(config["""num_epochs"""] )
UpperCamelCase : int = int(config["""seed"""] )
UpperCamelCase : List[Any] = int(config["""batch_size"""] )
UpperCamelCase : Optional[int] = evaluate.load("""glue""" ,"""mrpc""" )
set_seed(snake_case_ )
UpperCamelCase , UpperCamelCase : Dict = get_dataloaders(snake_case_ ,snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase : Tuple = model.to(accelerator.device )
# Instantiate optimizer
UpperCamelCase : List[Any] = AdamW(params=model.parameters() ,lr=snake_case_ )
# Instantiate scheduler
UpperCamelCase : str = get_linear_schedule_with_warmup(
optimizer=snake_case_ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(snake_case_ ) * num_epochs) ,)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
with LocalSGD(
accelerator=snake_case_ ,model=snake_case_ ,local_sgd_steps=snake_case_ ,enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(snake_case_ ):
UpperCamelCase : Optional[Any] = model(**snake_case_ )
UpperCamelCase : Optional[int] = output.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCamelCase : Any = model(**snake_case_ )
UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 )
UpperCamelCase , UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=snake_case_ ,references=snake_case_ ,)
UpperCamelCase : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' ,snake_case_ )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" ,type=snake_case_ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,)
parser.add_argument(
"""--local_sgd_steps""" ,type=snake_case_ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" )
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
UpperCamelCase : Dict = parser.parse_args()
UpperCamelCase : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(snake_case_ ,snake_case_ )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase : List[str] = args.log_outputs
UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] )
# load metric
UpperCamelCase : List[Any] = load_metric("""wer""" )
UpperCamelCase : Any = load_metric("""cer""" )
# compute metrics
UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
# print & log results
UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case_ )
with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt'
UpperCamelCase : str = f'log_{dataset_id}_targets.txt'
with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
p.write(f'{i}' + """\n""" )
p.write(batch["""prediction"""] + """\n""" )
t.write(f'{i}' + """\n""" )
t.write(batch["""target"""] + """\n""" )
result.map(snake_case_ ,with_indices=snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """]
for t in token_sequences_to_ignore:
UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) )
return text
def A_ ( snake_case_ : str ):
'''simple docstring'''
# load dataset
UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase : Dict = feature_extractor.sampling_rate
# resample audio
UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase : int = 0 if torch.cuda.is_available() else -1
UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Union[str, Any] ):
UpperCamelCase : List[Any] = asr(
batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s )
UpperCamelCase : Union[str, Any] = prediction["""text"""]
UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] )
return batch
# run inference on all examples
UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ ,snake_case_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers'''
)
parser.add_argument(
'''--dataset''',
type=str,
required=True,
help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''',
)
parser.add_argument(
'''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice'''
)
parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''')
parser.add_argument(
'''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.'''
)
parser.add_argument(
'''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.'''
)
parser.add_argument(
'''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.'''
)
parser.add_argument(
'''--device''',
type=int,
default=None,
help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''',
)
__A : Optional[Any] = parser.parse_args()
main(args)
| 27 |
"""simple docstring"""
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
__A : Any = logging.get_logger(__name__)
__A : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__A : Optional[Any] = {
'''vocab_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'''
},
'''merges_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'''
},
}
__A : Any = {'''allegro/herbert-base-cased''': 514}
__A : Optional[Any] = {}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Dict = VOCAB_FILES_NAMES
lowercase : Any = PRETRAINED_VOCAB_FILES_MAP
lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Union[str, Any] = HerbertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="</s>" , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = [self.cls_token_id]
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Tuple = [self.sep_token_id]
UpperCamelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[Any] = (DDIMParallelScheduler,)
lowercase : Any = (('eta', 0.0), ('num_inference_steps', 5_0))
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_ )
return config
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.scheduler_classes[0]
UpperCamelCase : Tuple = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Optional[Any] = 10, 0.0
UpperCamelCase : Optional[Any] = self.dummy_model()
UpperCamelCase : Dict = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ )
for t in scheduler.timesteps:
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample
return sample
def a_ ( self ):
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.scheduler_classes[0]
UpperCamelCase : Tuple = self.get_scheduler_config(steps_offset=1 )
UpperCamelCase : str = scheduler_class(**SCREAMING_SNAKE_CASE_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def a_ ( self ):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def a_ ( self ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.scheduler_classes[0]
UpperCamelCase : Optional[int] = self.get_scheduler_config()
UpperCamelCase : Any = scheduler_class(**SCREAMING_SNAKE_CASE_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5
def a_ ( self ):
UpperCamelCase : Dict = self.scheduler_classes[0]
UpperCamelCase : str = self.get_scheduler_config()
UpperCamelCase : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : int = 10, 0.0
scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.dummy_model()
UpperCamelCase : Optional[int] = self.dummy_sample_deter
UpperCamelCase : Optional[Any] = self.dummy_sample_deter + 0.1
UpperCamelCase : Any = self.dummy_sample_deter - 0.1
UpperCamelCase : Any = samplea.shape[0]
UpperCamelCase : Any = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCamelCase : int = torch.arange(SCREAMING_SNAKE_CASE_ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCamelCase : Optional[int] = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4982 ) < 1e-3
def a_ ( self ):
UpperCamelCase : Tuple = self.full_loop()
UpperCamelCase : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : List[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.223967 ) < 1e-3
def a_ ( self ):
UpperCamelCase : Tuple = self.full_loop(prediction_type="""v_prediction""" )
UpperCamelCase : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
assert abs(result_sum.item() - 52.5302 ) < 1e-2
assert abs(result_mean.item() - 0.0684 ) < 1e-3
def a_ ( self ):
# We specify different beta, so that the first alpha is 0.99
UpperCamelCase : Union[str, Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_ , beta_start=0.01 )
UpperCamelCase : Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : str = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.1951 ) < 1e-3
def a_ ( self ):
# We specify different beta, so that the first alpha is 0.99
UpperCamelCase : Optional[Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_ , beta_start=0.01 )
UpperCamelCase : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : str = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.1941 ) < 1e-3
| 27 |
"""simple docstring"""
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ):
UpperCamelCase : Dict = tokenizer
UpperCamelCase : Optional[Any] = tokenizer.bos_token_id
UpperCamelCase : Any = dataset
UpperCamelCase : List[str] = seq_length
UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self ):
UpperCamelCase : Dict = iter(self.dataset )
UpperCamelCase : Union[str, Any] = True
while more_examples:
UpperCamelCase , UpperCamelCase : Tuple = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
UpperCamelCase : Dict = False
break
UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""]
UpperCamelCase : str = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ):
UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length]
if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length:
yield torch.tensor(SCREAMING_SNAKE_CASE_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Dict = {"""streaming""": True}
UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ )
UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length )
UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size )
return eval_dataloader
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
model.eval()
UpperCamelCase : Dict = []
for step, batch in enumerate(snake_case_ ):
with torch.no_grad():
UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ )
UpperCamelCase : Any = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(snake_case_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) )
try:
UpperCamelCase : Dict = torch.exp(snake_case_ )
except OverflowError:
UpperCamelCase : Optional[int] = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
__A : List[Any] = Accelerator()
# Parse configuration
__A : str = HfArgumentParser(EvaluationArguments)
__A : List[Any] = parser.parse_args()
set_seed(args.seed)
# Logging
__A : Any = logging.getLogger(__name__)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
# Load model and tokenizer
__A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
__A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
__A : int = create_dataloader(args)
# Prepare everything with our `accelerator`.
__A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('''Evaluating and saving model after training''')
__A , __A : Tuple = evaluate(args)
logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 27 | 1 |
"""simple docstring"""
import argparse
import os
import re
__A : Dict = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
__A : Union[str, Any] = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : Tuple = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = 0
UpperCamelCase : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : int = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Any = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Any = [lines[index + 1]]
index += 1
else:
UpperCamelCase : List[str] = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
def _inner(snake_case_ : Tuple ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Dict ):
return x
if key is None:
UpperCamelCase : int = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Tuple = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : int ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : List[Any] ):
UpperCamelCase : Any = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[str] = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : str = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[Any] = keys[:-1]
UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ):
'''simple docstring'''
with open(snake_case_ ,"""r""" ) as f:
UpperCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : Dict = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Optional[Any] = main_blocks[block_idx]
UpperCamelCase : Optional[int] = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : Union[str, Any] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : List[str] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[Any] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Any = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Any = '''src/transformers'''
# Pattern that looks at the indentation in a line.
__A : Tuple = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : List[Any] = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : List[Any] = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : Any = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : str ,snake_case_ : str="" ,snake_case_ : Any=None ,snake_case_ : Union[str, Any]=None ):
'''simple docstring'''
UpperCamelCase : List[Any] = 0
UpperCamelCase : Optional[int] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Tuple = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : Tuple = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Dict = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Optional[Any] = [lines[index + 1]]
index += 1
else:
UpperCamelCase : str = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
def _inner(snake_case_ : List[str] ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Optional[int] ):
return x
if key is None:
UpperCamelCase : List[str] = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[str] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : Tuple = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : int = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Union[str, Any] = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : Any ):
UpperCamelCase : Union[str, Any] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : int = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : str = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : Optional[int] = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : int = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Tuple = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : List[Any] = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : List[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : Optional[int] = keys[:-1]
UpperCamelCase : Union[str, Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : Any = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int=True ):
'''simple docstring'''
with open(snake_case_ ,encoding="""utf-8""" ) as f:
UpperCamelCase : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : int = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Dict = main_blocks[block_idx]
UpperCamelCase : Dict = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : List[str] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : Optional[Any] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Optional[Any] = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Any = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : List[Any] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Optional[Any] = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Optional[Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Any = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : Union[str, Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[str] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Optional[int] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : List[Any] = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__A : List[Any] = logging.get_logger(__name__)
__A : str = {
'''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': (
'''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json'''
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : int = 'trajectory_transformer'
lowercase : int = ['past_key_values']
lowercase : int = {
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=249 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=17 , SCREAMING_SNAKE_CASE_=25 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=128 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0006 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5_0256 , SCREAMING_SNAKE_CASE_=5_0256 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = vocab_size
UpperCamelCase : List[str] = action_weight
UpperCamelCase : Optional[Any] = reward_weight
UpperCamelCase : Any = value_weight
UpperCamelCase : Optional[int] = max_position_embeddings
UpperCamelCase : int = block_size
UpperCamelCase : List[str] = action_dim
UpperCamelCase : Optional[int] = observation_dim
UpperCamelCase : Any = transition_dim
UpperCamelCase : Any = learning_rate
UpperCamelCase : Any = n_layer
UpperCamelCase : Any = n_head
UpperCamelCase : List[str] = n_embd
UpperCamelCase : Tuple = embd_pdrop
UpperCamelCase : Optional[int] = attn_pdrop
UpperCamelCase : List[str] = resid_pdrop
UpperCamelCase : Tuple = initializer_range
UpperCamelCase : List[str] = layer_norm_eps
UpperCamelCase : int = kaiming_initializer_range
UpperCamelCase : Optional[int] = use_cache
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : int ):
'''simple docstring'''
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : List[str] = {
'''microsoft/trocr-base-handwritten''': (
'''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'''
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : List[str] = 'trocr'
lowercase : int = ['past_key_values']
lowercase : Tuple = {
'num_attention_heads': 'decoder_attention_heads',
'hidden_size': 'd_model',
'num_hidden_layers': 'decoder_layers',
}
def __init__( self , SCREAMING_SNAKE_CASE_=5_0265 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Tuple = vocab_size
UpperCamelCase : List[Any] = d_model
UpperCamelCase : Dict = decoder_layers
UpperCamelCase : List[Any] = decoder_attention_heads
UpperCamelCase : Dict = decoder_ffn_dim
UpperCamelCase : Dict = activation_function
UpperCamelCase : Optional[int] = max_position_embeddings
UpperCamelCase : str = dropout
UpperCamelCase : Tuple = attention_dropout
UpperCamelCase : Dict = activation_dropout
UpperCamelCase : str = init_std
UpperCamelCase : Optional[int] = decoder_layerdrop
UpperCamelCase : List[Any] = use_cache
UpperCamelCase : Union[str, Any] = scale_embedding
UpperCamelCase : List[Any] = use_learned_position_embeddings
UpperCamelCase : str = layernorm_embedding
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
| 27 |
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
__A : Optional[Any] = logging.get_logger(__name__)
def A_ ( snake_case_ : np.ndarray ,snake_case_ : Union[int, Iterable[int]] ,snake_case_ : bool ,snake_case_ : int ):
'''simple docstring'''
def constraint_to_multiple_of(snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : List[str]=0 ,snake_case_ : Optional[Any]=None ):
UpperCamelCase : List[str] = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
UpperCamelCase : Optional[Any] = math.floor(val / multiple ) * multiple
if x < min_val:
UpperCamelCase : Dict = math.ceil(val / multiple ) * multiple
return x
UpperCamelCase : Any = (output_size, output_size) if isinstance(snake_case_ ,snake_case_ ) else output_size
UpperCamelCase , UpperCamelCase : int = get_image_size(snake_case_ )
UpperCamelCase , UpperCamelCase : Union[str, Any] = output_size
# determine new height and width
UpperCamelCase : List[str] = output_height / input_height
UpperCamelCase : List[str] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
UpperCamelCase : int = scale_width
else:
# fit height
UpperCamelCase : Optional[Any] = scale_height
UpperCamelCase : int = constraint_to_multiple_of(scale_height * input_height ,multiple=snake_case_ )
UpperCamelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width ,multiple=snake_case_ )
return (new_height, new_width)
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : str = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384}
UpperCamelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = do_resize
UpperCamelCase : Union[str, Any] = size
UpperCamelCase : Union[str, Any] = keep_aspect_ratio
UpperCamelCase : Any = ensure_multiple_of
UpperCamelCase : List[Any] = resample
UpperCamelCase : str = do_rescale
UpperCamelCase : Optional[Any] = rescale_factor
UpperCamelCase : List[str] = do_normalize
UpperCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
UpperCamelCase : Dict = get_resize_output_image_size(
SCREAMING_SNAKE_CASE_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=SCREAMING_SNAKE_CASE_ , multiple=SCREAMING_SNAKE_CASE_ , )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase : List[Any] = size if size is not None else self.size
UpperCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
UpperCamelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
UpperCamelCase : Tuple = resample if resample is not None else self.resample
UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean
UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std
UpperCamelCase : str = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
UpperCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
UpperCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
UpperCamelCase : int = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
UpperCamelCase : List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Union[str, Any] = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : str = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = target_sizes.numpy()
UpperCamelCase : Dict = []
for idx in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCamelCase : List[Any] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : List[Any] = logits.argmax(dim=1 )
UpperCamelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 27 | 1 |
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__A : Dict = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_terminal_summary_main
UpperCamelCase : Dict = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(snake_case_ ,id=snake_case_ )
| 27 |
"""simple docstring"""
from collections.abc import Callable
def A_ ( snake_case_ : Callable[[float], float] ,snake_case_ : float ,snake_case_ : float ):
'''simple docstring'''
UpperCamelCase : float = a
UpperCamelCase : float = b
if function(snake_case_ ) == 0: # one of the a or b is a root for the function
return a
elif function(snake_case_ ) == 0:
return b
elif (
function(snake_case_ ) * function(snake_case_ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
UpperCamelCase : float = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(snake_case_ ) == 0:
return mid
elif function(snake_case_ ) * function(snake_case_ ) < 0:
UpperCamelCase : Dict = mid
else:
UpperCamelCase : List[str] = mid
UpperCamelCase : Tuple = start + (end - start) / 2.0
return mid
def A_ ( snake_case_ : float ):
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 27 | 1 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
UpperCamelCase : List[Any] = inspect.getfile(accelerate.test_utils )
UpperCamelCase : Union[str, Any] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
UpperCamelCase : Optional[Any] = test_metrics
@require_cpu
def a_ ( self ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def a_ ( self ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def a_ ( self ):
self.test_metrics.main()
@require_multi_gpu
def a_ ( self ):
print(f'Found {torch.cuda.device_count()} devices.' )
UpperCamelCase : Union[str, Any] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
| 27 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def a_ ( self ):
UpperCamelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCamelCase : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCamelCase : Dict = """xvjiarui/stable-diffusion-2-inpainting"""
UpperCamelCase , UpperCamelCase : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCamelCase : List[str] = jax.random.PRNGKey(0 )
UpperCamelCase : Tuple = 50
UpperCamelCase : Dict = jax.device_count()
UpperCamelCase : Optional[int] = num_samples * [prompt]
UpperCamelCase : int = num_samples * [init_image]
UpperCamelCase : List[Any] = num_samples * [mask_image]
UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# shard inputs and rng
UpperCamelCase : Optional[int] = replicate(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() )
UpperCamelCase : str = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipeline(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 512 , 512 , 3 )
UpperCamelCase : List[Any] = images[0, 253:256, 253:256, -1]
UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
UpperCamelCase : Dict = jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 27 | 1 |
"""simple docstring"""
from importlib import import_module
from .logging import get_logger
__A : str = get_logger(__name__)
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ):
UpperCamelCase : str = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("""__""" ):
setattr(self , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : List[Any] = module._original_module if isinstance(SCREAMING_SNAKE_CASE_ , _PatchedModuleObj ) else module
class lowerCamelCase :
lowercase : Any = []
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ):
UpperCamelCase : Dict = obj
UpperCamelCase : Any = target
UpperCamelCase : Any = new
UpperCamelCase : Optional[Any] = target.split(""".""" )[0]
UpperCamelCase : int = {}
UpperCamelCase : List[str] = attrs or []
def __enter__( self ):
*UpperCamelCase , UpperCamelCase : int = self.target.split(""".""" )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
try:
UpperCamelCase : int = import_module(""".""".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
UpperCamelCase : Tuple = getattr(self.obj , SCREAMING_SNAKE_CASE_ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(SCREAMING_SNAKE_CASE_ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
UpperCamelCase : Optional[Any] = obj_attr
# patch at top level
setattr(self.obj , SCREAMING_SNAKE_CASE_ , _PatchedModuleObj(SCREAMING_SNAKE_CASE_ , attrs=self.attrs ) )
UpperCamelCase : Optional[Any] = getattr(self.obj , SCREAMING_SNAKE_CASE_ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , _PatchedModuleObj(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , attrs=self.attrs ) )
UpperCamelCase : Any = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# finally set the target attribute
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
UpperCamelCase : Union[str, Any] = getattr(import_module(""".""".join(SCREAMING_SNAKE_CASE_ ) ) , SCREAMING_SNAKE_CASE_ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , SCREAMING_SNAKE_CASE_ ) is attr_value:
UpperCamelCase : Union[str, Any] = getattr(self.obj , SCREAMING_SNAKE_CASE_ )
setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
UpperCamelCase : str = globals()["""__builtins__"""][target_attr]
setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.new )
else:
raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.' )
def __exit__( self , *SCREAMING_SNAKE_CASE_ ):
for attr in list(self.original ):
setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.original.pop(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self ):
self.__enter__()
self._active_patches.append(self )
def a_ ( self ):
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 27 |
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def A_ ( snake_case_ : int ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def A_ ( ):
'''simple docstring'''
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
UpperCamelCase : Optional[Any] = [1, 2, 3]
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=2 )
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" ,[2, -1] )
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : List[Any] = [1, 2]
UpperCamelCase : List[Any] = {"""a""": 1, """b""": 2}
UpperCamelCase : List[str] = {"""a""": [1, 2], """b""": [3, 4]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2}
UpperCamelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
UpperCamelCase : Optional[int] = [2, 3]
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3}
UpperCamelCase : Any = {"""a""": [2, 3], """b""": [4, 5]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 2}, """b""": 3}
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
| 27 | 1 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A : Optional[Any] = 16
__A : str = 32
def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ):
'''simple docstring'''
UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
UpperCamelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" )
def tokenize_function(snake_case_ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase : Optional[Any] = datasets.map(
snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase : Optional[Any] = 1_6
elif accelerator.mixed_precision != "no":
UpperCamelCase : Any = 8
else:
UpperCamelCase : Optional[Any] = None
return tokenizer.pad(
snake_case_ ,padding="""longest""" ,max_length=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_tensors="""pt""" ,)
# Instantiate dataloaders.
UpperCamelCase : str = DataLoader(
tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
UpperCamelCase : Dict = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A : int = mocked_dataloaders # noqa: F811
def A_ ( snake_case_ : Tuple ,snake_case_ : Dict ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case_ ) == "1":
UpperCamelCase : Union[str, Any] = 2
# New Code #
UpperCamelCase : Dict = int(args.gradient_accumulation_steps )
UpperCamelCase : List[Any] = int(args.local_sgd_steps )
# Initialize accelerator
UpperCamelCase : str = Accelerator(
cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case_ )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase : Union[str, Any] = config["""lr"""]
UpperCamelCase : int = int(config["""num_epochs"""] )
UpperCamelCase : int = int(config["""seed"""] )
UpperCamelCase : List[Any] = int(config["""batch_size"""] )
UpperCamelCase : Optional[int] = evaluate.load("""glue""" ,"""mrpc""" )
set_seed(snake_case_ )
UpperCamelCase , UpperCamelCase : Dict = get_dataloaders(snake_case_ ,snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase : Tuple = model.to(accelerator.device )
# Instantiate optimizer
UpperCamelCase : List[Any] = AdamW(params=model.parameters() ,lr=snake_case_ )
# Instantiate scheduler
UpperCamelCase : str = get_linear_schedule_with_warmup(
optimizer=snake_case_ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(snake_case_ ) * num_epochs) ,)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
with LocalSGD(
accelerator=snake_case_ ,model=snake_case_ ,local_sgd_steps=snake_case_ ,enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(snake_case_ ):
UpperCamelCase : Optional[Any] = model(**snake_case_ )
UpperCamelCase : Optional[int] = output.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCamelCase : Any = model(**snake_case_ )
UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 )
UpperCamelCase , UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=snake_case_ ,references=snake_case_ ,)
UpperCamelCase : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' ,snake_case_ )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" ,type=snake_case_ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,)
parser.add_argument(
"""--local_sgd_steps""" ,type=snake_case_ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" )
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
UpperCamelCase : Dict = parser.parse_args()
UpperCamelCase : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(snake_case_ ,snake_case_ )
if __name__ == "__main__":
main()
| 27 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : str = batch_size
UpperCamelCase : int = seq_length
UpperCamelCase : Optional[Any] = is_training
UpperCamelCase : Any = use_input_lengths
UpperCamelCase : Tuple = use_token_type_ids
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = gelu_activation
UpperCamelCase : Dict = sinusoidal_embeddings
UpperCamelCase : Optional[int] = causal
UpperCamelCase : List[Any] = asm
UpperCamelCase : int = n_langs
UpperCamelCase : Optional[Any] = vocab_size
UpperCamelCase : str = n_special
UpperCamelCase : Dict = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : Any = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : str = num_labels
UpperCamelCase : Union[str, Any] = num_choices
UpperCamelCase : List[str] = summary_type
UpperCamelCase : int = use_proj
UpperCamelCase : List[str] = scope
UpperCamelCase : Dict = bos_token_id
def a_ ( self ):
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Union[str, Any] = None
if self.use_input_lengths:
UpperCamelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCamelCase : int = None
UpperCamelCase : Dict = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float()
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : List[str] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , )
((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = self.num_labels
UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = self.num_choices
UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : int = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : List[Any] = config_and_inputs
UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase : List[Any] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase : Optional[Any] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCamelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def a_ ( self ):
UpperCamelCase : List[Any] = XLMModelTester(self )
UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : int = min_length + idx + 1
UpperCamelCase : Tuple = min_length + idx + 1
UpperCamelCase : Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : List[str] = min_length + idx + 1
UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , )
pass
@slow
def a_ ( self ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president
UpperCamelCase : List[Any] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def A_ ( snake_case_ : List[str] ,snake_case_ : Union[str, Any] ,snake_case_ : str=1_0_2_4 ,snake_case_ : List[str]=1_0_2_4 ,snake_case_ : Dict=False ,**snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : Any = AutoTokenizer.from_pretrained(snake_case_ )
UpperCamelCase : int = SeqaSeqDataset(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,type_path="""train""" ,**snake_case_ )
UpperCamelCase : Any = tok.pad_token_id
def get_lens(snake_case_ : str ):
UpperCamelCase : Dict = tqdm(
DataLoader(snake_case_ ,batch_size=5_1_2 ,num_workers=8 ,shuffle=snake_case_ ,collate_fn=ds.collate_fn ) ,desc=str(ds.len_file ) ,)
UpperCamelCase : Optional[int] = []
for batch in dl:
UpperCamelCase : Any = batch["""input_ids"""].ne(snake_case_ ).sum(1 ).tolist()
UpperCamelCase : Dict = batch["""labels"""].ne(snake_case_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(snake_case_ ,snake_case_ ):
max_lens.append(max(snake_case_ ,snake_case_ ) )
else:
max_lens.extend(snake_case_ )
return max_lens
UpperCamelCase : Dict = get_lens(snake_case_ )
UpperCamelCase : int = SeqaSeqDataset(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,type_path="""val""" ,**snake_case_ )
UpperCamelCase : Any = get_lens(snake_case_ )
pickle_save(snake_case_ ,train_ds.len_file )
pickle_save(snake_case_ ,val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 27 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__A : int = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 | 1 |
"""simple docstring"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def A_ ( snake_case_ : str = "isbn/0140328726" ):
'''simple docstring'''
UpperCamelCase : str = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("""/""" ) != 1:
UpperCamelCase : Optional[Any] = f'{olid} is not a valid Open Library olid'
raise ValueError(snake_case_ )
return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json()
def A_ ( snake_case_ : dict ):
'''simple docstring'''
UpperCamelCase : Any = {
"""title""": """Title""",
"""publish_date""": """Publish date""",
"""authors""": """Authors""",
"""number_of_pages""": """Number of pages:""",
"""first_sentence""": """First sentence""",
"""isbn_10""": """ISBN (10)""",
"""isbn_13""": """ISBN (13)""",
}
UpperCamelCase : Tuple = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
UpperCamelCase : List[str] = [
get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""]
]
UpperCamelCase : Optional[Any] = data["""First sentence"""]["""value"""]
for key, value in data.items():
if isinstance(snake_case_ ,snake_case_ ):
UpperCamelCase : Optional[int] = """, """.join(snake_case_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
__A : Tuple = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(F'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
__A : Union[str, Any] = summarize_book(get_openlibrary_data(F'''isbn/{isbn}'''))
print('''\n'''.join(F'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'''Sorry, there are no results for ISBN: {isbn}.''')
| 27 |
"""simple docstring"""
import torch
from transformers import AutoModel
class lowerCamelCase ( torch.nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_="sayef/fsner-bert-base-uncased" ):
super(SCREAMING_SNAKE_CASE_ , self ).__init__()
UpperCamelCase : int = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCamelCase : Any = torch.nn.Softmax(dim=1 )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return self.bert(**SCREAMING_SNAKE_CASE_ ).last_hidden_state
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return token_embeddings.sum(2 , keepdim=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ):
return self.softmax(T * self.cos(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = W_supports["""sizes"""].tolist()
UpperCamelCase : List[str] = W_supports["""start_token_id"""].item()
UpperCamelCase : List[Any] = W_supports["""end_token_id"""].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCamelCase : List[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Tuple = W_supports["""input_ids"""] == start_token_id
UpperCamelCase : Optional[Any] = W_supports["""input_ids"""] == end_token_id
for i, size in enumerate(SCREAMING_SNAKE_CASE_ ):
if i == 0:
UpperCamelCase : int = 0
else:
UpperCamelCase : Optional[int] = support_sizes[i - 1]
UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]]
UpperCamelCase : int = S[s : s + size][end_token_masks[s : s + size]]
UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) )
UpperCamelCase : Optional[Any] = torch.vstack((p_ends, p_end) )
else:
UpperCamelCase : Optional[int] = p_start
UpperCamelCase : Tuple = p_end
return p_starts, p_ends
| 27 | 1 |
"""simple docstring"""
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
__A : Optional[int] = datasets.logging.get_logger(__name__)
__A : Tuple = '''\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
'''
__A : Dict = '''\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project\'s README at https://github.com/google-research/bleurt#readme for more information.
'''
__A : Any = '''
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
\'scores\': List of scores.
Examples:
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> bleurt = datasets.load_metric("bleurt")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results["scores"]])
[1.03, 1.04]
'''
__A : List[str] = {
'''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''',
'''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''',
'''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''',
'''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''',
'''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''',
'''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''',
'''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''',
'''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''',
'''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''',
'''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''',
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def a_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
"""Using default BLEURT-Base checkpoint for sequence maximum length 128. """
"""You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" )
UpperCamelCase : Dict = """bleurt-base-128"""
if self.config_name.lower() in CHECKPOINT_URLS:
UpperCamelCase : int = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
UpperCamelCase : Tuple = self.config_name.upper()
else:
raise KeyError(
f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' )
# download the model checkpoint specified by self.config_name and set up the scorer
UpperCamelCase : Any = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
UpperCamelCase : Optional[int] = score.BleurtScorer(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = self.scorer.score(references=SCREAMING_SNAKE_CASE_ , candidates=SCREAMING_SNAKE_CASE_ )
return {"scores": scores}
| 27 |
"""simple docstring"""
from typing import Any
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = data
UpperCamelCase : Optional[Any] = None
def __repr__( self ):
return f'Node({self.data})'
class lowerCamelCase :
def __init__( self ):
UpperCamelCase : Dict = None
def __iter__( self ):
UpperCamelCase : int = self.head
while node:
yield node.data
UpperCamelCase : Union[str, Any] = node.next
def __len__( self ):
return sum(1 for _ in self )
def __repr__( self ):
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
UpperCamelCase : List[Any] = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = current.next
UpperCamelCase : Optional[Any] = data
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index <= len(self ):
raise IndexError("""list index out of range""" )
UpperCamelCase : Optional[Any] = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
UpperCamelCase : Dict = new_node
elif index == 0:
UpperCamelCase : Any = self.head # link new_node to head
UpperCamelCase : Any = new_node
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : str = temp.next
UpperCamelCase : Any = temp.next
UpperCamelCase : Optional[Any] = new_node
def a_ ( self ): # print every node data
print(self )
def a_ ( self ):
return self.delete_nth(0 )
def a_ ( self ): # delete from tail
return self.delete_nth(len(self ) - 1 )
def a_ ( self , SCREAMING_SNAKE_CASE_ = 0 ):
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("""List index out of range.""" )
UpperCamelCase : Union[str, Any] = self.head # default first node
if index == 0:
UpperCamelCase : Optional[Any] = self.head.next
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : int = temp.next
UpperCamelCase : Optional[Any] = temp.next
UpperCamelCase : Dict = temp.next.next
return delete_node.data
def a_ ( self ):
return self.head is None
def a_ ( self ):
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Union[str, Any] = self.head
while current:
# Store the current node's next node.
UpperCamelCase : Optional[int] = current.next
# Make the current node's next point backwards
UpperCamelCase : Optional[Any] = prev
# Make the previous node be the current node
UpperCamelCase : int = current
# Make the current node the next node (to progress iteration)
UpperCamelCase : Optional[int] = next_node
# Return prev in order to put the head at the end
UpperCamelCase : Optional[int] = prev
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case_ ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(snake_case_ ) == i
linked_list.insert_nth(snake_case_ ,i + 1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 ,1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(snake_case_ ) == 9
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
UpperCamelCase : Optional[Any] = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8 ,1 ) )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
"""dlrow olleH""",
7,
5_5_5_5,
0,
-192.55555,
"""Hello, world!""",
77.9,
Node(1_0 ),
None,
None,
12.20,
]
UpperCamelCase : List[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case_ )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
UpperCamelCase : Dict = linked_list.delete_head()
assert result == -9
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
UpperCamelCase : int = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
UpperCamelCase : Optional[Any] = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("""Hello again, world!""" ) )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case_ )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case_ )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ):
'''simple docstring'''
from doctest import testmod
testmod()
UpperCamelCase : List[Any] = LinkedList()
linked_list.insert_head(input("""Inserting 1st at head """ ).strip() )
linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() )
linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nDelete head""" )
linked_list.delete_head()
print("""Delete tail""" )
linked_list.delete_tail()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nReverse linked list""" )
linked_list.reverse()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nString representation of linked list:""" )
print(snake_case_ )
print("""\nReading/changing Node data using indexing:""" )
print(f'Element at Position 1: {linked_list[1]}' )
UpperCamelCase : List[Any] = input("""Enter New Value: """ ).strip()
print("""New list:""" )
print(snake_case_ )
print(f'length of linked_list is : {len(snake_case_ )}' )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
__A : Optional[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''')
def A_ ( snake_case_ : Tuple ,snake_case_ : tuple ,snake_case_ : Path ,snake_case_ : Any ,snake_case_ : str ,snake_case_ : Optional[Any] ,snake_case_ : int ,snake_case_ : Tuple=False ,):
'''simple docstring'''
output_path.parent.mkdir(parents=snake_case_ ,exist_ok=snake_case_ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
snake_case_ ,snake_case_ ,f=output_path.as_posix() ,input_names=snake_case_ ,output_names=snake_case_ ,dynamic_axes=snake_case_ ,do_constant_folding=snake_case_ ,use_external_data_format=snake_case_ ,enable_onnx_checker=snake_case_ ,opset_version=snake_case_ ,)
else:
export(
snake_case_ ,snake_case_ ,f=output_path.as_posix() ,input_names=snake_case_ ,output_names=snake_case_ ,dynamic_axes=snake_case_ ,do_constant_folding=snake_case_ ,opset_version=snake_case_ ,)
@torch.no_grad()
def A_ ( snake_case_ : str ,snake_case_ : str ,snake_case_ : int ,snake_case_ : bool = False ):
'''simple docstring'''
UpperCamelCase : Optional[int] = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
UpperCamelCase : List[Any] = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
UpperCamelCase : int = """cpu"""
UpperCamelCase : Any = Path(snake_case_ )
# VAE DECODER
UpperCamelCase : Tuple = AutoencoderKL.from_pretrained(model_path + """/vae""" )
UpperCamelCase : str = vae_decoder.config.latent_channels
# forward only through the decoder part
UpperCamelCase : List[Any] = vae_decoder.decode
onnx_export(
snake_case_ ,model_args=(
torch.randn(1 ,snake_case_ ,2_5 ,2_5 ).to(device=snake_case_ ,dtype=snake_case_ ),
False,
) ,output_path=output_path / """vae_decoder""" / """model.onnx""" ,ordered_input_names=["""latent_sample""", """return_dict"""] ,output_names=["""sample"""] ,dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} ,opset=snake_case_ ,)
del vae_decoder
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
parser.add_argument(
'''--model_path''',
type=str,
required=True,
help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''',
)
parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--opset''',
default=14,
type=int,
help='''The version of the ONNX operator set to use.''',
)
parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''')
__A : Any = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print('''SD: Done: ONNX''')
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Dict = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
__A : Union[str, Any] = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : Tuple = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = 0
UpperCamelCase : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : int = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Any = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Any = [lines[index + 1]]
index += 1
else:
UpperCamelCase : List[str] = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
def _inner(snake_case_ : Tuple ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Dict ):
return x
if key is None:
UpperCamelCase : int = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Tuple = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : int ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : List[Any] ):
UpperCamelCase : Any = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[str] = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : str = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[Any] = keys[:-1]
UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ):
'''simple docstring'''
with open(snake_case_ ,"""r""" ) as f:
UpperCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : Dict = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Optional[Any] = main_blocks[block_idx]
UpperCamelCase : Optional[int] = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : Union[str, Any] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : List[str] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[Any] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Any = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Dict=False ):
'''simple docstring'''
try:
UpperCamelCase : Optional[int] = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
UpperCamelCase : Any = default
else:
# KEY is set, convert it to True or False.
try:
UpperCamelCase : str = strtobool(snake_case_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'If set, {key} must be yes or no.' )
return _value
__A : int = parse_flag_from_env('''RUN_SLOW''', default=False)
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
return unittest.skip("""Test was skipped""" )(snake_case_ )
def A_ ( snake_case_ : Optional[int] ):
'''simple docstring'''
return unittest.skipUnless(_run_slow_tests ,"""test is slow""" )(snake_case_ )
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
return unittest.skipUnless(not torch.cuda.is_available() ,"""test requires only a CPU""" )(snake_case_ )
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.is_available() ,"""test requires a GPU""" )(snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
return unittest.skipUnless(is_xpu_available() ,"""test requires a XPU""" )(snake_case_ )
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(is_mps_available() ,"""test requires a `mps` backend support in `torch`""" )(snake_case_ )
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() ,"""test requires the Hugging Face suite""" )(snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
return unittest.skipUnless(is_bnb_available() ,"""test requires the bitsandbytes library""" )(snake_case_ )
def A_ ( snake_case_ : Any ):
'''simple docstring'''
return unittest.skipUnless(is_tpu_available() ,"""test requires TPU""" )(snake_case_ )
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() == 1 ,"""test requires a GPU""" )(snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() == 1 ,"""test requires a XPU""" )(snake_case_ )
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() > 1 ,"""test requires multiple GPUs""" )(snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() > 1 ,"""test requires multiple XPUs""" )(snake_case_ )
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
return unittest.skipUnless(is_safetensors_available() ,"""test requires safetensors""" )(snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
return unittest.skipUnless(is_deepspeed_available() ,"""test requires DeepSpeed""" )(snake_case_ )
def A_ ( snake_case_ : Optional[int] ):
'''simple docstring'''
return unittest.skipUnless(is_torch_version(""">=""" ,"""1.12.0""" ) ,"""test requires torch version >= 1.12.0""" )(snake_case_ )
def A_ ( snake_case_ : Tuple=None ,snake_case_ : List[str]=None ):
'''simple docstring'''
if test_case is None:
return partial(snake_case_ ,version=snake_case_ )
return unittest.skipUnless(is_torch_version(""">=""" ,snake_case_ ) ,f'test requires torch version >= {version}' )(snake_case_ )
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(is_tensorboard_available() ,"""test requires Tensorboard""" )(snake_case_ )
def A_ ( snake_case_ : Union[str, Any] ):
'''simple docstring'''
return unittest.skipUnless(is_wandb_available() ,"""test requires wandb""" )(snake_case_ )
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(is_comet_ml_available() ,"""test requires comet_ml""" )(snake_case_ )
__A : int = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(
_atleast_one_tracker_available ,"""test requires at least one tracker to be available and for `comet_ml` to not be installed""" ,)(snake_case_ )
class lowerCamelCase ( unittest.TestCase ):
lowercase : Optional[Any] = True
@classmethod
def a_ ( cls ):
UpperCamelCase : Optional[Any] = tempfile.mkdtemp()
@classmethod
def a_ ( cls ):
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def a_ ( self ):
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("""**/*""" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = mocks if isinstance(SCREAMING_SNAKE_CASE_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : List[str] = AcceleratorState()
UpperCamelCase : Dict = tensor[None].clone().to(state.device )
UpperCamelCase : Optional[Any] = gather(snake_case_ ).cpu()
UpperCamelCase : Tuple = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] ,snake_case_ ):
return False
return True
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = returncode
UpperCamelCase : List[str] = stdout
UpperCamelCase : Union[str, Any] = stderr
async def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : List[str] ):
'''simple docstring'''
while True:
UpperCamelCase : Any = await stream.readline()
if line:
callback(snake_case_ )
else:
break
async def A_ ( snake_case_ : List[str] ,snake_case_ : Tuple=None ,snake_case_ : int=None ,snake_case_ : str=None ,snake_case_ : Dict=False ,snake_case_ : List[str]=False ):
'''simple docstring'''
if echo:
print("""\nRunning: """ ,""" """.join(snake_case_ ) )
UpperCamelCase : Any = await asyncio.create_subprocess_exec(
cmd[0] ,*cmd[1:] ,stdin=snake_case_ ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=snake_case_ ,)
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
UpperCamelCase : List[Any] = []
UpperCamelCase : List[str] = []
def tee(snake_case_ : List[Any] ,snake_case_ : Tuple ,snake_case_ : int ,snake_case_ : str="" ):
UpperCamelCase : Tuple = line.decode("""utf-8""" ).rstrip()
sink.append(snake_case_ )
if not quiet:
print(snake_case_ ,snake_case_ ,file=snake_case_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout ,lambda snake_case_ : tee(snake_case_ ,snake_case_ ,sys.stdout ,label="""stdout:""" ) ) ),
asyncio.create_task(_read_stream(p.stderr ,lambda snake_case_ : tee(snake_case_ ,snake_case_ ,sys.stderr ,label="""stderr:""" ) ) ),
] ,timeout=snake_case_ ,)
return _RunOutput(await p.wait() ,snake_case_ ,snake_case_ )
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Optional[Any]=None ,snake_case_ : Dict=None ,snake_case_ : Any=1_8_0 ,snake_case_ : List[str]=False ,snake_case_ : Optional[Any]=True ):
'''simple docstring'''
UpperCamelCase : List[str] = asyncio.get_event_loop()
UpperCamelCase : Dict = loop.run_until_complete(
_stream_subprocess(snake_case_ ,env=snake_case_ ,stdin=snake_case_ ,timeout=snake_case_ ,quiet=snake_case_ ,echo=snake_case_ ) )
UpperCamelCase : int = """ """.join(snake_case_ )
if result.returncode > 0:
UpperCamelCase : List[Any] = """\n""".join(result.stderr )
raise RuntimeError(
f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n'
f'The combined stderr from workers follows:\n{stderr}' )
return result
class lowerCamelCase ( _UpperCAmelCase ):
pass
def A_ ( snake_case_ : List[str] ,snake_case_ : Optional[int]=False ):
'''simple docstring'''
try:
UpperCamelCase : Dict = subprocess.check_output(snake_case_ ,stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(snake_case_ ,"""decode""" ):
UpperCamelCase : Optional[Any] = output.decode("""utf-8""" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'Command `{" ".join(snake_case_ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : list[int] ):
'''simple docstring'''
if not numbers:
return 0
if not isinstance(snake_case_ ,(list, tuple) ) or not all(
isinstance(snake_case_ ,snake_case_ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
UpperCamelCase : int = numbers[0]
for i in range(1 ,len(snake_case_ ) ):
# update the maximum and minimum subarray products
UpperCamelCase : List[str] = numbers[i]
if number < 0:
UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now
UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number )
UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number )
# update the maximum product found till now
UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ )
return max_prod
| 27 | 1 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__A : List[str] = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , **SCREAMING_SNAKE_CASE_ ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
if self.framework != "pt":
raise ValueError(f'The {self.__class__} is only available in PyTorch.' )
# No specific FOR_XXX available yet
def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = {}
if "candidate_labels" in kwargs:
UpperCamelCase : Optional[int] = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
UpperCamelCase : int = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="This is a sound of {}." ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
UpperCamelCase : List[Any] = requests.get(SCREAMING_SNAKE_CASE_ ).content
else:
with open(SCREAMING_SNAKE_CASE_ , """rb""" ) as f:
UpperCamelCase : Union[str, Any] = f.read()
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = ffmpeg_read(SCREAMING_SNAKE_CASE_ , self.feature_extractor.sampling_rate )
if not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
UpperCamelCase : int = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
UpperCamelCase : Tuple = candidate_labels
UpperCamelCase : Optional[int] = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels]
UpperCamelCase : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = [text_inputs]
return inputs
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = model_inputs.pop("""candidate_labels""" )
UpperCamelCase : Any = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = text_inputs[0]
else:
# Batching case.
UpperCamelCase : List[Any] = text_inputs[0][0]
UpperCamelCase : Dict = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = model_outputs.pop("""candidate_labels""" )
UpperCamelCase : int = model_outputs["""logits"""][0]
if self.framework == "pt":
UpperCamelCase : Dict = logits.softmax(dim=0 )
UpperCamelCase : str = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
UpperCamelCase : Dict = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] )
]
return result
| 27 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Any = AudioLDMPipeline
lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS
lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS
lowercase : Tuple = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Optional[Any] = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
UpperCamelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase : int = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
UpperCamelCase : Tuple = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def a_ ( self ):
UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Any = self.get_dummy_components()
UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Tuple = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[str] = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : str = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
UpperCamelCase : Tuple = prompt_embeds
# forward
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : List[str] = self.get_dummy_components()
UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""]
UpperCamelCase : List[Any] = negative_prompt
UpperCamelCase : str = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[Any] = []
for p in [prompt, negative_prompt]:
UpperCamelCase : int = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
embeds.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Tuple = embeds
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Optional[int] = self.get_dummy_components()
UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = """egg cracking"""
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Union[str, Any] = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
UpperCamelCase : Dict = 2
UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
UpperCamelCase : List[str] = 2
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
UpperCamelCase : Any = 2
UpperCamelCase : str = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Tuple = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016
UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = ["""hey"""]
UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : str = output.audios.shape
assert audio_shape == (1, 256)
UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : List[str] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def a_ ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def a_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@slow
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) )
UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def a_ ( self ):
UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 25
UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240]
UpperCamelCase : Optional[Any] = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def a_ ( self ):
UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790]
UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 27 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A : Any = logging.get_logger(__name__)
__A : Tuple = {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'''
),
'''distilbert-base-uncased-finetuned-sst-2-english''': (
'''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'''
),
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Dict = 'distilbert'
lowercase : str = {
'hidden_size': 'dim',
'num_attention_heads': 'n_heads',
'num_hidden_layers': 'n_layers',
}
def __init__( self , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=4 * 768 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.2 , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = vocab_size
UpperCamelCase : Optional[Any] = max_position_embeddings
UpperCamelCase : List[str] = sinusoidal_pos_embds
UpperCamelCase : str = n_layers
UpperCamelCase : int = n_heads
UpperCamelCase : int = dim
UpperCamelCase : List[str] = hidden_dim
UpperCamelCase : Optional[int] = dropout
UpperCamelCase : int = attention_dropout
UpperCamelCase : Dict = activation
UpperCamelCase : Any = initializer_range
UpperCamelCase : int = qa_dropout
UpperCamelCase : Optional[int] = seq_classif_dropout
super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ )
class lowerCamelCase ( _UpperCAmelCase ):
@property
def a_ ( self ):
if self.task == "multiple-choice":
UpperCamelCase : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
UpperCamelCase : Optional[int] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 27 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase : List[str] = args.log_outputs
UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] )
# load metric
UpperCamelCase : List[Any] = load_metric("""wer""" )
UpperCamelCase : Any = load_metric("""cer""" )
# compute metrics
UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
# print & log results
UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case_ )
with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt'
UpperCamelCase : str = f'log_{dataset_id}_targets.txt'
with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
p.write(f'{i}' + """\n""" )
p.write(batch["""prediction"""] + """\n""" )
t.write(f'{i}' + """\n""" )
t.write(batch["""target"""] + """\n""" )
result.map(snake_case_ ,with_indices=snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """]
for t in token_sequences_to_ignore:
UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) )
return text
def A_ ( snake_case_ : str ):
'''simple docstring'''
# load dataset
UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase : Dict = feature_extractor.sampling_rate
# resample audio
UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase : int = 0 if torch.cuda.is_available() else -1
UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Union[str, Any] ):
UpperCamelCase : List[Any] = asr(
batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s )
UpperCamelCase : Union[str, Any] = prediction["""text"""]
UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] )
return batch
# run inference on all examples
UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ ,snake_case_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers'''
)
parser.add_argument(
'''--dataset''',
type=str,
required=True,
help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''',
)
parser.add_argument(
'''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice'''
)
parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''')
parser.add_argument(
'''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.'''
)
parser.add_argument(
'''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.'''
)
parser.add_argument(
'''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.'''
)
parser.add_argument(
'''--device''',
type=int,
default=None,
help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''',
)
__A : Optional[Any] = parser.parse_args()
main(args)
| 27 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'naver-clova-ix/donut-base-finetuned-docvqa'
lowercase : str = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
lowercase : Dict = 'document_qa'
lowercase : Optional[int] = AutoProcessor
lowercase : List[Any] = VisionEncoderDecoderModel
lowercase : Any = ['image', 'text']
lowercase : Any = ['text']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
if not is_vision_available():
raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
UpperCamelCase : int = task_prompt.replace("""{user_input}""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.pre_processor.tokenizer(
SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).input_ids
UpperCamelCase : List[Any] = self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.model.generate(
inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , ).sequences
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE_ )[0]
UpperCamelCase : Dict = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" )
UpperCamelCase : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" )
UpperCamelCase : int = re.sub(r"""<.*?>""" , """""" , SCREAMING_SNAKE_CASE_ , count=1 ).strip() # remove first task start token
UpperCamelCase : Optional[Any] = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE_ )
return sequence["answer"]
| 27 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'EncodecFeatureExtractor'
lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.feature_extractor
UpperCamelCase : Any = False
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ):
return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Any = args[0]
UpperCamelCase : str = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is not None:
UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase : int = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""]
return inputs
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Optional[int] = args[0]
UpperCamelCase : Any = args[1:]
if audio_values is not None:
return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ )
else:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape
if padding_mask is None:
return list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1]
UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value
UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audio_values.tolist()
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 )
return audio_values
| 27 | 1 |
"""simple docstring"""
from __future__ import annotations
def A_ ( snake_case_ : str ,snake_case_ : list[str] | None = None ,snake_case_ : dict[str, float] | None = None ,snake_case_ : bool = False ,):
'''simple docstring'''
UpperCamelCase : List[str] = cipher_alphabet or [chr(snake_case_ ) for i in range(9_7 ,1_2_3 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
UpperCamelCase : str = {
"""a""": 0.08497,
"""b""": 0.01492,
"""c""": 0.02202,
"""d""": 0.04253,
"""e""": 0.11162,
"""f""": 0.02228,
"""g""": 0.02015,
"""h""": 0.06094,
"""i""": 0.07546,
"""j""": 0.00153,
"""k""": 0.01292,
"""l""": 0.04025,
"""m""": 0.02406,
"""n""": 0.06749,
"""o""": 0.07507,
"""p""": 0.01929,
"""q""": 0.00095,
"""r""": 0.07587,
"""s""": 0.06327,
"""t""": 0.09356,
"""u""": 0.02758,
"""v""": 0.00978,
"""w""": 0.02560,
"""x""": 0.00150,
"""y""": 0.01994,
"""z""": 0.00077,
}
else:
# Custom frequencies dictionary
UpperCamelCase : Dict = frequencies_dict
if not case_sensitive:
UpperCamelCase : Tuple = ciphertext.lower()
# Chi squared statistic values
UpperCamelCase : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(snake_case_ ) ):
UpperCamelCase : Tuple = """"""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
UpperCamelCase : Union[str, Any] = (alphabet_letters.index(letter.lower() ) - shift) % len(
snake_case_ )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
UpperCamelCase : Any = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
UpperCamelCase : Union[str, Any] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
UpperCamelCase : str = decrypted_with_shift.lower().count(snake_case_ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
UpperCamelCase : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
UpperCamelCase : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
UpperCamelCase : Any = decrypted_with_shift.count(snake_case_ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
UpperCamelCase : Union[str, Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
UpperCamelCase : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
UpperCamelCase : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(snake_case_ : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
UpperCamelCase : int = min(
snake_case_ ,key=snake_case_ ,)
# Get all the data from the most likely cipher (key, decoded message)
(
(
UpperCamelCase
) , (
UpperCamelCase
) ,
) : Optional[int] = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 27 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ):
'''simple docstring'''
UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" )
UpperCamelCase : Optional[int] = soup.findAll("""h1""" )
UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} )
values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''')
| 27 | 1 |
"""simple docstring"""
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
lowercase : Tuple = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias']
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 5_0257 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 768 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "gelu_new" , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 1e-5 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , ):
super().__init__()
UpperCamelCase : Optional[Any] = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
UpperCamelCase : List[Any] = prefix_inner_dim
UpperCamelCase : Optional[int] = prefix_hidden_dim
UpperCamelCase : List[Any] = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
UpperCamelCase : Any = (
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE_ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
UpperCamelCase : Tuple = GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE_ , n_positions=SCREAMING_SNAKE_CASE_ , n_embd=SCREAMING_SNAKE_CASE_ , n_layer=SCREAMING_SNAKE_CASE_ , n_head=SCREAMING_SNAKE_CASE_ , n_inner=SCREAMING_SNAKE_CASE_ , activation_function=SCREAMING_SNAKE_CASE_ , resid_pdrop=SCREAMING_SNAKE_CASE_ , embd_pdrop=SCREAMING_SNAKE_CASE_ , attn_pdrop=SCREAMING_SNAKE_CASE_ , layer_norm_epsilon=SCREAMING_SNAKE_CASE_ , initializer_range=SCREAMING_SNAKE_CASE_ , scale_attn_weights=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE_ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : int = GPTaLMHeadModel(SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ):
UpperCamelCase : Union[str, Any] = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = self.encode_prefix(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.decode_prefix(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
UpperCamelCase : List[str] = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
UpperCamelCase : List[str] = torch.cat((dummy_token, input_ids) , dim=1 )
UpperCamelCase : List[Any] = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return torch.zeros(SCREAMING_SNAKE_CASE_ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.encode_prefix(SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = torch.split(SCREAMING_SNAKE_CASE_ , 1 , dim=0 )
UpperCamelCase : Tuple = []
UpperCamelCase : Any = []
for feature in features:
UpperCamelCase : Tuple = self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE_ ) ) # back to the clip feature
# Only support beam search for now
UpperCamelCase , UpperCamelCase : List[Any] = self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
UpperCamelCase : List[Any] = torch.stack(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = torch.stack(SCREAMING_SNAKE_CASE_ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = 5 , SCREAMING_SNAKE_CASE_ = 67 , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ):
UpperCamelCase : Union[str, Any] = eos_token_id
UpperCamelCase : str = None
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : Optional[Any] = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.int )
UpperCamelCase : str = torch.zeros(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.bool )
if input_embeds is not None:
UpperCamelCase : Optional[int] = input_embeds
else:
UpperCamelCase : Any = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE_ )
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = outputs.logits
UpperCamelCase : List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
UpperCamelCase : List[Any] = logits.softmax(-1 ).log()
if scores is None:
UpperCamelCase , UpperCamelCase : Any = logits.topk(SCREAMING_SNAKE_CASE_ , -1 )
UpperCamelCase : Union[str, Any] = generated.expand(SCREAMING_SNAKE_CASE_ , *generated.shape[1:] )
UpperCamelCase , UpperCamelCase : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
UpperCamelCase : Optional[Any] = next_tokens
else:
UpperCamelCase : Optional[Any] = tokens.expand(SCREAMING_SNAKE_CASE_ , *tokens.shape[1:] )
UpperCamelCase : Optional[Any] = torch.cat((tokens, next_tokens) , dim=1 )
else:
UpperCamelCase : Union[str, Any] = -float(np.inf )
UpperCamelCase : Union[str, Any] = 0
UpperCamelCase : str = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
UpperCamelCase : str = scores_sum / seq_lengths[:, None]
UpperCamelCase , UpperCamelCase : List[Any] = scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE_ , -1 )
UpperCamelCase : str = next_tokens // scores_sum.shape[1]
UpperCamelCase : Union[str, Any] = seq_lengths[next_tokens_source]
UpperCamelCase : Dict = next_tokens % scores_sum.shape[1]
UpperCamelCase : Optional[int] = next_tokens.unsqueeze(1 )
UpperCamelCase : Tuple = tokens[next_tokens_source]
UpperCamelCase : str = torch.cat((tokens, next_tokens) , dim=1 )
UpperCamelCase : Optional[Any] = generated[next_tokens_source]
UpperCamelCase : Optional[int] = scores_sum_average * seq_lengths
UpperCamelCase : Tuple = is_stopped[next_tokens_source]
UpperCamelCase : int = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
UpperCamelCase : int = torch.cat((generated, next_token_embed) , dim=1 )
UpperCamelCase : Any = is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE_ ).squeeze()
if is_stopped.all():
break
UpperCamelCase : Optional[Any] = scores / seq_lengths
UpperCamelCase : Tuple = scores.argsort(descending=SCREAMING_SNAKE_CASE_ )
# tokens tensors are already padded to max_seq_length
UpperCamelCase : str = [tokens[i] for i in order]
UpperCamelCase : List[Any] = torch.stack(SCREAMING_SNAKE_CASE_ , dim=0 )
UpperCamelCase : Dict = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 27 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ):
UpperCamelCase : Tuple = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : Optional[Any] = seq_length
UpperCamelCase : int = is_training
UpperCamelCase : Union[str, Any] = use_input_mask
UpperCamelCase : Union[str, Any] = use_token_type_ids
UpperCamelCase : Dict = use_labels
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : Tuple = num_hidden_layers
UpperCamelCase : Any = num_attention_heads
UpperCamelCase : int = intermediate_size
UpperCamelCase : str = hidden_act
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : List[Any] = max_position_embeddings
UpperCamelCase : Optional[Any] = type_vocab_size
UpperCamelCase : int = type_sequence_label_size
UpperCamelCase : Dict = initializer_range
UpperCamelCase : Dict = num_labels
UpperCamelCase : Tuple = num_choices
UpperCamelCase : Optional[int] = scope
UpperCamelCase : List[Any] = q_groups
UpperCamelCase : Tuple = k_groups
UpperCamelCase : Any = v_groups
UpperCamelCase : List[str] = post_attention_groups
UpperCamelCase : Tuple = intermediate_groups
UpperCamelCase : int = output_groups
def a_ ( self ):
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Tuple = None
if self.use_input_mask:
UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Optional[int] = None
UpperCamelCase : List[Any] = None
UpperCamelCase : Dict = None
if self.use_labels:
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : str = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.num_labels
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.num_labels
UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = self.num_choices
UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : Optional[int] = self.prepare_config_and_inputs()
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs
UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
lowercase : Dict = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Dict = False
lowercase : str = True
lowercase : str = False
def a_ ( self ):
UpperCamelCase : Any = SqueezeBertModelTester(self )
UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def a_ ( self ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0]
UpperCamelCase : Optional[Any] = torch.Size((1, 3) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 27 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
lowercase : str = ['torch', 'transformers', 'onnx']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
lowercase : int = ['torch', 'transformers', 'onnx']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
lowercase : Any = ['torch', 'transformers', 'onnx']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
lowercase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
lowercase : Optional[int] = ['torch', 'transformers', 'onnx']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
lowercase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def a_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
| 27 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCamelCase ( nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ):
super().__init__()
UpperCamelCase : int = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCamelCase : Optional[Any] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCamelCase : List[Any] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCamelCase : int = [1, 0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ):
UpperCamelCase : Dict = hidden_states
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCamelCase : str = self.transformer_index_for_condition[i]
UpperCamelCase : Any = self.transformers[transformer_index](
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCamelCase : List[str] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def A_ ( snake_case_ : np.ndarray ,snake_case_ : tuple[int, int] ,snake_case_ : tuple[int, int] ,snake_case_ : bool ,):
'''simple docstring'''
UpperCamelCase , UpperCamelCase : List[str] = grid.shape
UpperCamelCase : Union[str, Any] = [-1, 1, 0, 0]
UpperCamelCase : Any = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCamelCase , UpperCamelCase : Tuple = [(0, source)], set()
UpperCamelCase : Any = np.full((rows, cols) ,np.inf )
UpperCamelCase : Any = 0
UpperCamelCase : Tuple = np.empty((rows, cols) ,dtype=snake_case_ )
UpperCamelCase : int = None
while queue:
((UpperCamelCase) , (UpperCamelCase)) : int = heappop(snake_case_ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCamelCase : str = []
while (x, y) != source:
path.append((x, y) )
UpperCamelCase , UpperCamelCase : str = predecessors[x, y]
path.append(snake_case_ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(snake_case_ ) ):
UpperCamelCase , UpperCamelCase : Optional[Any] = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCamelCase : Dict = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(snake_case_ ,(dist + 1, (nx, ny)) )
UpperCamelCase : Optional[int] = dist + 1
UpperCamelCase : Any = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : Optional[int] = {
'''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''',
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = 'mvp'
lowercase : Optional[Any] = ['past_key_values']
lowercase : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_0267 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=800 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Dict = max_position_embeddings
UpperCamelCase : Optional[int] = d_model
UpperCamelCase : Optional[Any] = encoder_ffn_dim
UpperCamelCase : Any = encoder_layers
UpperCamelCase : List[Any] = encoder_attention_heads
UpperCamelCase : Optional[Any] = decoder_ffn_dim
UpperCamelCase : Optional[int] = decoder_layers
UpperCamelCase : Dict = decoder_attention_heads
UpperCamelCase : List[str] = dropout
UpperCamelCase : List[str] = attention_dropout
UpperCamelCase : List[Any] = activation_dropout
UpperCamelCase : Dict = activation_function
UpperCamelCase : List[str] = init_std
UpperCamelCase : int = encoder_layerdrop
UpperCamelCase : Dict = decoder_layerdrop
UpperCamelCase : Any = classifier_dropout
UpperCamelCase : Tuple = use_cache
UpperCamelCase : Dict = encoder_layers
UpperCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCamelCase : Optional[Any] = use_prompt
UpperCamelCase : Any = prompt_length
UpperCamelCase : List[Any] = prompt_mid_dim
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = self.bos_token_id
warnings.warn(
f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
"""The config can simply be saved and uploaded again to be fixed.""" )
| 27 | 1 |
"""simple docstring"""
import re
import string
import numpy as np
import datasets
__A : Union[str, Any] = '''
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
'''
__A : Optional[Any] = '''
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["exact_match"], 1))
25.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results["exact_match"], 1))
50.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results["exact_match"], 1))
75.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results["exact_match"], 1))
100.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["exact_match"], 1))
33.3
'''
__A : Union[str, Any] = '''
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def a_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , reference_urls=[] , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , ):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
UpperCamelCase : Union[str, Any] = np.array([re.sub(SCREAMING_SNAKE_CASE_ , """""" , SCREAMING_SNAKE_CASE_ ) for x in predictions] )
UpperCamelCase : List[str] = np.array([re.sub(SCREAMING_SNAKE_CASE_ , """""" , SCREAMING_SNAKE_CASE_ ) for x in references] )
else:
UpperCamelCase : List[Any] = np.asarray(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = np.asarray(SCREAMING_SNAKE_CASE_ )
if ignore_case:
UpperCamelCase : Optional[int] = np.char.lower(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = np.char.lower(SCREAMING_SNAKE_CASE_ )
if ignore_punctuation:
UpperCamelCase : int = string.punctuation.maketrans("""""" , """""" , string.punctuation )
UpperCamelCase : List[str] = np.char.translate(SCREAMING_SNAKE_CASE_ , table=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = np.char.translate(SCREAMING_SNAKE_CASE_ , table=SCREAMING_SNAKE_CASE_ )
if ignore_numbers:
UpperCamelCase : Any = string.digits.maketrans("""""" , """""" , string.digits )
UpperCamelCase : Dict = np.char.translate(SCREAMING_SNAKE_CASE_ , table=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = np.char.translate(SCREAMING_SNAKE_CASE_ , table=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = predictions == references
return {"exact_match": np.mean(SCREAMING_SNAKE_CASE_ ) * 100}
| 27 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A : Optional[Any] = 16
__A : str = 32
def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ):
'''simple docstring'''
UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
UpperCamelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" )
def tokenize_function(snake_case_ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase : Optional[Any] = datasets.map(
snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase : Optional[Any] = 1_6
elif accelerator.mixed_precision != "no":
UpperCamelCase : Any = 8
else:
UpperCamelCase : Optional[Any] = None
return tokenizer.pad(
snake_case_ ,padding="""longest""" ,max_length=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_tensors="""pt""" ,)
# Instantiate dataloaders.
UpperCamelCase : str = DataLoader(
tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
UpperCamelCase : Dict = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A : int = mocked_dataloaders # noqa: F811
def A_ ( snake_case_ : Tuple ,snake_case_ : Dict ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case_ ) == "1":
UpperCamelCase : Union[str, Any] = 2
# New Code #
UpperCamelCase : Dict = int(args.gradient_accumulation_steps )
UpperCamelCase : List[Any] = int(args.local_sgd_steps )
# Initialize accelerator
UpperCamelCase : str = Accelerator(
cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case_ )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase : Union[str, Any] = config["""lr"""]
UpperCamelCase : int = int(config["""num_epochs"""] )
UpperCamelCase : int = int(config["""seed"""] )
UpperCamelCase : List[Any] = int(config["""batch_size"""] )
UpperCamelCase : Optional[int] = evaluate.load("""glue""" ,"""mrpc""" )
set_seed(snake_case_ )
UpperCamelCase , UpperCamelCase : Dict = get_dataloaders(snake_case_ ,snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase : Tuple = model.to(accelerator.device )
# Instantiate optimizer
UpperCamelCase : List[Any] = AdamW(params=model.parameters() ,lr=snake_case_ )
# Instantiate scheduler
UpperCamelCase : str = get_linear_schedule_with_warmup(
optimizer=snake_case_ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(snake_case_ ) * num_epochs) ,)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
with LocalSGD(
accelerator=snake_case_ ,model=snake_case_ ,local_sgd_steps=snake_case_ ,enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(snake_case_ ):
UpperCamelCase : Optional[Any] = model(**snake_case_ )
UpperCamelCase : Optional[int] = output.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCamelCase : Any = model(**snake_case_ )
UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 )
UpperCamelCase , UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=snake_case_ ,references=snake_case_ ,)
UpperCamelCase : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' ,snake_case_ )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" ,type=snake_case_ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,)
parser.add_argument(
"""--local_sgd_steps""" ,type=snake_case_ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" )
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
UpperCamelCase : Dict = parser.parse_args()
UpperCamelCase : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(snake_case_ ,snake_case_ )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__A : Dict = logging.get_logger(__name__)
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = ['input_values', 'padding_mask']
def __init__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2_4000 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = chunk_length_s
UpperCamelCase : List[Any] = overlap
@property
def a_ ( self ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def a_ ( self ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
UpperCamelCase : Optional[int] = True
UpperCamelCase : Union[str, Any] = bool(
isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
UpperCamelCase : List[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ):
UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
UpperCamelCase : Any = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
UpperCamelCase : Any = [np.asarray(SCREAMING_SNAKE_CASE_ ).T]
# verify inputs are valid
for idx, example in enumerate(SCREAMING_SNAKE_CASE_ ):
if example.ndim > 2:
raise ValueError(f'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'Expected stereo audio but example has {example.shape[-1]} channels' )
UpperCamelCase : List[Any] = None
UpperCamelCase : Dict = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
UpperCamelCase : Tuple = min(array.shape[0] for array in raw_audio )
UpperCamelCase : List[str] = int(np.floor(max_length / self.chunk_stride ) )
UpperCamelCase : str = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
UpperCamelCase : int = max(array.shape[0] for array in raw_audio )
UpperCamelCase : str = int(np.ceil(max_length / self.chunk_stride ) )
UpperCamelCase : Optional[int] = (nb_step - 1) * self.chunk_stride + self.chunk_length
UpperCamelCase : int = """max_length"""
else:
UpperCamelCase : List[str] = input_values
# normal padding on batch
if padded_inputs is None:
UpperCamelCase : List[Any] = self.pad(
SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , )
if padding:
UpperCamelCase : int = padded_inputs.pop("""attention_mask""" )
UpperCamelCase : Optional[Any] = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
UpperCamelCase : Union[str, Any] = example[..., None]
input_values.append(example.T )
UpperCamelCase : Dict = input_values
if return_tensors is not None:
UpperCamelCase : Any = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ )
return padded_inputs
| 27 |
"""simple docstring"""
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
__A : Any = logging.get_logger(__name__)
__A : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__A : Optional[Any] = {
'''vocab_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'''
},
'''merges_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'''
},
}
__A : Any = {'''allegro/herbert-base-cased''': 514}
__A : Optional[Any] = {}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Dict = VOCAB_FILES_NAMES
lowercase : Any = PRETRAINED_VOCAB_FILES_MAP
lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Union[str, Any] = HerbertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="</s>" , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = [self.cls_token_id]
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Tuple = [self.sep_token_id]
UpperCamelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : List[Any] = 'char'
lowercase : Dict = 'bpe'
lowercase : Optional[Any] = 'wp'
__A : Dict = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = ['image_processor', 'char_tokenizer']
lowercase : int = 'ViTImageProcessor'
lowercase : Dict = 'MgpstrTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : List[Any] = kwargs.pop("""feature_extractor""" )
UpperCamelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
UpperCamelCase : Optional[int] = tokenizer
UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained("""gpt2""" )
UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-uncased""" )
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ):
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
UpperCamelCase : Optional[Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if text is not None:
UpperCamelCase : Dict = self.char_tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
UpperCamelCase : int = encodings["""input_ids"""]
return inputs
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = sequences
UpperCamelCase : Optional[int] = char_preds.size(0 )
UpperCamelCase , UpperCamelCase : List[str] = self._decode_helper(SCREAMING_SNAKE_CASE_ , """char""" )
UpperCamelCase , UpperCamelCase : Union[str, Any] = self._decode_helper(SCREAMING_SNAKE_CASE_ , """bpe""" )
UpperCamelCase , UpperCamelCase : Any = self._decode_helper(SCREAMING_SNAKE_CASE_ , """wp""" )
UpperCamelCase : Optional[int] = []
UpperCamelCase : Union[str, Any] = []
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = [char_scores[i], bpe_scores[i], wp_scores[i]]
UpperCamelCase : Union[str, Any] = [char_strs[i], bpe_strs[i], wp_strs[i]]
UpperCamelCase : List[Any] = scores.index(max(SCREAMING_SNAKE_CASE_ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
UpperCamelCase : Any = {}
UpperCamelCase : List[str] = final_strs
UpperCamelCase : Optional[int] = final_scores
UpperCamelCase : List[str] = char_strs
UpperCamelCase : Optional[Any] = bpe_strs
UpperCamelCase : Dict = wp_strs
return out
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if format == DecodeType.CHARACTER:
UpperCamelCase : Any = self.char_decode
UpperCamelCase : Union[str, Any] = 1
UpperCamelCase : Dict = """[s]"""
elif format == DecodeType.BPE:
UpperCamelCase : str = self.bpe_decode
UpperCamelCase : List[Any] = 2
UpperCamelCase : Tuple = """#"""
elif format == DecodeType.WORDPIECE:
UpperCamelCase : Union[str, Any] = self.wp_decode
UpperCamelCase : Union[str, Any] = 102
UpperCamelCase : int = """[SEP]"""
else:
raise ValueError(f'Format {format} is not supported.' )
UpperCamelCase , UpperCamelCase : Any = [], []
UpperCamelCase : Dict = pred_logits.size(0 )
UpperCamelCase : Optional[int] = pred_logits.size(1 )
UpperCamelCase , UpperCamelCase : List[str] = pred_logits.topk(1 , dim=-1 , largest=SCREAMING_SNAKE_CASE_ , sorted=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = preds_index.view(-1 , SCREAMING_SNAKE_CASE_ )[:, 1:]
UpperCamelCase : Tuple = decoder(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Union[str, Any] = torch.nn.functional.softmax(SCREAMING_SNAKE_CASE_ , dim=2 ).max(dim=2 )
UpperCamelCase : Optional[int] = preds_max_prob[:, 1:]
for index in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = preds_str[index].find(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = preds_str[index][:pred_eos]
UpperCamelCase : List[str] = preds_index[index].cpu().tolist()
UpperCamelCase : List[str] = pred_index.index(SCREAMING_SNAKE_CASE_ ) if eos_token in pred_index else -1
UpperCamelCase : Dict = preds_max_prob[index][: pred_eos_index + 1]
UpperCamelCase : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(SCREAMING_SNAKE_CASE_ )
conf_scores.append(SCREAMING_SNAKE_CASE_ )
return dec_strs, conf_scores
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )]
return decode_strs
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.bpe_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )]
return decode_strs
| 27 |
"""simple docstring"""
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ):
UpperCamelCase : Dict = tokenizer
UpperCamelCase : Optional[Any] = tokenizer.bos_token_id
UpperCamelCase : Any = dataset
UpperCamelCase : List[str] = seq_length
UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self ):
UpperCamelCase : Dict = iter(self.dataset )
UpperCamelCase : Union[str, Any] = True
while more_examples:
UpperCamelCase , UpperCamelCase : Tuple = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
UpperCamelCase : Dict = False
break
UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""]
UpperCamelCase : str = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ):
UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length]
if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length:
yield torch.tensor(SCREAMING_SNAKE_CASE_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Dict = {"""streaming""": True}
UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ )
UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length )
UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size )
return eval_dataloader
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
model.eval()
UpperCamelCase : Dict = []
for step, batch in enumerate(snake_case_ ):
with torch.no_grad():
UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ )
UpperCamelCase : Any = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(snake_case_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) )
try:
UpperCamelCase : Dict = torch.exp(snake_case_ )
except OverflowError:
UpperCamelCase : Optional[int] = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
__A : List[Any] = Accelerator()
# Parse configuration
__A : str = HfArgumentParser(EvaluationArguments)
__A : List[Any] = parser.parse_args()
set_seed(args.seed)
# Logging
__A : Any = logging.getLogger(__name__)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
# Load model and tokenizer
__A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
__A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
__A : int = create_dataloader(args)
# Prepare everything with our `accelerator`.
__A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('''Evaluating and saving model after training''')
__A , __A : Tuple = evaluate(args)
logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 27 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : Any = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Any = 'markuplm'
def __init__( self , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=216 , SCREAMING_SNAKE_CASE_=1001 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=50 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : str = vocab_size
UpperCamelCase : Optional[int] = hidden_size
UpperCamelCase : Optional[Any] = num_hidden_layers
UpperCamelCase : Optional[int] = num_attention_heads
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Optional[Any] = intermediate_size
UpperCamelCase : Any = hidden_dropout_prob
UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : str = type_vocab_size
UpperCamelCase : str = initializer_range
UpperCamelCase : List[str] = layer_norm_eps
UpperCamelCase : Tuple = position_embedding_type
UpperCamelCase : List[str] = use_cache
UpperCamelCase : List[str] = classifier_dropout
# additional properties
UpperCamelCase : List[str] = max_depth
UpperCamelCase : Union[str, Any] = max_xpath_tag_unit_embeddings
UpperCamelCase : List[Any] = max_xpath_subs_unit_embeddings
UpperCamelCase : str = tag_pad_id
UpperCamelCase : Dict = subs_pad_id
UpperCamelCase : Tuple = xpath_unit_hidden_size
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Any = '''src/transformers'''
# Pattern that looks at the indentation in a line.
__A : Tuple = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : List[Any] = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : List[Any] = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : Any = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : str ,snake_case_ : str="" ,snake_case_ : Any=None ,snake_case_ : Union[str, Any]=None ):
'''simple docstring'''
UpperCamelCase : List[Any] = 0
UpperCamelCase : Optional[int] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Tuple = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : Tuple = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Dict = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Optional[Any] = [lines[index + 1]]
index += 1
else:
UpperCamelCase : str = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
def _inner(snake_case_ : List[str] ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Optional[int] ):
return x
if key is None:
UpperCamelCase : List[str] = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[str] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : Tuple = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : int = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Union[str, Any] = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : Any ):
UpperCamelCase : Union[str, Any] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : int = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : str = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : Optional[int] = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : int = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Tuple = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : List[Any] = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : List[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : Optional[int] = keys[:-1]
UpperCamelCase : Union[str, Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : Any = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int=True ):
'''simple docstring'''
with open(snake_case_ ,encoding="""utf-8""" ) as f:
UpperCamelCase : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : int = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Dict = main_blocks[block_idx]
UpperCamelCase : Dict = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : List[str] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : Optional[Any] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Optional[Any] = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Any = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : List[Any] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Optional[Any] = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Optional[Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Any = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : Union[str, Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[str] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Optional[int] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : List[Any] = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A : int = {
'''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GraphormerForGraphClassification''',
'''GraphormerModel''',
'''GraphormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : int ):
'''simple docstring'''
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : int = {
'''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''',
}
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ):
lowercase : Optional[int] = 'bit'
lowercase : Any = ['preactivation', 'bottleneck']
lowercase : Any = ['SAME', 'VALID']
def __init__( self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=[256, 512, 1024, 2048] , SCREAMING_SNAKE_CASE_=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE_="preactivation" , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
if layer_type not in self.layer_types:
raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
UpperCamelCase : str = global_padding.upper()
else:
raise ValueError(f'Padding strategy {global_padding} not supported' )
UpperCamelCase : Optional[int] = num_channels
UpperCamelCase : str = embedding_size
UpperCamelCase : List[Any] = hidden_sizes
UpperCamelCase : Any = depths
UpperCamelCase : Optional[int] = layer_type
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Any = global_padding
UpperCamelCase : Dict = num_groups
UpperCamelCase : Optional[int] = drop_path_rate
UpperCamelCase : Dict = embedding_dynamic_padding
UpperCamelCase : str = output_stride
UpperCamelCase : str = width_factor
UpperCamelCase : int = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )]
UpperCamelCase , UpperCamelCase : List[str] = get_aligned_output_features_output_indices(
out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
| 27 |
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
__A : Optional[Any] = logging.get_logger(__name__)
def A_ ( snake_case_ : np.ndarray ,snake_case_ : Union[int, Iterable[int]] ,snake_case_ : bool ,snake_case_ : int ):
'''simple docstring'''
def constraint_to_multiple_of(snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : List[str]=0 ,snake_case_ : Optional[Any]=None ):
UpperCamelCase : List[str] = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
UpperCamelCase : Optional[Any] = math.floor(val / multiple ) * multiple
if x < min_val:
UpperCamelCase : Dict = math.ceil(val / multiple ) * multiple
return x
UpperCamelCase : Any = (output_size, output_size) if isinstance(snake_case_ ,snake_case_ ) else output_size
UpperCamelCase , UpperCamelCase : int = get_image_size(snake_case_ )
UpperCamelCase , UpperCamelCase : Union[str, Any] = output_size
# determine new height and width
UpperCamelCase : List[str] = output_height / input_height
UpperCamelCase : List[str] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
UpperCamelCase : int = scale_width
else:
# fit height
UpperCamelCase : Optional[Any] = scale_height
UpperCamelCase : int = constraint_to_multiple_of(scale_height * input_height ,multiple=snake_case_ )
UpperCamelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width ,multiple=snake_case_ )
return (new_height, new_width)
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : str = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384}
UpperCamelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = do_resize
UpperCamelCase : Union[str, Any] = size
UpperCamelCase : Union[str, Any] = keep_aspect_ratio
UpperCamelCase : Any = ensure_multiple_of
UpperCamelCase : List[Any] = resample
UpperCamelCase : str = do_rescale
UpperCamelCase : Optional[Any] = rescale_factor
UpperCamelCase : List[str] = do_normalize
UpperCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
UpperCamelCase : Dict = get_resize_output_image_size(
SCREAMING_SNAKE_CASE_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=SCREAMING_SNAKE_CASE_ , multiple=SCREAMING_SNAKE_CASE_ , )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase : List[Any] = size if size is not None else self.size
UpperCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
UpperCamelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
UpperCamelCase : Tuple = resample if resample is not None else self.resample
UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean
UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std
UpperCamelCase : str = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
UpperCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
UpperCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
UpperCamelCase : int = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
UpperCamelCase : List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Union[str, Any] = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : str = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = target_sizes.numpy()
UpperCamelCase : Dict = []
for idx in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCamelCase : List[Any] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : List[Any] = logits.argmax(dim=1 )
UpperCamelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 27 | 1 |
"""simple docstring"""
import argparse
import os
import re
__A : Any = '''src/transformers'''
# Pattern that looks at the indentation in a line.
__A : Tuple = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : List[Any] = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : List[Any] = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : Any = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : str ,snake_case_ : str="" ,snake_case_ : Any=None ,snake_case_ : Union[str, Any]=None ):
'''simple docstring'''
UpperCamelCase : List[Any] = 0
UpperCamelCase : Optional[int] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Tuple = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : Tuple = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Dict = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Optional[Any] = [lines[index + 1]]
index += 1
else:
UpperCamelCase : str = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
def _inner(snake_case_ : List[str] ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Optional[int] ):
return x
if key is None:
UpperCamelCase : List[str] = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[str] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : Tuple = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : int = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Union[str, Any] = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : Any ):
UpperCamelCase : Union[str, Any] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : int = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : str = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : Optional[int] = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : int = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Tuple = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : List[Any] = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : List[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : Optional[int] = keys[:-1]
UpperCamelCase : Union[str, Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : Any = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int=True ):
'''simple docstring'''
with open(snake_case_ ,encoding="""utf-8""" ) as f:
UpperCamelCase : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : int = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Dict = main_blocks[block_idx]
UpperCamelCase : Dict = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : List[str] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : Optional[Any] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Optional[Any] = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Any = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : List[Any] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Optional[Any] = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Optional[Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Any = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : Union[str, Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[str] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Optional[int] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : List[Any] = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 |
"""simple docstring"""
from collections.abc import Callable
def A_ ( snake_case_ : Callable[[float], float] ,snake_case_ : float ,snake_case_ : float ):
'''simple docstring'''
UpperCamelCase : float = a
UpperCamelCase : float = b
if function(snake_case_ ) == 0: # one of the a or b is a root for the function
return a
elif function(snake_case_ ) == 0:
return b
elif (
function(snake_case_ ) * function(snake_case_ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
UpperCamelCase : float = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(snake_case_ ) == 0:
return mid
elif function(snake_case_ ) * function(snake_case_ ) < 0:
UpperCamelCase : Dict = mid
else:
UpperCamelCase : List[str] = mid
UpperCamelCase : Tuple = start + (end - start) / 2.0
return mid
def A_ ( snake_case_ : float ):
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 27 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Any = AudioLDMPipeline
lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS
lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS
lowercase : Tuple = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Optional[Any] = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
UpperCamelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase : int = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
UpperCamelCase : Tuple = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def a_ ( self ):
UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Any = self.get_dummy_components()
UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Tuple = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[str] = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : str = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
UpperCamelCase : Tuple = prompt_embeds
# forward
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : List[str] = self.get_dummy_components()
UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""]
UpperCamelCase : List[Any] = negative_prompt
UpperCamelCase : str = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[Any] = []
for p in [prompt, negative_prompt]:
UpperCamelCase : int = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
embeds.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Tuple = embeds
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Optional[int] = self.get_dummy_components()
UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = """egg cracking"""
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Union[str, Any] = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
UpperCamelCase : Dict = 2
UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
UpperCamelCase : List[str] = 2
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
UpperCamelCase : Any = 2
UpperCamelCase : str = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Tuple = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016
UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = ["""hey"""]
UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : str = output.audios.shape
assert audio_shape == (1, 256)
UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : List[str] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def a_ ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def a_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@slow
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) )
UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def a_ ( self ):
UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 25
UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240]
UpperCamelCase : Optional[Any] = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def a_ ( self ):
UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790]
UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 27 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def a_ ( self ):
UpperCamelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCamelCase : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCamelCase : Dict = """xvjiarui/stable-diffusion-2-inpainting"""
UpperCamelCase , UpperCamelCase : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCamelCase : List[str] = jax.random.PRNGKey(0 )
UpperCamelCase : Tuple = 50
UpperCamelCase : Dict = jax.device_count()
UpperCamelCase : Optional[int] = num_samples * [prompt]
UpperCamelCase : int = num_samples * [init_image]
UpperCamelCase : List[Any] = num_samples * [mask_image]
UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# shard inputs and rng
UpperCamelCase : Optional[int] = replicate(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() )
UpperCamelCase : str = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipeline(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 512 , 512 , 3 )
UpperCamelCase : List[Any] = images[0, 253:256, 253:256, -1]
UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
UpperCamelCase : Dict = jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 27 | 1 |
"""simple docstring"""
import qiskit
def A_ ( snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : str = qiskit.Aer.get_backend("""aer_simulator""" )
UpperCamelCase : Any = qiskit.QuantumCircuit(4 ,2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 ,2 )
qc_ha.cx(1 ,2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 ,1 ,3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 ,0 ) # extract XOR value
qc_ha.measure(3 ,1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCamelCase : Optional[Any] = qiskit.execute(snake_case_ ,snake_case_ ,shots=1_0_0_0 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(snake_case_ )
if __name__ == "__main__":
__A : str = half_adder(1, 1)
print(F'''Half Adder Output Qubit Counts: {counts}''')
| 27 |
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def A_ ( snake_case_ : int ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def A_ ( ):
'''simple docstring'''
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
UpperCamelCase : Optional[Any] = [1, 2, 3]
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=2 )
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" ,[2, -1] )
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : List[Any] = [1, 2]
UpperCamelCase : List[Any] = {"""a""": 1, """b""": 2}
UpperCamelCase : List[str] = {"""a""": [1, 2], """b""": [3, 4]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2}
UpperCamelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
UpperCamelCase : Optional[int] = [2, 3]
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3}
UpperCamelCase : Any = {"""a""": [2, 3], """b""": [4, 5]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 2}, """b""": 3}
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
| 27 | 1 |
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ):
UpperCamelCase : Dict = parent
UpperCamelCase : Tuple = batch_size
UpperCamelCase : Optional[int] = seq_length
UpperCamelCase : Any = is_training
UpperCamelCase : List[Any] = use_input_mask
UpperCamelCase : Optional[Any] = use_token_type_ids
UpperCamelCase : List[str] = use_labels
UpperCamelCase : int = vocab_size
UpperCamelCase : Tuple = hidden_size
UpperCamelCase : int = num_hidden_layers
UpperCamelCase : Optional[int] = num_attention_heads
UpperCamelCase : str = intermediate_size
UpperCamelCase : List[Any] = hidden_act
UpperCamelCase : List[Any] = hidden_dropout_prob
UpperCamelCase : int = attention_probs_dropout_prob
UpperCamelCase : List[str] = max_position_embeddings
UpperCamelCase : Dict = type_vocab_size
UpperCamelCase : Tuple = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : int = num_labels
UpperCamelCase : Any = num_choices
UpperCamelCase : Union[str, Any] = scope
def a_ ( self ):
UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Any = None
if self.use_input_mask:
UpperCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : int = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase : Tuple = None
UpperCamelCase : int = None
UpperCamelCase : Dict = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Tuple = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self ):
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = BioGptModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = BioGptForCausalLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = BioGptModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
# create attention mask
UpperCamelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.seq_length // 2
UpperCamelCase : int = 0
# first forward pass
UpperCamelCase , UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase : Dict = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCamelCase : Tuple = ids_tensor((1,) , SCREAMING_SNAKE_CASE_ ).item() + 1
UpperCamelCase : str = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCamelCase : Any = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCamelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase : Dict = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )] , dim=1 , )
# get two different outputs
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""]
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""]
# select random slice
UpperCamelCase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase : Tuple = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCamelCase : Optional[int] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = BioGptModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval()
UpperCamelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
# first forward pass
UpperCamelCase : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Optional[int] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCamelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase : int = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""]
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[
"""last_hidden_state"""
]
# select random slice
UpperCamelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Optional[int] = BioGptForCausalLM(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def a_ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = BioGptModel(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = self.num_labels
UpperCamelCase : Optional[int] = BioGptForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self ):
UpperCamelCase : List[str] = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : Dict = config_and_inputs
UpperCamelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Optional[int] = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
lowercase : str = (BioGptForCausalLM,) if is_torch_available() else ()
lowercase : Optional[int] = (
{
'feature-extraction': BioGptModel,
'text-classification': BioGptForSequenceClassification,
'text-generation': BioGptForCausalLM,
'token-classification': BioGptForTokenClassification,
'zero-shot': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Optional[Any] = False
def a_ ( self ):
UpperCamelCase : int = BioGptModelTester(self )
UpperCamelCase : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCamelCase : Optional[Any] = type
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*SCREAMING_SNAKE_CASE_ , gradient_checkpointing=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def a_ ( self ):
UpperCamelCase : List[str] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
UpperCamelCase : Union[str, Any] = """left"""
# Define PAD Token = EOS Token = 50256
UpperCamelCase : List[Any] = tokenizer.eos_token
UpperCamelCase : Tuple = model.config.eos_token_id
# use different length sentences to test batching
UpperCamelCase : Optional[int] = [
"""Hello, my dog is a little""",
"""Today, I""",
]
UpperCamelCase : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = model.generate(
input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs["""attention_mask"""].to(SCREAMING_SNAKE_CASE_ ) , )
UpperCamelCase : int = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item()
UpperCamelCase : Any = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_length=model.config.max_length - num_paddings )
UpperCamelCase : Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = [
"""Hello, my dog is a little bit bigger than a little bit.""",
"""Today, I have a good idea of how to use the information""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
@slow
def a_ ( self ):
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = BioGptModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : Tuple = 3
UpperCamelCase : Optional[int] = input_dict["""input_ids"""]
UpperCamelCase : Tuple = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCamelCase : Any = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def a_ ( self ):
UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : Dict = 3
UpperCamelCase : str = """multi_label_classification"""
UpperCamelCase : Optional[Any] = input_dict["""input_ids"""]
UpperCamelCase : Dict = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCamelCase : Any = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Optional[int] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
UpperCamelCase : str = torch.tensor([[2, 4805, 9, 656, 21]] )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0]
UpperCamelCase : str = 4_2384
UpperCamelCase : str = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
@slow
def a_ ( self ):
UpperCamelCase : int = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
UpperCamelCase : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(SCREAMING_SNAKE_CASE_ )
torch.manual_seed(0 )
UpperCamelCase : List[str] = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model.generate(
**SCREAMING_SNAKE_CASE_ , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = (
"""COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"""
""" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"""
""" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"""
""" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"""
""" more than 800,000 deaths."""
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : str = batch_size
UpperCamelCase : int = seq_length
UpperCamelCase : Optional[Any] = is_training
UpperCamelCase : Any = use_input_lengths
UpperCamelCase : Tuple = use_token_type_ids
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = gelu_activation
UpperCamelCase : Dict = sinusoidal_embeddings
UpperCamelCase : Optional[int] = causal
UpperCamelCase : List[Any] = asm
UpperCamelCase : int = n_langs
UpperCamelCase : Optional[Any] = vocab_size
UpperCamelCase : str = n_special
UpperCamelCase : Dict = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : Any = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : str = num_labels
UpperCamelCase : Union[str, Any] = num_choices
UpperCamelCase : List[str] = summary_type
UpperCamelCase : int = use_proj
UpperCamelCase : List[str] = scope
UpperCamelCase : Dict = bos_token_id
def a_ ( self ):
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Union[str, Any] = None
if self.use_input_lengths:
UpperCamelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCamelCase : int = None
UpperCamelCase : Dict = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float()
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : List[str] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , )
((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = self.num_labels
UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = self.num_choices
UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : int = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : List[Any] = config_and_inputs
UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase : List[Any] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase : Optional[Any] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCamelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def a_ ( self ):
UpperCamelCase : List[Any] = XLMModelTester(self )
UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : int = min_length + idx + 1
UpperCamelCase : Tuple = min_length + idx + 1
UpperCamelCase : Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : List[str] = min_length + idx + 1
UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , )
pass
@slow
def a_ ( self ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president
UpperCamelCase : List[Any] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
__A : Any = logging.get_logger(__name__)
__A : Any = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
__A : Optional[int] = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : Optional[int] = torch.load(snake_case_ ,map_location="""cpu""" )
return sd
def A_ ( snake_case_ : Optional[int] ,snake_case_ : Union[str, Any] ,snake_case_ : int=rename_keys_prefix ):
'''simple docstring'''
UpperCamelCase : List[Any] = OrderedDict()
UpperCamelCase : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
UpperCamelCase : List[str] = key
for name_pair in rename_keys_prefix:
UpperCamelCase : Dict = new_key.replace(name_pair[0] ,name_pair[1] )
UpperCamelCase : Optional[int] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
UpperCamelCase : List[Any] = new_d["""cls.predictions.bias"""]
return new_d
@torch.no_grad()
def A_ ( snake_case_ : Dict ,snake_case_ : int ):
'''simple docstring'''
assert (
checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS
), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
UpperCamelCase : str = """pretraining"""
if "vcr" in checkpoint_path:
UpperCamelCase : Dict = {"""visual_embedding_dim""": 5_1_2}
elif "vqa_advanced" in checkpoint_path:
UpperCamelCase : Tuple = {"""visual_embedding_dim""": 2_0_4_8}
elif "vqa" in checkpoint_path:
UpperCamelCase : Dict = {"""visual_embedding_dim""": 2_0_4_8}
elif "nlvr" in checkpoint_path:
UpperCamelCase : Union[str, Any] = {"""visual_embedding_dim""": 1_0_2_4}
else:
raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
UpperCamelCase : Any = {"""visual_embedding_dim""": 5_1_2}
UpperCamelCase : Union[str, Any] = """multichoice"""
elif "vqa_advanced" in checkpoint_path:
UpperCamelCase : Tuple = {"""visual_embedding_dim""": 2_0_4_8}
UpperCamelCase : int = """vqa_advanced"""
elif "vqa" in checkpoint_path:
UpperCamelCase : str = {"""visual_embedding_dim""": 2_0_4_8, """num_labels""": 3_1_2_9}
UpperCamelCase : Optional[Any] = """vqa"""
elif "nlvr" in checkpoint_path:
UpperCamelCase : Tuple = {
"""visual_embedding_dim""": 1_0_2_4,
"""num_labels""": 2,
}
UpperCamelCase : List[str] = """nlvr"""
UpperCamelCase : Any = VisualBertConfig(**snake_case_ )
# Load State Dict
UpperCamelCase : Dict = load_state_dict(snake_case_ )
UpperCamelCase : Dict = get_new_dict(snake_case_ ,snake_case_ )
if model_type == "pretraining":
UpperCamelCase : str = VisualBertForPreTraining(snake_case_ )
elif model_type == "vqa":
UpperCamelCase : int = VisualBertForQuestionAnswering(snake_case_ )
elif model_type == "nlvr":
UpperCamelCase : List[str] = VisualBertForVisualReasoning(snake_case_ )
elif model_type == "multichoice":
UpperCamelCase : List[str] = VisualBertForMultipleChoice(snake_case_ )
model.load_state_dict(snake_case_ )
# Save Checkpoints
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
model.save_pretrained(snake_case_ )
if __name__ == "__main__":
__A : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
__A : Dict = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 27 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__A : int = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 | 1 |
"""simple docstring"""
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__A : List[Any] = '''.'''
if __name__ == "__main__":
__A : str = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''')
__A : Dict = []
__A : Union[str, Any] = []
with open(doctest_file_path) as fp:
for line in fp:
__A : int = line.strip()
__A : List[str] = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__A : Tuple = '''\n'''.join(non_existent_paths)
raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''')
if all_paths != sorted(all_paths):
raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
| 27 |
"""simple docstring"""
import torch
from transformers import AutoModel
class lowerCamelCase ( torch.nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_="sayef/fsner-bert-base-uncased" ):
super(SCREAMING_SNAKE_CASE_ , self ).__init__()
UpperCamelCase : int = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCamelCase : Any = torch.nn.Softmax(dim=1 )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return self.bert(**SCREAMING_SNAKE_CASE_ ).last_hidden_state
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return token_embeddings.sum(2 , keepdim=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ):
return self.softmax(T * self.cos(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = W_supports["""sizes"""].tolist()
UpperCamelCase : List[str] = W_supports["""start_token_id"""].item()
UpperCamelCase : List[Any] = W_supports["""end_token_id"""].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCamelCase : List[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Tuple = W_supports["""input_ids"""] == start_token_id
UpperCamelCase : Optional[Any] = W_supports["""input_ids"""] == end_token_id
for i, size in enumerate(SCREAMING_SNAKE_CASE_ ):
if i == 0:
UpperCamelCase : int = 0
else:
UpperCamelCase : Optional[int] = support_sizes[i - 1]
UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]]
UpperCamelCase : int = S[s : s + size][end_token_masks[s : s + size]]
UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) )
UpperCamelCase : Optional[Any] = torch.vstack((p_ends, p_end) )
else:
UpperCamelCase : Optional[int] = p_start
UpperCamelCase : Tuple = p_end
return p_starts, p_ends
| 27 | 1 |
"""simple docstring"""
def A_ ( snake_case_ : int ):
'''simple docstring'''
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 |
"""simple docstring"""
from typing import Any
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = data
UpperCamelCase : Optional[Any] = None
def __repr__( self ):
return f'Node({self.data})'
class lowerCamelCase :
def __init__( self ):
UpperCamelCase : Dict = None
def __iter__( self ):
UpperCamelCase : int = self.head
while node:
yield node.data
UpperCamelCase : Union[str, Any] = node.next
def __len__( self ):
return sum(1 for _ in self )
def __repr__( self ):
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
UpperCamelCase : List[Any] = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = current.next
UpperCamelCase : Optional[Any] = data
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index <= len(self ):
raise IndexError("""list index out of range""" )
UpperCamelCase : Optional[Any] = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
UpperCamelCase : Dict = new_node
elif index == 0:
UpperCamelCase : Any = self.head # link new_node to head
UpperCamelCase : Any = new_node
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : str = temp.next
UpperCamelCase : Any = temp.next
UpperCamelCase : Optional[Any] = new_node
def a_ ( self ): # print every node data
print(self )
def a_ ( self ):
return self.delete_nth(0 )
def a_ ( self ): # delete from tail
return self.delete_nth(len(self ) - 1 )
def a_ ( self , SCREAMING_SNAKE_CASE_ = 0 ):
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("""List index out of range.""" )
UpperCamelCase : Union[str, Any] = self.head # default first node
if index == 0:
UpperCamelCase : Optional[Any] = self.head.next
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : int = temp.next
UpperCamelCase : Optional[Any] = temp.next
UpperCamelCase : Dict = temp.next.next
return delete_node.data
def a_ ( self ):
return self.head is None
def a_ ( self ):
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Union[str, Any] = self.head
while current:
# Store the current node's next node.
UpperCamelCase : Optional[int] = current.next
# Make the current node's next point backwards
UpperCamelCase : Optional[Any] = prev
# Make the previous node be the current node
UpperCamelCase : int = current
# Make the current node the next node (to progress iteration)
UpperCamelCase : Optional[int] = next_node
# Return prev in order to put the head at the end
UpperCamelCase : Optional[int] = prev
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case_ ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(snake_case_ ) == i
linked_list.insert_nth(snake_case_ ,i + 1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 ,1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(snake_case_ ) == 9
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
UpperCamelCase : Optional[Any] = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8 ,1 ) )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
"""dlrow olleH""",
7,
5_5_5_5,
0,
-192.55555,
"""Hello, world!""",
77.9,
Node(1_0 ),
None,
None,
12.20,
]
UpperCamelCase : List[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case_ )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
UpperCamelCase : Dict = linked_list.delete_head()
assert result == -9
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
UpperCamelCase : int = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
UpperCamelCase : Optional[Any] = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("""Hello again, world!""" ) )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case_ )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case_ )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ):
'''simple docstring'''
from doctest import testmod
testmod()
UpperCamelCase : List[Any] = LinkedList()
linked_list.insert_head(input("""Inserting 1st at head """ ).strip() )
linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() )
linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nDelete head""" )
linked_list.delete_head()
print("""Delete tail""" )
linked_list.delete_tail()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nReverse linked list""" )
linked_list.reverse()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nString representation of linked list:""" )
print(snake_case_ )
print("""\nReading/changing Node data using indexing:""" )
print(f'Element at Position 1: {linked_list[1]}' )
UpperCamelCase : List[Any] = input("""Enter New Value: """ ).strip()
print("""New list:""" )
print(snake_case_ )
print(f'length of linked_list is : {len(snake_case_ )}' )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : List[Any] = {
'''configuration_blenderbot''': [
'''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlenderbotConfig''',
'''BlenderbotOnnxConfig''',
],
'''tokenization_blenderbot''': ['''BlenderbotTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = ['''BlenderbotTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlenderbotForCausalLM''',
'''BlenderbotForConditionalGeneration''',
'''BlenderbotModel''',
'''BlenderbotPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'''TFBlenderbotForConditionalGeneration''',
'''TFBlenderbotModel''',
'''TFBlenderbotPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'''FlaxBlenderbotForConditionalGeneration''',
'''FlaxBlenderbotModel''',
'''FlaxBlenderbotPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Dict = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
__A : Union[str, Any] = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : Tuple = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = 0
UpperCamelCase : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : int = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Any = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Any = [lines[index + 1]]
index += 1
else:
UpperCamelCase : List[str] = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
def _inner(snake_case_ : Tuple ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Dict ):
return x
if key is None:
UpperCamelCase : int = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Tuple = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : int ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : List[Any] ):
UpperCamelCase : Any = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[str] = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : str = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[Any] = keys[:-1]
UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ):
'''simple docstring'''
with open(snake_case_ ,"""r""" ) as f:
UpperCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : Dict = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Optional[Any] = main_blocks[block_idx]
UpperCamelCase : Optional[int] = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : Union[str, Any] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : List[str] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[Any] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Any = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
__A : int = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
super().__init__()
self.register_modules(
vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , )
def a_ ( self , SCREAMING_SNAKE_CASE_ = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCamelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = 1
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = len(SCREAMING_SNAKE_CASE_ )
else:
raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0)
):
raise ValueError(
f'`callback_steps` has to be a positive integer but is {callback_steps} of type'
f' {type(SCREAMING_SNAKE_CASE_ )}.' )
# get prompt text embeddings
UpperCamelCase : Optional[Any] = self.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
UpperCamelCase : Optional[Any] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
f' {self.tokenizer.model_max_length} tokens: {removed_text}' )
UpperCamelCase : str = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
UpperCamelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = text_embeddings.shape
UpperCamelCase : Optional[Any] = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 )
UpperCamelCase : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
UpperCamelCase : Dict = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
UpperCamelCase : List[str]
if negative_prompt is None:
UpperCamelCase : Any = [""""""]
elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ):
raise TypeError(
f'`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !='
f' {type(SCREAMING_SNAKE_CASE_ )}.' )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = [negative_prompt]
elif batch_size != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
f'`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:'
f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'
""" the batch size of `prompt`.""" )
else:
UpperCamelCase : str = negative_prompt
UpperCamelCase : Tuple = text_input_ids.shape[-1]
UpperCamelCase : Dict = self.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase : Optional[Any] = uncond_embeddings.shape[1]
UpperCamelCase : str = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 )
UpperCamelCase : str = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
UpperCamelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
UpperCamelCase : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
UpperCamelCase : List[str] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
UpperCamelCase : Any = torch.randn(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device )
UpperCamelCase : Tuple = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to(
self.device )
else:
UpperCamelCase : Any = torch.randn(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
else:
if latents_reference.shape != latents_shape:
raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
UpperCamelCase : Tuple = latents_reference.to(self.device )
UpperCamelCase : Union[str, Any] = latents.to(self.device )
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
UpperCamelCase : str = (latents_shape[3] - latents_shape_reference[3]) // 2
UpperCamelCase : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2
UpperCamelCase : Tuple = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
UpperCamelCase : Optional[int] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
UpperCamelCase : int = 0 if dx < 0 else dx
UpperCamelCase : Union[str, Any] = 0 if dy < 0 else dy
UpperCamelCase : List[Any] = max(-dx , 0 )
UpperCamelCase : Union[str, Any] = max(-dy , 0 )
# import pdb
# pdb.set_trace()
UpperCamelCase : List[str] = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
UpperCamelCase : List[Any] = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
UpperCamelCase : Any = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCamelCase : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCamelCase : Any = {}
if accepts_eta:
UpperCamelCase : List[Any] = eta
for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ):
# expand the latents if we are doing classifier free guidance
UpperCamelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCamelCase : Tuple = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# predict the noise residual
UpperCamelCase : int = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample
# perform guidance
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase : Tuple = noise_pred.chunk(2 )
UpperCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase : Dict = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = 1 / 0.18215 * latents
UpperCamelCase : Dict = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample
UpperCamelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCamelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if self.safety_checker is not None:
UpperCamelCase : Any = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors="""pt""" ).to(
self.device )
UpperCamelCase , UpperCamelCase : Optional[int] = self.safety_checker(
images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) )
else:
UpperCamelCase : List[str] = None
if output_type == "pil":
UpperCamelCase : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ )
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : list[int] ):
'''simple docstring'''
if not numbers:
return 0
if not isinstance(snake_case_ ,(list, tuple) ) or not all(
isinstance(snake_case_ ,snake_case_ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
UpperCamelCase : int = numbers[0]
for i in range(1 ,len(snake_case_ ) ):
# update the maximum and minimum subarray products
UpperCamelCase : List[str] = numbers[i]
if number < 0:
UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now
UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number )
UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number )
# update the maximum product found till now
UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ )
return max_prod
| 27 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A : Optional[Any] = logging.get_logger(__name__)
__A : Tuple = {
'''andreasmadsen/efficient_mlm_m0.40''': (
'''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json'''
),
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'roberta-prelayernorm'
def __init__( self , SCREAMING_SNAKE_CASE_=5_0265 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = vocab_size
UpperCamelCase : List[str] = hidden_size
UpperCamelCase : List[Any] = num_hidden_layers
UpperCamelCase : List[str] = num_attention_heads
UpperCamelCase : Tuple = hidden_act
UpperCamelCase : List[str] = intermediate_size
UpperCamelCase : List[Any] = hidden_dropout_prob
UpperCamelCase : Dict = attention_probs_dropout_prob
UpperCamelCase : Union[str, Any] = max_position_embeddings
UpperCamelCase : Optional[Any] = type_vocab_size
UpperCamelCase : Dict = initializer_range
UpperCamelCase : List[str] = layer_norm_eps
UpperCamelCase : Any = position_embedding_type
UpperCamelCase : List[str] = use_cache
UpperCamelCase : Union[str, Any] = classifier_dropout
class lowerCamelCase ( _UpperCAmelCase ):
@property
def a_ ( self ):
if self.task == "multiple-choice":
UpperCamelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
UpperCamelCase : Any = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 27 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Any = AudioLDMPipeline
lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS
lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS
lowercase : Tuple = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Optional[Any] = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
UpperCamelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase : int = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
UpperCamelCase : Tuple = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def a_ ( self ):
UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Any = self.get_dummy_components()
UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Tuple = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[str] = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : str = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
UpperCamelCase : Tuple = prompt_embeds
# forward
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : List[str] = self.get_dummy_components()
UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""]
UpperCamelCase : List[Any] = negative_prompt
UpperCamelCase : str = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[Any] = []
for p in [prompt, negative_prompt]:
UpperCamelCase : int = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
embeds.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Tuple = embeds
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Optional[int] = self.get_dummy_components()
UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = """egg cracking"""
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Union[str, Any] = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
UpperCamelCase : Dict = 2
UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
UpperCamelCase : List[str] = 2
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
UpperCamelCase : Any = 2
UpperCamelCase : str = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Tuple = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016
UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = ["""hey"""]
UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : str = output.audios.shape
assert audio_shape == (1, 256)
UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : List[str] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def a_ ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def a_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@slow
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) )
UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def a_ ( self ):
UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 25
UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240]
UpperCamelCase : Optional[Any] = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def a_ ( self ):
UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790]
UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 27 | 1 |
"""simple docstring"""
from math import factorial
def A_ ( snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("""Please enter positive integers for n and k where n >= k""" )
return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
F'''fifty-two card deck is: {combinations(52, 5)}\n''',
)
print(
'''If a class of 40 students must be arranged into groups of''',
F'''4 for group projects, there are {combinations(40, 4)} ways''',
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
F'''are {combinations(10, 3)} ways that first, second and''',
'''third place can be awarded.''',
)
| 27 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase : List[str] = args.log_outputs
UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] )
# load metric
UpperCamelCase : List[Any] = load_metric("""wer""" )
UpperCamelCase : Any = load_metric("""cer""" )
# compute metrics
UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
# print & log results
UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case_ )
with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt'
UpperCamelCase : str = f'log_{dataset_id}_targets.txt'
with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
p.write(f'{i}' + """\n""" )
p.write(batch["""prediction"""] + """\n""" )
t.write(f'{i}' + """\n""" )
t.write(batch["""target"""] + """\n""" )
result.map(snake_case_ ,with_indices=snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """]
for t in token_sequences_to_ignore:
UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) )
return text
def A_ ( snake_case_ : str ):
'''simple docstring'''
# load dataset
UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase : Dict = feature_extractor.sampling_rate
# resample audio
UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase : int = 0 if torch.cuda.is_available() else -1
UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Union[str, Any] ):
UpperCamelCase : List[Any] = asr(
batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s )
UpperCamelCase : Union[str, Any] = prediction["""text"""]
UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] )
return batch
# run inference on all examples
UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ ,snake_case_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers'''
)
parser.add_argument(
'''--dataset''',
type=str,
required=True,
help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''',
)
parser.add_argument(
'''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice'''
)
parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''')
parser.add_argument(
'''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.'''
)
parser.add_argument(
'''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.'''
)
parser.add_argument(
'''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.'''
)
parser.add_argument(
'''--device''',
type=int,
default=None,
help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''',
)
__A : Optional[Any] = parser.parse_args()
main(args)
| 27 | 1 |
"""simple docstring"""
from collections.abc import Callable
def A_ ( snake_case_ : Callable[[float], float] ,snake_case_ : float ,snake_case_ : float ):
'''simple docstring'''
UpperCamelCase : float = a
UpperCamelCase : float = b
if function(snake_case_ ) == 0: # one of the a or b is a root for the function
return a
elif function(snake_case_ ) == 0:
return b
elif (
function(snake_case_ ) * function(snake_case_ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
UpperCamelCase : float = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(snake_case_ ) == 0:
return mid
elif function(snake_case_ ) * function(snake_case_ ) < 0:
UpperCamelCase : Dict = mid
else:
UpperCamelCase : List[str] = mid
UpperCamelCase : Tuple = start + (end - start) / 2.0
return mid
def A_ ( snake_case_ : float ):
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 27 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'EncodecFeatureExtractor'
lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.feature_extractor
UpperCamelCase : Any = False
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ):
return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Any = args[0]
UpperCamelCase : str = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is not None:
UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase : int = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""]
return inputs
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Optional[int] = args[0]
UpperCamelCase : Any = args[1:]
if audio_values is not None:
return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ )
else:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape
if padding_mask is None:
return list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1]
UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value
UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audio_values.tolist()
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 )
return audio_values
| 27 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : int = logging.get_logger(__name__)
__A : Dict = {
'''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''',
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = 'altclip_text_model'
def __init__( self , SCREAMING_SNAKE_CASE_=25_0002 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=514 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-05 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=768 , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = vocab_size
UpperCamelCase : Tuple = hidden_size
UpperCamelCase : Optional[Any] = num_hidden_layers
UpperCamelCase : Tuple = num_attention_heads
UpperCamelCase : Dict = hidden_act
UpperCamelCase : Dict = intermediate_size
UpperCamelCase : str = hidden_dropout_prob
UpperCamelCase : Optional[int] = attention_probs_dropout_prob
UpperCamelCase : Optional[int] = max_position_embeddings
UpperCamelCase : str = type_vocab_size
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : str = initializer_factor
UpperCamelCase : Optional[int] = layer_norm_eps
UpperCamelCase : Any = position_embedding_type
UpperCamelCase : Union[str, Any] = use_cache
UpperCamelCase : List[str] = project_dim
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : List[Any] = 'altclip_vision_model'
def __init__( self , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=1e-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1.0 , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = hidden_size
UpperCamelCase : str = intermediate_size
UpperCamelCase : Union[str, Any] = projection_dim
UpperCamelCase : List[Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : str = num_channels
UpperCamelCase : List[str] = patch_size
UpperCamelCase : List[str] = image_size
UpperCamelCase : Optional[int] = initializer_range
UpperCamelCase : Optional[int] = initializer_factor
UpperCamelCase : List[Any] = attention_dropout
UpperCamelCase : Union[str, Any] = layer_norm_eps
UpperCamelCase : Dict = hidden_act
@classmethod
def a_ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : int = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get("""model_type""" ) == "altclip":
UpperCamelCase : int = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : int = 'altclip'
lowercase : str = True
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=2.6592 , **SCREAMING_SNAKE_CASE_ ):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
UpperCamelCase : Dict = kwargs.pop("""text_config_dict""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = kwargs.pop("""vision_config_dict""" , SCREAMING_SNAKE_CASE_ )
super().__init__(**SCREAMING_SNAKE_CASE_ )
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
UpperCamelCase : List[str] = {}
# This is the complete result when using `text_config_dict`.
UpperCamelCase : int = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
UpperCamelCase : List[Any] = (
f'`{key}` is found in both `text_config_dict` and `text_config` but with different values. '
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
UpperCamelCase : Any = (
f'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The '
f'value `text_config["{key}"]` will be overriden.'
)
logger.warning(SCREAMING_SNAKE_CASE_ )
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict )
if vision_config_dict is not None:
if vision_config is None:
UpperCamelCase : List[str] = {}
# This is the complete result when using `vision_config_dict`.
UpperCamelCase : Dict = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
UpperCamelCase : List[Any] = {
str(SCREAMING_SNAKE_CASE_ ): value for key, value in _vision_config_dict["""id2label"""].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
UpperCamelCase : int = (
f'`{key}` is found in both `vision_config_dict` and `vision_config` but with different '
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
UpperCamelCase : List[Any] = (
f'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. '
f'The value `vision_config["{key}"]` will be overriden.'
)
logger.warning(SCREAMING_SNAKE_CASE_ )
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict )
if text_config is None:
UpperCamelCase : int = {}
logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" )
if vision_config is None:
UpperCamelCase : str = {}
logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" )
UpperCamelCase : str = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = projection_dim
UpperCamelCase : Union[str, Any] = logit_scale_init_value
UpperCamelCase : Union[str, Any] = 1.0
@classmethod
def a_ ( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
UpperCamelCase : Dict = self.text_config.to_dict()
UpperCamelCase : Union[str, Any] = self.vision_config.to_dict()
UpperCamelCase : Any = self.__class__.model_type
return output
| 27 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ):
'''simple docstring'''
UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" )
UpperCamelCase : Optional[int] = soup.findAll("""h1""" )
UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} )
values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''')
| 27 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Any = KandinskyImgaImgPipeline
lowercase : Tuple = ['prompt', 'image_embeds', 'negative_image_embeds', 'image']
lowercase : str = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
]
lowercase : Union[str, Any] = [
'generator',
'height',
'width',
'strength',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowercase : Dict = False
@property
def a_ ( self ):
return 32
@property
def a_ ( self ):
return 32
@property
def a_ ( self ):
return self.time_input_dim
@property
def a_ ( self ):
return self.time_input_dim * 4
@property
def a_ ( self ):
return 100
@property
def a_ ( self ):
UpperCamelCase : List[str] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Optional[Any] = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
UpperCamelCase : int = MultilingualCLIP(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = text_encoder.eval()
return text_encoder
@property
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : List[Any] = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
UpperCamelCase : Optional[int] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ )
return model
@property
def a_ ( self ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Any = VQModel(**self.dummy_movq_kwargs )
return model
def a_ ( self ):
UpperCamelCase : Optional[int] = self.dummy_text_encoder
UpperCamelCase : Optional[int] = self.dummy_tokenizer
UpperCamelCase : Union[str, Any] = self.dummy_unet
UpperCamelCase : Optional[Any] = self.dummy_movq
UpperCamelCase : List[str] = {
"""num_train_timesteps""": 1000,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
UpperCamelCase : Optional[Any] = DDIMScheduler(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(SCREAMING_SNAKE_CASE_ )
# create init_image
UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCamelCase : Optional[int] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ).resize((256, 256) )
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : int = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def a_ ( self ):
UpperCamelCase : Tuple = """cpu"""
UpperCamelCase : Dict = self.get_dummy_components()
UpperCamelCase : Optional[int] = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[Any] = output.images
UpperCamelCase : int = pipe(
**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
UpperCamelCase : Tuple = image[0, -3:, -3:, -1]
UpperCamelCase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase : Dict = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self ):
UpperCamelCase : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
UpperCamelCase : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
UpperCamelCase : List[Any] = """A red cartoon frog, 4k"""
UpperCamelCase : List[Any] = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
UpperCamelCase : List[str] = pipeline.to(SCREAMING_SNAKE_CASE_ )
pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = torch.Generator(device="""cpu""" ).manual_seed(0 )
UpperCamelCase , UpperCamelCase : Optional[int] = pipe_prior(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
UpperCamelCase : Optional[int] = pipeline(
SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , )
UpperCamelCase : str = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ):
UpperCamelCase : Tuple = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : Optional[Any] = seq_length
UpperCamelCase : int = is_training
UpperCamelCase : Union[str, Any] = use_input_mask
UpperCamelCase : Union[str, Any] = use_token_type_ids
UpperCamelCase : Dict = use_labels
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : Tuple = num_hidden_layers
UpperCamelCase : Any = num_attention_heads
UpperCamelCase : int = intermediate_size
UpperCamelCase : str = hidden_act
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : List[Any] = max_position_embeddings
UpperCamelCase : Optional[Any] = type_vocab_size
UpperCamelCase : int = type_sequence_label_size
UpperCamelCase : Dict = initializer_range
UpperCamelCase : Dict = num_labels
UpperCamelCase : Tuple = num_choices
UpperCamelCase : Optional[int] = scope
UpperCamelCase : List[Any] = q_groups
UpperCamelCase : Tuple = k_groups
UpperCamelCase : Any = v_groups
UpperCamelCase : List[str] = post_attention_groups
UpperCamelCase : Tuple = intermediate_groups
UpperCamelCase : int = output_groups
def a_ ( self ):
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Tuple = None
if self.use_input_mask:
UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Optional[int] = None
UpperCamelCase : List[Any] = None
UpperCamelCase : Dict = None
if self.use_labels:
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : str = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.num_labels
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.num_labels
UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = self.num_choices
UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : Optional[int] = self.prepare_config_and_inputs()
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs
UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
lowercase : Dict = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Dict = False
lowercase : str = True
lowercase : str = False
def a_ ( self ):
UpperCamelCase : Any = SqueezeBertModelTester(self )
UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def a_ ( self ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0]
UpperCamelCase : Optional[Any] = torch.Size((1, 3) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 27 | 1 |
"""simple docstring"""
def A_ ( snake_case_ : list ):
'''simple docstring'''
def merge(snake_case_ : list ,snake_case_ : list ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(snake_case_ ) <= 1:
return collection
UpperCamelCase : Union[str, Any] = len(snake_case_ ) // 2
return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : Dict = input('''Enter numbers separated by a comma:\n''').strip()
__A : Tuple = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 27 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCamelCase ( nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ):
super().__init__()
UpperCamelCase : int = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCamelCase : Optional[Any] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCamelCase : List[Any] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCamelCase : int = [1, 0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ):
UpperCamelCase : Dict = hidden_states
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCamelCase : str = self.transformer_index_for_condition[i]
UpperCamelCase : Any = self.transformers[transformer_index](
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCamelCase : List[str] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__A : Dict = {
'''configuration_swiftformer''': [
'''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SwiftFormerConfig''',
'''SwiftFormerOnnxConfig''',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
'''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SwiftFormerForImageClassification''',
'''SwiftFormerModel''',
'''SwiftFormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : Optional[int] = {
'''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''',
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = 'mvp'
lowercase : Optional[Any] = ['past_key_values']
lowercase : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_0267 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=800 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Dict = max_position_embeddings
UpperCamelCase : Optional[int] = d_model
UpperCamelCase : Optional[Any] = encoder_ffn_dim
UpperCamelCase : Any = encoder_layers
UpperCamelCase : List[Any] = encoder_attention_heads
UpperCamelCase : Optional[Any] = decoder_ffn_dim
UpperCamelCase : Optional[int] = decoder_layers
UpperCamelCase : Dict = decoder_attention_heads
UpperCamelCase : List[str] = dropout
UpperCamelCase : List[str] = attention_dropout
UpperCamelCase : List[Any] = activation_dropout
UpperCamelCase : Dict = activation_function
UpperCamelCase : List[str] = init_std
UpperCamelCase : int = encoder_layerdrop
UpperCamelCase : Dict = decoder_layerdrop
UpperCamelCase : Any = classifier_dropout
UpperCamelCase : Tuple = use_cache
UpperCamelCase : Dict = encoder_layers
UpperCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCamelCase : Optional[Any] = use_prompt
UpperCamelCase : Any = prompt_length
UpperCamelCase : List[Any] = prompt_mid_dim
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = self.bos_token_id
warnings.warn(
f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
"""The config can simply be saved and uploaded again to be fixed.""" )
| 27 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 27 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A : Optional[Any] = 16
__A : str = 32
def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ):
'''simple docstring'''
UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
UpperCamelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" )
def tokenize_function(snake_case_ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase : Optional[Any] = datasets.map(
snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase : Optional[Any] = 1_6
elif accelerator.mixed_precision != "no":
UpperCamelCase : Any = 8
else:
UpperCamelCase : Optional[Any] = None
return tokenizer.pad(
snake_case_ ,padding="""longest""" ,max_length=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_tensors="""pt""" ,)
# Instantiate dataloaders.
UpperCamelCase : str = DataLoader(
tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
UpperCamelCase : Dict = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A : int = mocked_dataloaders # noqa: F811
def A_ ( snake_case_ : Tuple ,snake_case_ : Dict ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case_ ) == "1":
UpperCamelCase : Union[str, Any] = 2
# New Code #
UpperCamelCase : Dict = int(args.gradient_accumulation_steps )
UpperCamelCase : List[Any] = int(args.local_sgd_steps )
# Initialize accelerator
UpperCamelCase : str = Accelerator(
cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case_ )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase : Union[str, Any] = config["""lr"""]
UpperCamelCase : int = int(config["""num_epochs"""] )
UpperCamelCase : int = int(config["""seed"""] )
UpperCamelCase : List[Any] = int(config["""batch_size"""] )
UpperCamelCase : Optional[int] = evaluate.load("""glue""" ,"""mrpc""" )
set_seed(snake_case_ )
UpperCamelCase , UpperCamelCase : Dict = get_dataloaders(snake_case_ ,snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase : Tuple = model.to(accelerator.device )
# Instantiate optimizer
UpperCamelCase : List[Any] = AdamW(params=model.parameters() ,lr=snake_case_ )
# Instantiate scheduler
UpperCamelCase : str = get_linear_schedule_with_warmup(
optimizer=snake_case_ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(snake_case_ ) * num_epochs) ,)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
with LocalSGD(
accelerator=snake_case_ ,model=snake_case_ ,local_sgd_steps=snake_case_ ,enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(snake_case_ ):
UpperCamelCase : Optional[Any] = model(**snake_case_ )
UpperCamelCase : Optional[int] = output.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCamelCase : Any = model(**snake_case_ )
UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 )
UpperCamelCase , UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=snake_case_ ,references=snake_case_ ,)
UpperCamelCase : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' ,snake_case_ )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" ,type=snake_case_ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,)
parser.add_argument(
"""--local_sgd_steps""" ,type=snake_case_ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" )
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
UpperCamelCase : Dict = parser.parse_args()
UpperCamelCase : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(snake_case_ ,snake_case_ )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCamelCase ( nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ):
super().__init__()
UpperCamelCase : int = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCamelCase : Optional[Any] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCamelCase : List[Any] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCamelCase : int = [1, 0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ):
UpperCamelCase : Dict = hidden_states
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCamelCase : str = self.transformer_index_for_condition[i]
UpperCamelCase : Any = self.transformers[transformer_index](
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCamelCase : List[str] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
__A : Any = logging.get_logger(__name__)
__A : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__A : Optional[Any] = {
'''vocab_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'''
},
'''merges_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'''
},
}
__A : Any = {'''allegro/herbert-base-cased''': 514}
__A : Optional[Any] = {}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Dict = VOCAB_FILES_NAMES
lowercase : Any = PRETRAINED_VOCAB_FILES_MAP
lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Union[str, Any] = HerbertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="</s>" , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = [self.cls_token_id]
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Tuple = [self.sep_token_id]
UpperCamelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : int = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(snake_case_ ,snake_case_ )
def A_ ( snake_case_ : int ):
'''simple docstring'''
UpperCamelCase , UpperCamelCase : str = emb.weight.shape
UpperCamelCase : List[Any] = nn.Linear(snake_case_ ,snake_case_ ,bias=snake_case_ )
UpperCamelCase : List[Any] = emb.weight.data
return lin_layer
def A_ ( snake_case_ : Dict ,snake_case_ : Optional[Any]="facebook/mbart-large-en-ro" ,snake_case_ : List[Any]=False ,snake_case_ : Optional[Any]=False ):
'''simple docstring'''
UpperCamelCase : Dict = torch.load(snake_case_ ,map_location="""cpu""" )["""model"""]
remove_ignore_keys_(snake_case_ )
UpperCamelCase : int = state_dict["""encoder.embed_tokens.weight"""].shape[0]
UpperCamelCase : int = MBartConfig.from_pretrained(snake_case_ ,vocab_size=snake_case_ )
if mbart_aa and finetuned:
UpperCamelCase : Union[str, Any] = """relu"""
UpperCamelCase : Tuple = state_dict["""decoder.embed_tokens.weight"""]
UpperCamelCase : List[Any] = MBartForConditionalGeneration(snake_case_ )
model.model.load_state_dict(snake_case_ )
if finetuned:
UpperCamelCase : Tuple = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''',
default='''facebook/mbart-large-cc25''',
type=str,
help='''Which huggingface architecture to use: mbart-large''',
)
parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''')
parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''')
__A : List[Any] = parser.parse_args()
__A : Any = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 27 |
"""simple docstring"""
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ):
UpperCamelCase : Dict = tokenizer
UpperCamelCase : Optional[Any] = tokenizer.bos_token_id
UpperCamelCase : Any = dataset
UpperCamelCase : List[str] = seq_length
UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self ):
UpperCamelCase : Dict = iter(self.dataset )
UpperCamelCase : Union[str, Any] = True
while more_examples:
UpperCamelCase , UpperCamelCase : Tuple = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
UpperCamelCase : Dict = False
break
UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""]
UpperCamelCase : str = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ):
UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length]
if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length:
yield torch.tensor(SCREAMING_SNAKE_CASE_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Dict = {"""streaming""": True}
UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ )
UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length )
UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size )
return eval_dataloader
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
model.eval()
UpperCamelCase : Dict = []
for step, batch in enumerate(snake_case_ ):
with torch.no_grad():
UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ )
UpperCamelCase : Any = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(snake_case_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) )
try:
UpperCamelCase : Dict = torch.exp(snake_case_ )
except OverflowError:
UpperCamelCase : Optional[int] = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
__A : List[Any] = Accelerator()
# Parse configuration
__A : str = HfArgumentParser(EvaluationArguments)
__A : List[Any] = parser.parse_args()
set_seed(args.seed)
# Logging
__A : Any = logging.getLogger(__name__)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
# Load model and tokenizer
__A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
__A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
__A : int = create_dataloader(args)
# Prepare everything with our `accelerator`.
__A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('''Evaluating and saving model after training''')
__A , __A : Tuple = evaluate(args)
logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 27 | 1 |
"""simple docstring"""
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def A_ ( snake_case_ : Any ):
'''simple docstring'''
UpperCamelCase : Optional[int] = VideoMAEConfig()
set_architecture_configs(snake_case_ ,snake_case_ )
if "finetuned" not in model_name:
UpperCamelCase : Tuple = False
if "finetuned" in model_name:
UpperCamelCase : Union[str, Any] = """huggingface/label-files"""
if "kinetics" in model_name:
UpperCamelCase : Dict = 4_0_0
UpperCamelCase : str = """kinetics400-id2label.json"""
elif "ssv2" in model_name:
UpperCamelCase : int = 1_7_4
UpperCamelCase : int = """something-something-v2-id2label.json"""
else:
raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" )
UpperCamelCase : List[str] = json.load(open(hf_hub_download(snake_case_ ,snake_case_ ,repo_type="""dataset""" ) ,"""r""" ) )
UpperCamelCase : Union[str, Any] = {int(snake_case_ ): v for k, v in idalabel.items()}
UpperCamelCase : List[Any] = idalabel
UpperCamelCase : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def A_ ( snake_case_ : Optional[int] ,snake_case_ : List[Any] ):
'''simple docstring'''
if "small" in model_name:
UpperCamelCase : List[Any] = 3_8_4
UpperCamelCase : Any = 1_5_3_6
UpperCamelCase : Any = 1_2
UpperCamelCase : Union[str, Any] = 1_6
UpperCamelCase : List[str] = 1_2
UpperCamelCase : Union[str, Any] = 3
UpperCamelCase : Any = 1_9_2
UpperCamelCase : Tuple = 7_6_8
elif "large" in model_name:
UpperCamelCase : str = 1_0_2_4
UpperCamelCase : Union[str, Any] = 4_0_9_6
UpperCamelCase : Optional[int] = 2_4
UpperCamelCase : Dict = 1_6
UpperCamelCase : Optional[int] = 1_2
UpperCamelCase : Optional[int] = 8
UpperCamelCase : int = 5_1_2
UpperCamelCase : List[Any] = 2_0_4_8
elif "huge" in model_name:
UpperCamelCase : Tuple = 1_2_8_0
UpperCamelCase : List[str] = 5_1_2_0
UpperCamelCase : List[str] = 3_2
UpperCamelCase : int = 1_6
UpperCamelCase : Union[str, Any] = 1_2
UpperCamelCase : int = 8
UpperCamelCase : Union[str, Any] = 6_4_0
UpperCamelCase : Optional[Any] = 2_5_6_0
elif "base" not in model_name:
raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" )
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
if "encoder." in name:
UpperCamelCase : List[str] = name.replace("""encoder.""" ,"""""" )
if "cls_token" in name:
UpperCamelCase : Tuple = name.replace("""cls_token""" ,"""videomae.embeddings.cls_token""" )
if "decoder_pos_embed" in name:
UpperCamelCase : Optional[Any] = name.replace("""decoder_pos_embed""" ,"""decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
UpperCamelCase : Optional[int] = name.replace("""pos_embed""" ,"""videomae.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
UpperCamelCase : List[Any] = name.replace("""patch_embed.proj""" ,"""videomae.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
UpperCamelCase : Optional[int] = name.replace("""patch_embed.norm""" ,"""videomae.embeddings.norm""" )
if "decoder.blocks" in name:
UpperCamelCase : List[str] = name.replace("""decoder.blocks""" ,"""decoder.decoder_layers""" )
if "blocks" in name:
UpperCamelCase : str = name.replace("""blocks""" ,"""videomae.encoder.layer""" )
if "attn.proj" in name:
UpperCamelCase : Any = name.replace("""attn.proj""" ,"""attention.output.dense""" )
if "attn" in name and "bias" not in name:
UpperCamelCase : Union[str, Any] = name.replace("""attn""" ,"""attention.self""" )
if "attn" in name:
UpperCamelCase : Tuple = name.replace("""attn""" ,"""attention.attention""" )
if "norm1" in name:
UpperCamelCase : str = name.replace("""norm1""" ,"""layernorm_before""" )
if "norm2" in name:
UpperCamelCase : Any = name.replace("""norm2""" ,"""layernorm_after""" )
if "mlp.fc1" in name:
UpperCamelCase : int = name.replace("""mlp.fc1""" ,"""intermediate.dense""" )
if "mlp.fc2" in name:
UpperCamelCase : Union[str, Any] = name.replace("""mlp.fc2""" ,"""output.dense""" )
if "decoder_embed" in name:
UpperCamelCase : Dict = name.replace("""decoder_embed""" ,"""decoder.decoder_embed""" )
if "decoder_norm" in name:
UpperCamelCase : int = name.replace("""decoder_norm""" ,"""decoder.decoder_norm""" )
if "decoder_pred" in name:
UpperCamelCase : Optional[int] = name.replace("""decoder_pred""" ,"""decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
UpperCamelCase : Tuple = name.replace("""norm.weight""" ,"""videomae.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
UpperCamelCase : int = name.replace("""norm.bias""" ,"""videomae.layernorm.bias""" )
if "head" in name and "decoder" not in name:
UpperCamelCase : Dict = name.replace("""head""" ,"""classifier""" )
return name
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCamelCase : Tuple = orig_state_dict.pop(snake_case_ )
if key.startswith("""encoder.""" ):
UpperCamelCase : Union[str, Any] = key.replace("""encoder.""" ,"""""" )
if "qkv" in key:
UpperCamelCase : Optional[Any] = key.split(""".""" )
if key.startswith("""decoder.blocks""" ):
UpperCamelCase : Optional[int] = config.decoder_hidden_size
UpperCamelCase : List[str] = int(key_split[2] )
UpperCamelCase : Optional[Any] = """decoder.decoder_layers."""
if "weight" in key:
UpperCamelCase : Union[str, Any] = val[:dim, :]
UpperCamelCase : Optional[int] = val[dim : dim * 2, :]
UpperCamelCase : Optional[int] = val[-dim:, :]
else:
UpperCamelCase : List[str] = config.hidden_size
UpperCamelCase : Optional[int] = int(key_split[1] )
UpperCamelCase : List[Any] = """videomae.encoder.layer."""
if "weight" in key:
UpperCamelCase : str = val[:dim, :]
UpperCamelCase : Optional[int] = val[dim : dim * 2, :]
UpperCamelCase : List[str] = val[-dim:, :]
else:
UpperCamelCase : Tuple = val
return orig_state_dict
def A_ ( ):
'''simple docstring'''
UpperCamelCase : List[str] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" )
UpperCamelCase : List[Any] = np.load(snake_case_ )
return list(snake_case_ )
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Optional[Any] ,snake_case_ : Optional[Any] ,snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : int = get_videomae_config(snake_case_ )
if "finetuned" in model_name:
UpperCamelCase : Any = VideoMAEForVideoClassification(snake_case_ )
else:
UpperCamelCase : Dict = VideoMAEForPreTraining(snake_case_ )
# download original checkpoint, hosted on Google Drive
UpperCamelCase : str = """pytorch_model.bin"""
gdown.cached_download(snake_case_ ,snake_case_ ,quiet=snake_case_ )
UpperCamelCase : Optional[Any] = torch.load(snake_case_ ,map_location="""cpu""" )
if "model" in files:
UpperCamelCase : Optional[Any] = files["""model"""]
else:
UpperCamelCase : Optional[Any] = files["""module"""]
UpperCamelCase : Optional[int] = convert_state_dict(snake_case_ ,snake_case_ )
model.load_state_dict(snake_case_ )
model.eval()
# verify model on basic input
UpperCamelCase : Dict = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] )
UpperCamelCase : Optional[int] = prepare_video()
UpperCamelCase : Any = image_processor(snake_case_ ,return_tensors="""pt""" )
if "finetuned" not in model_name:
UpperCamelCase : Tuple = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" ,filename="""bool_masked_pos.pt""" )
UpperCamelCase : Optional[Any] = torch.load(snake_case_ )
UpperCamelCase : Any = model(**snake_case_ )
UpperCamelCase : List[Any] = outputs.logits
UpperCamelCase : Tuple = [
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
UpperCamelCase : Tuple = torch.Size([1, 4_0_0] )
UpperCamelCase : Optional[Any] = torch.tensor([-0.9291, -0.4061, -0.9307] )
elif model_name == "videomae-small-finetuned-ssv2":
UpperCamelCase : Optional[Any] = torch.Size([1, 1_7_4] )
UpperCamelCase : Dict = torch.tensor([0.2671, -0.4689, -0.8235] )
elif model_name == "videomae-base":
UpperCamelCase : List[Any] = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : Dict = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] )
elif model_name == "videomae-base-short":
UpperCamelCase : Optional[int] = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : Optional[int] = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] )
# we verified the loss both for normalized and unnormalized targets for this one
UpperCamelCase : str = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] )
elif model_name == "videomae-large":
UpperCamelCase : Any = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : str = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] )
elif model_name == "videomae-large-finetuned-kinetics":
UpperCamelCase : Optional[int] = torch.Size([1, 4_0_0] )
UpperCamelCase : Union[str, Any] = torch.tensor([0.0771, 0.0011, -0.3625] )
elif model_name == "videomae-huge-finetuned-kinetics":
UpperCamelCase : int = torch.Size([1, 4_0_0] )
UpperCamelCase : Tuple = torch.tensor([0.2433, 0.1632, -0.4894] )
elif model_name == "videomae-base-short-finetuned-kinetics":
UpperCamelCase : Union[str, Any] = torch.Size([1, 4_0_0] )
UpperCamelCase : Any = torch.tensor([0.6588, 0.0990, -0.2493] )
elif model_name == "videomae-base-finetuned-kinetics":
UpperCamelCase : Optional[int] = torch.Size([1, 4_0_0] )
UpperCamelCase : Optional[int] = torch.tensor([0.3669, -0.0688, -0.2421] )
elif model_name == "videomae-base-short-ssv2":
UpperCamelCase : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : List[Any] = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
UpperCamelCase : int = torch.Size([1, 1_7_4] )
UpperCamelCase : Union[str, Any] = torch.tensor([-0.0537, -0.1539, -0.3266] )
elif model_name == "videomae-base-ssv2":
UpperCamelCase : int = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : Union[str, Any] = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] )
elif model_name == "videomae-base-finetuned-ssv2":
UpperCamelCase : int = torch.Size([1, 1_7_4] )
UpperCamelCase : Any = torch.tensor([0.1961, -0.8337, -0.6389] )
else:
raise ValueError(f'Model name not supported. Should be one of {model_names}' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] ,snake_case_ ,atol=1e-4 )
else:
print("""Logits:""" ,logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] ,snake_case_ ,atol=1e-4 )
print("""Logits ok!""" )
# verify loss, if applicable
if model_name == "videomae-base-short":
UpperCamelCase : Tuple = outputs.loss
assert torch.allclose(snake_case_ ,snake_case_ ,atol=1e-4 )
print("""Loss ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model and image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case_ )
model.save_pretrained(snake_case_ )
if push_to_hub:
print("""Pushing to the hub...""" )
model.push_to_hub(snake_case_ ,organization="""nielsr""" )
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''',
type=str,
help=(
'''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct'''
''' download link.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/Users/nielsrogge/Documents/VideoMAE/Test''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''')
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__A : Optional[Any] = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Any = '''src/transformers'''
# Pattern that looks at the indentation in a line.
__A : Tuple = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : List[Any] = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : List[Any] = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : Any = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : str ,snake_case_ : str="" ,snake_case_ : Any=None ,snake_case_ : Union[str, Any]=None ):
'''simple docstring'''
UpperCamelCase : List[Any] = 0
UpperCamelCase : Optional[int] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Tuple = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : Tuple = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Dict = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Optional[Any] = [lines[index + 1]]
index += 1
else:
UpperCamelCase : str = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
def _inner(snake_case_ : List[str] ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Optional[int] ):
return x
if key is None:
UpperCamelCase : List[str] = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[str] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : Tuple = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : int = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Union[str, Any] = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : Any ):
UpperCamelCase : Union[str, Any] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : int = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : str = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : Optional[int] = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : int = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Tuple = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : List[Any] = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : List[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : Optional[int] = keys[:-1]
UpperCamelCase : Union[str, Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : Any = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int=True ):
'''simple docstring'''
with open(snake_case_ ,encoding="""utf-8""" ) as f:
UpperCamelCase : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : int = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Dict = main_blocks[block_idx]
UpperCamelCase : Dict = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : List[str] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : Optional[Any] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Optional[Any] = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Any = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : List[Any] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Optional[Any] = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Optional[Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Any = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : Union[str, Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[str] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Optional[int] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : List[Any] = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
def A_ ( snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(snake_case_ ,int(b / 2 ) ) * actual_power(snake_case_ ,int(b / 2 ) )
else:
return a * actual_power(snake_case_ ,int(b / 2 ) ) * actual_power(snake_case_ ,int(b / 2 ) )
def A_ ( snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
if b < 0:
return 1 / actual_power(snake_case_ ,snake_case_ )
return actual_power(snake_case_ ,snake_case_ )
if __name__ == "__main__":
print(power(-2, -3))
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : int ):
'''simple docstring'''
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 | 1 |
"""simple docstring"""
import math
def A_ ( snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : int = 0
UpperCamelCase : Dict = 0
while num > 0:
UpperCamelCase : List[Any] = num % 8
UpperCamelCase : Tuple = octal + (remainder * math.floor(math.pow(1_0 ,snake_case_ ) ))
counter += 1
UpperCamelCase : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f'0o{int(snake_case_ )}'
def A_ ( ):
'''simple docstring'''
print("""\n2 in octal is:""" )
print(decimal_to_octal(2 ) ) # = 2
print("""\n8 in octal is:""" )
print(decimal_to_octal(8 ) ) # = 10
print("""\n65 in octal is:""" )
print(decimal_to_octal(6_5 ) ) # = 101
print("""\n216 in octal is:""" )
print(decimal_to_octal(2_1_6 ) ) # = 330
print("""\n512 in octal is:""" )
print(decimal_to_octal(5_1_2 ) ) # = 1000
print("""\n""" )
if __name__ == "__main__":
main()
| 27 |
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
__A : Optional[Any] = logging.get_logger(__name__)
def A_ ( snake_case_ : np.ndarray ,snake_case_ : Union[int, Iterable[int]] ,snake_case_ : bool ,snake_case_ : int ):
'''simple docstring'''
def constraint_to_multiple_of(snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : List[str]=0 ,snake_case_ : Optional[Any]=None ):
UpperCamelCase : List[str] = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
UpperCamelCase : Optional[Any] = math.floor(val / multiple ) * multiple
if x < min_val:
UpperCamelCase : Dict = math.ceil(val / multiple ) * multiple
return x
UpperCamelCase : Any = (output_size, output_size) if isinstance(snake_case_ ,snake_case_ ) else output_size
UpperCamelCase , UpperCamelCase : int = get_image_size(snake_case_ )
UpperCamelCase , UpperCamelCase : Union[str, Any] = output_size
# determine new height and width
UpperCamelCase : List[str] = output_height / input_height
UpperCamelCase : List[str] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
UpperCamelCase : int = scale_width
else:
# fit height
UpperCamelCase : Optional[Any] = scale_height
UpperCamelCase : int = constraint_to_multiple_of(scale_height * input_height ,multiple=snake_case_ )
UpperCamelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width ,multiple=snake_case_ )
return (new_height, new_width)
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : str = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384}
UpperCamelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = do_resize
UpperCamelCase : Union[str, Any] = size
UpperCamelCase : Union[str, Any] = keep_aspect_ratio
UpperCamelCase : Any = ensure_multiple_of
UpperCamelCase : List[Any] = resample
UpperCamelCase : str = do_rescale
UpperCamelCase : Optional[Any] = rescale_factor
UpperCamelCase : List[str] = do_normalize
UpperCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
UpperCamelCase : Dict = get_resize_output_image_size(
SCREAMING_SNAKE_CASE_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=SCREAMING_SNAKE_CASE_ , multiple=SCREAMING_SNAKE_CASE_ , )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase : List[Any] = size if size is not None else self.size
UpperCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
UpperCamelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
UpperCamelCase : Tuple = resample if resample is not None else self.resample
UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean
UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std
UpperCamelCase : str = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
UpperCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
UpperCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
UpperCamelCase : int = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
UpperCamelCase : List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Union[str, Any] = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : str = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = target_sizes.numpy()
UpperCamelCase : Dict = []
for idx in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCamelCase : List[Any] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : List[Any] = logits.argmax(dim=1 )
UpperCamelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 27 | 1 |
"""simple docstring"""
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
__A : Optional[int] = Mapping[str, np.ndarray]
__A : Optional[Any] = Mapping[str, Any] # Is a nested dict.
__A : List[Any] = 0.01
@dataclasses.dataclass(frozen=_UpperCAmelCase )
class lowerCamelCase :
lowercase : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowercase : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowercase : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowercase : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowercase : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowercase : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowercase : Optional[str] = None
# Templates used to generate this protein (prediction-only)
lowercase : Optional[Sequence[str]] = None
# Chain corresponding to each parent
lowercase : Optional[Sequence[int]] = None
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = R"""(\[[A-Z]+\]\n)"""
UpperCamelCase : List[str] = [tag.strip() for tag in re.split(snake_case_ ,snake_case_ ) if len(snake_case_ ) > 0]
UpperCamelCase : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] ,[l.split("""\n""" ) for l in tags[1::2]] )
UpperCamelCase : List[str] = ["N", "CA", "C"]
UpperCamelCase : List[str] = None
UpperCamelCase : Optional[int] = None
UpperCamelCase : Any = None
for g in groups:
if "[PRIMARY]" == g[0]:
UpperCamelCase : str = g[1][0].strip()
for i in range(len(snake_case_ ) ):
if seq[i] not in residue_constants.restypes:
UpperCamelCase : Dict = """X""" # FIXME: strings are immutable
UpperCamelCase : str = np.array(
[residue_constants.restype_order.get(snake_case_ ,residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
UpperCamelCase : List[List[float]] = []
for axis in range(3 ):
tertiary.append(list(map(snake_case_ ,g[1][axis].split() ) ) )
UpperCamelCase : Dict = np.array(snake_case_ )
UpperCamelCase : Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(snake_case_ ):
UpperCamelCase : str = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
UpperCamelCase : Any = np.array(list(map({"""-""": 0, """+""": 1}.get ,g[1][0].strip() ) ) )
UpperCamelCase : Tuple = np.zeros(
(
len(snake_case_ ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(snake_case_ ):
UpperCamelCase : List[Any] = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=snake_case_ ,atom_mask=snake_case_ ,aatype=snake_case_ ,residue_index=np.arange(len(snake_case_ ) ) ,b_factors=snake_case_ ,)
def A_ ( snake_case_ : Protein ,snake_case_ : int = 0 ):
'''simple docstring'''
UpperCamelCase : List[str] = []
UpperCamelCase : Dict = prot.remark
if remark is not None:
pdb_headers.append(f'REMARK {remark}' )
UpperCamelCase : Optional[int] = prot.parents
UpperCamelCase : List[Any] = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
UpperCamelCase : List[Any] = [p for i, p in zip(snake_case_ ,snake_case_ ) if i == chain_id]
if parents is None or len(snake_case_ ) == 0:
UpperCamelCase : Any = ["""N/A"""]
pdb_headers.append(f'PARENT {" ".join(snake_case_ )}' )
return pdb_headers
def A_ ( snake_case_ : Protein ,snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : List[str] = []
UpperCamelCase : Dict = pdb_str.split("""\n""" )
UpperCamelCase : Optional[int] = prot.remark
if remark is not None:
out_pdb_lines.append(f'REMARK {remark}' )
UpperCamelCase : List[List[str]]
if prot.parents is not None and len(prot.parents ) > 0:
UpperCamelCase : Optional[int] = []
if prot.parents_chain_index is not None:
UpperCamelCase : Dict[str, List[str]] = {}
for p, i in zip(prot.parents ,prot.parents_chain_index ):
parent_dict.setdefault(str(snake_case_ ) ,[] )
parent_dict[str(snake_case_ )].append(snake_case_ )
UpperCamelCase : str = max([int(snake_case_ ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
UpperCamelCase : Optional[int] = parent_dict.get(str(snake_case_ ) ,["""N/A"""] )
parents_per_chain.append(snake_case_ )
else:
parents_per_chain.append(list(prot.parents ) )
else:
UpperCamelCase : List[str] = [["""N/A"""]]
def make_parent_line(snake_case_ : Sequence[str] ) -> str:
return f'PARENT {" ".join(snake_case_ )}'
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
UpperCamelCase : Any = 0
for i, l in enumerate(snake_case_ ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(snake_case_ )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(snake_case_ ):
UpperCamelCase : str = parents_per_chain[chain_counter]
else:
UpperCamelCase : Tuple = ["""N/A"""]
out_pdb_lines.append(make_parent_line(snake_case_ ) )
return "\n".join(snake_case_ )
def A_ ( snake_case_ : Protein ):
'''simple docstring'''
UpperCamelCase : Dict = residue_constants.restypes + ["""X"""]
def res_atoa(snake_case_ : int ) -> str:
return residue_constants.restype_atoa.get(restypes[r] ,"""UNK""" )
UpperCamelCase : Dict = residue_constants.atom_types
UpperCamelCase : List[str] = []
UpperCamelCase : int = prot.atom_mask
UpperCamelCase : str = prot.aatype
UpperCamelCase : Tuple = prot.atom_positions
UpperCamelCase : List[str] = prot.residue_index.astype(np.intaa )
UpperCamelCase : int = prot.b_factors
UpperCamelCase : Union[str, Any] = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError("""Invalid aatypes.""" )
UpperCamelCase : int = get_pdb_headers(snake_case_ )
if len(snake_case_ ) > 0:
pdb_lines.extend(snake_case_ )
UpperCamelCase : Dict = aatype.shape[0]
UpperCamelCase : int = 1
UpperCamelCase : Optional[int] = 0
UpperCamelCase : Union[str, Any] = string.ascii_uppercase
UpperCamelCase : List[Any] = None
# Add all atom sites.
for i in range(snake_case_ ):
UpperCamelCase : Any = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(snake_case_ ,atom_positions[i] ,atom_mask[i] ,b_factors[i] ):
if mask < 0.5:
continue
UpperCamelCase : Any = """ATOM"""
UpperCamelCase : Union[str, Any] = atom_name if len(snake_case_ ) == 4 else f' {atom_name}'
UpperCamelCase : int = """"""
UpperCamelCase : Optional[int] = """"""
UpperCamelCase : int = 1.00
UpperCamelCase : List[str] = atom_name[0] # Protein supports only C, N, O, S, this works.
UpperCamelCase : Optional[int] = """"""
UpperCamelCase : List[Any] = """A"""
if chain_index is not None:
UpperCamelCase : str = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
UpperCamelCase : List[str] = (
f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'
f'{res_name_a:>3} {chain_tag:>1}'
f'{residue_index[i]:>4}{insertion_code:>1} '
f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'
f'{occupancy:>6.2f}{b_factor:>6.2f} '
f'{element:>2}{charge:>2}'
)
pdb_lines.append(snake_case_ )
atom_index += 1
UpperCamelCase : List[str] = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
UpperCamelCase : int = True
UpperCamelCase : Dict = chain_index[i + 1]
if should_terminate:
# Close the chain.
UpperCamelCase : Optional[Any] = """TER"""
UpperCamelCase : Union[str, Any] = (
f'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}'
)
pdb_lines.append(snake_case_ )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(snake_case_ ,snake_case_ ) )
pdb_lines.append("""END""" )
pdb_lines.append("""""" )
return "\n".join(snake_case_ )
def A_ ( snake_case_ : Protein ):
'''simple docstring'''
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def A_ ( snake_case_ : FeatureDict ,snake_case_ : ModelOutput ,snake_case_ : Optional[np.ndarray] = None ,snake_case_ : Optional[np.ndarray] = None ,snake_case_ : Optional[str] = None ,snake_case_ : Optional[Sequence[str]] = None ,snake_case_ : Optional[Sequence[int]] = None ,):
'''simple docstring'''
return Protein(
aatype=features["""aatype"""] ,atom_positions=result["""final_atom_positions"""] ,atom_mask=result["""final_atom_mask"""] ,residue_index=features["""residue_index"""] + 1 ,b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) ,chain_index=snake_case_ ,remark=snake_case_ ,parents=snake_case_ ,parents_chain_index=snake_case_ ,)
| 27 |
"""simple docstring"""
from collections.abc import Callable
def A_ ( snake_case_ : Callable[[float], float] ,snake_case_ : float ,snake_case_ : float ):
'''simple docstring'''
UpperCamelCase : float = a
UpperCamelCase : float = b
if function(snake_case_ ) == 0: # one of the a or b is a root for the function
return a
elif function(snake_case_ ) == 0:
return b
elif (
function(snake_case_ ) * function(snake_case_ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
UpperCamelCase : float = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(snake_case_ ) == 0:
return mid
elif function(snake_case_ ) * function(snake_case_ ) < 0:
UpperCamelCase : Dict = mid
else:
UpperCamelCase : List[str] = mid
UpperCamelCase : Tuple = start + (end - start) / 2.0
return mid
def A_ ( snake_case_ : float ):
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 27 | 1 |
"""simple docstring"""
import unittest
from transformers import DonutProcessor
__A : List[str] = '''naver-clova-ix/donut-base'''
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
UpperCamelCase : str = DonutProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = {
"""name""": """John Doe""",
"""age""": """99""",
"""city""": """Atlanta""",
"""state""": """GA""",
"""zip""": """30301""",
"""phone""": """123-4567""",
"""nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}],
}
UpperCamelCase : Any = (
"""<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>"""
"""<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>"""
"""<s_nicknames><s_nickname>Johnny</s_nickname>"""
"""<sep/><s_nickname>JD</s_nickname></s_nicknames>"""
)
UpperCamelCase : Tuple = self.processor.tokenajson(SCREAMING_SNAKE_CASE_ )
self.assertDictEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def a_ ( self ):
UpperCamelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCamelCase : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCamelCase : Dict = """xvjiarui/stable-diffusion-2-inpainting"""
UpperCamelCase , UpperCamelCase : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCamelCase : List[str] = jax.random.PRNGKey(0 )
UpperCamelCase : Tuple = 50
UpperCamelCase : Dict = jax.device_count()
UpperCamelCase : Optional[int] = num_samples * [prompt]
UpperCamelCase : int = num_samples * [init_image]
UpperCamelCase : List[Any] = num_samples * [mask_image]
UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# shard inputs and rng
UpperCamelCase : Optional[int] = replicate(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() )
UpperCamelCase : str = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipeline(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 512 , 512 , 3 )
UpperCamelCase : List[Any] = images[0, 253:256, 253:256, -1]
UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
UpperCamelCase : Dict = jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 27 | 1 |
"""simple docstring"""
from __future__ import annotations
import math
def A_ ( snake_case_ : list ,snake_case_ : list ):
'''simple docstring'''
if len(snake_case_ ) != 2 or len(a[0] ) != 2 or len(snake_case_ ) != 2 or len(b[0] ) != 2:
raise Exception("""Matrices are not 2x2""" )
UpperCamelCase : Tuple = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def A_ ( snake_case_ : list ,snake_case_ : list ):
'''simple docstring'''
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(snake_case_ ) )
]
def A_ ( snake_case_ : list ,snake_case_ : list ):
'''simple docstring'''
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(snake_case_ ) )
]
def A_ ( snake_case_ : list ):
'''simple docstring'''
if len(snake_case_ ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception("""Odd matrices are not supported!""" )
UpperCamelCase : Optional[int] = len(snake_case_ )
UpperCamelCase : Any = matrix_length // 2
UpperCamelCase : Union[str, Any] = [[a[i][j] for j in range(snake_case_ ,snake_case_ )] for i in range(snake_case_ )]
UpperCamelCase : Optional[int] = [
[a[i][j] for j in range(snake_case_ ,snake_case_ )] for i in range(snake_case_ ,snake_case_ )
]
UpperCamelCase : Tuple = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ )]
UpperCamelCase : int = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ ,snake_case_ )]
return top_left, top_right, bot_left, bot_right
def A_ ( snake_case_ : list ):
'''simple docstring'''
return len(snake_case_ ), len(matrix[0] )
def A_ ( snake_case_ : list ):
'''simple docstring'''
print("""\n""".join(str(snake_case_ ) for line in matrix ) )
def A_ ( snake_case_ : list ,snake_case_ : list ):
'''simple docstring'''
if matrix_dimensions(snake_case_ ) == (2, 2):
return default_matrix_multiplication(snake_case_ ,snake_case_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = split_matrix(snake_case_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = split_matrix(snake_case_ )
UpperCamelCase : Tuple = actual_strassen(snake_case_ ,matrix_subtraction(snake_case_ ,snake_case_ ) )
UpperCamelCase : List[Any] = actual_strassen(matrix_addition(snake_case_ ,snake_case_ ) ,snake_case_ )
UpperCamelCase : str = actual_strassen(matrix_addition(snake_case_ ,snake_case_ ) ,snake_case_ )
UpperCamelCase : Optional[Any] = actual_strassen(snake_case_ ,matrix_subtraction(snake_case_ ,snake_case_ ) )
UpperCamelCase : int = actual_strassen(matrix_addition(snake_case_ ,snake_case_ ) ,matrix_addition(snake_case_ ,snake_case_ ) )
UpperCamelCase : str = actual_strassen(matrix_subtraction(snake_case_ ,snake_case_ ) ,matrix_addition(snake_case_ ,snake_case_ ) )
UpperCamelCase : Dict = actual_strassen(matrix_subtraction(snake_case_ ,snake_case_ ) ,matrix_addition(snake_case_ ,snake_case_ ) )
UpperCamelCase : List[str] = matrix_addition(matrix_subtraction(matrix_addition(snake_case_ ,snake_case_ ) ,snake_case_ ) ,snake_case_ )
UpperCamelCase : Union[str, Any] = matrix_addition(snake_case_ ,snake_case_ )
UpperCamelCase : int = matrix_addition(snake_case_ ,snake_case_ )
UpperCamelCase : int = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case_ ,snake_case_ ) ,snake_case_ ) ,snake_case_ )
# construct the new matrix from our 4 quadrants
UpperCamelCase : List[str] = []
for i in range(len(snake_case_ ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(snake_case_ ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def A_ ( snake_case_ : list ,snake_case_ : list ):
'''simple docstring'''
if matrix_dimensions(snake_case_ )[1] != matrix_dimensions(snake_case_ )[0]:
UpperCamelCase : str = (
"""Unable to multiply these matrices, please check the dimensions.\n"""
f'Matrix A: {matrixa}\n'
f'Matrix B: {matrixa}'
)
raise Exception(snake_case_ )
UpperCamelCase : str = matrix_dimensions(snake_case_ )
UpperCamelCase : Optional[Any] = matrix_dimensions(snake_case_ )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
UpperCamelCase : Optional[Any] = max(*snake_case_ ,*snake_case_ )
UpperCamelCase : str = int(math.pow(2 ,math.ceil(math.loga(snake_case_ ) ) ) )
UpperCamelCase : Any = matrixa
UpperCamelCase : Any = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 ,snake_case_ ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] ,snake_case_ ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] ,snake_case_ ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
UpperCamelCase : int = actual_strassen(snake_case_ ,snake_case_ )
# Removing the additional zeros
for i in range(0 ,snake_case_ ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] ,snake_case_ ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
__A : Optional[int] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
__A : List[Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 27 |
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def A_ ( snake_case_ : int ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def A_ ( ):
'''simple docstring'''
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
UpperCamelCase : Optional[Any] = [1, 2, 3]
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=2 )
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" ,[2, -1] )
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : List[Any] = [1, 2]
UpperCamelCase : List[Any] = {"""a""": 1, """b""": 2}
UpperCamelCase : List[str] = {"""a""": [1, 2], """b""": [3, 4]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2}
UpperCamelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
UpperCamelCase : Optional[int] = [2, 3]
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3}
UpperCamelCase : Any = {"""a""": [2, 3], """b""": [4, 5]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 2}, """b""": 3}
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
| 27 | 1 |
"""simple docstring"""
def A_ ( snake_case_ : int = 2_0_0 ):
'''simple docstring'''
UpperCamelCase : Any = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0]
UpperCamelCase : int = [0] * (pence + 1)
UpperCamelCase : Any = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(snake_case_ ,pence + 1 ,1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 73682
| 27 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : str = batch_size
UpperCamelCase : int = seq_length
UpperCamelCase : Optional[Any] = is_training
UpperCamelCase : Any = use_input_lengths
UpperCamelCase : Tuple = use_token_type_ids
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = gelu_activation
UpperCamelCase : Dict = sinusoidal_embeddings
UpperCamelCase : Optional[int] = causal
UpperCamelCase : List[Any] = asm
UpperCamelCase : int = n_langs
UpperCamelCase : Optional[Any] = vocab_size
UpperCamelCase : str = n_special
UpperCamelCase : Dict = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : Any = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : str = num_labels
UpperCamelCase : Union[str, Any] = num_choices
UpperCamelCase : List[str] = summary_type
UpperCamelCase : int = use_proj
UpperCamelCase : List[str] = scope
UpperCamelCase : Dict = bos_token_id
def a_ ( self ):
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Union[str, Any] = None
if self.use_input_lengths:
UpperCamelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCamelCase : int = None
UpperCamelCase : Dict = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float()
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : List[str] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , )
((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = self.num_labels
UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = self.num_choices
UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : int = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : List[Any] = config_and_inputs
UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase : List[Any] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase : Optional[Any] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCamelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def a_ ( self ):
UpperCamelCase : List[Any] = XLMModelTester(self )
UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : int = min_length + idx + 1
UpperCamelCase : Tuple = min_length + idx + 1
UpperCamelCase : Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : List[str] = min_length + idx + 1
UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , )
pass
@slow
def a_ ( self ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president
UpperCamelCase : List[Any] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import warnings
from functools import wraps
from typing import Callable
def A_ ( snake_case_ : Callable ):
'''simple docstring'''
@wraps(snake_case_ )
def _inner_fn(*snake_case_ : Dict ,**snake_case_ : int ):
warnings.warn(
(f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') ,snake_case_ ,)
return fn(*snake_case_ ,**snake_case_ )
return _inner_fn
| 27 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__A : int = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__A : Any = logging.get_logger(__name__)
__A : int = '''▁'''
__A : str = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__A : Dict = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
}
}
__A : Dict = {
'''facebook/mbart-large-en-ro''': 1024,
'''facebook/mbart-large-cc25''': 1024,
}
# fmt: off
__A : Optional[int] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : List[Any] = VOCAB_FILES_NAMES
lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Any = ['input_ids', 'attention_mask']
lowercase : List[int] = []
lowercase : List[int] = []
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , src_lang=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCamelCase : int = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCamelCase : str = 1
UpperCamelCase : List[str] = len(self.sp_model )
UpperCamelCase : List[str] = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE_ )
}
UpperCamelCase : Dict = {v: k for k, v in self.lang_code_to_id.items()}
UpperCamelCase : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
UpperCamelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
UpperCamelCase : Tuple = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
UpperCamelCase : List[Any] = src_lang if src_lang is not None else """en_XX"""
UpperCamelCase : str = self.lang_code_to_id[self._src_lang]
UpperCamelCase : Union[str, Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ):
UpperCamelCase : str = self.__dict__.copy()
UpperCamelCase : List[Any] = None
UpperCamelCase : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCamelCase : Any = {}
UpperCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def a_ ( self ):
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def a_ ( self ):
return self._src_lang
@src_lang.setter
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = [1] * len(self.prefix_tokens )
UpperCamelCase : Union[str, Any] = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones
return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Optional[int] = [self.sep_token_id]
UpperCamelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
UpperCamelCase : Any = src_lang
UpperCamelCase : Union[str, Any] = self(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = tgt_lang_id
return inputs
def a_ ( self ):
UpperCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCamelCase : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = """""".join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_ , """ """ ).strip()
return out_string
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase : List[str] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi:
UpperCamelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "en_XX" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "ro_RO" , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : str = src_lang
UpperCamelCase : Optional[int] = tgt_lang
return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def a_ ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.lang_code_to_id[src_lang]
UpperCamelCase : Dict = []
UpperCamelCase : List[Any] = [self.eos_token_id, self.cur_lang_code]
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.lang_code_to_id[lang]
UpperCamelCase : Union[str, Any] = []
UpperCamelCase : List[str] = [self.eos_token_id, self.cur_lang_code]
| 27 |
"""simple docstring"""
import torch
from transformers import AutoModel
class lowerCamelCase ( torch.nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_="sayef/fsner-bert-base-uncased" ):
super(SCREAMING_SNAKE_CASE_ , self ).__init__()
UpperCamelCase : int = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCamelCase : Any = torch.nn.Softmax(dim=1 )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return self.bert(**SCREAMING_SNAKE_CASE_ ).last_hidden_state
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return token_embeddings.sum(2 , keepdim=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ):
return self.softmax(T * self.cos(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = W_supports["""sizes"""].tolist()
UpperCamelCase : List[str] = W_supports["""start_token_id"""].item()
UpperCamelCase : List[Any] = W_supports["""end_token_id"""].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCamelCase : List[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Tuple = W_supports["""input_ids"""] == start_token_id
UpperCamelCase : Optional[Any] = W_supports["""input_ids"""] == end_token_id
for i, size in enumerate(SCREAMING_SNAKE_CASE_ ):
if i == 0:
UpperCamelCase : int = 0
else:
UpperCamelCase : Optional[int] = support_sizes[i - 1]
UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]]
UpperCamelCase : int = S[s : s + size][end_token_masks[s : s + size]]
UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) )
UpperCamelCase : Optional[Any] = torch.vstack((p_ends, p_end) )
else:
UpperCamelCase : Optional[int] = p_start
UpperCamelCase : Tuple = p_end
return p_starts, p_ends
| 27 | 1 |
"""simple docstring"""
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
__A : int = logging.getLogger()
def A_ ( snake_case_ : Path ,snake_case_ : list ):
'''simple docstring'''
UpperCamelCase : int = """\n""".join(snake_case_ )
Path(snake_case_ ).open("""w""" ).writelines(snake_case_ )
__A : Tuple = '''patrickvonplaten/t5-tiny-random'''
__A : List[str] = '''sshleifer/bart-tiny-random'''
__A : Union[str, Any] = '''sshleifer/tiny-mbart'''
__A : Any = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class lowerCamelCase ( _UpperCAmelCase ):
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
UpperCamelCase : List[Any] = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
UpperCamelCase : Optional[int] = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""]
_dump_articles(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" )
UpperCamelCase : Optional[int] = """translation_en_to_de""" if model == T5_TINY else """summarization"""
UpperCamelCase : str = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split()
with patch.object(SCREAMING_SNAKE_CASE_ , """argv""" , SCREAMING_SNAKE_CASE_ ):
run_generate()
assert Path(SCREAMING_SNAKE_CASE_ ).exists()
# os.remove(Path(output_file_name))
def a_ ( self ):
self.run_eval_tester(SCREAMING_SNAKE_CASE_ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.run_eval_tester(SCREAMING_SNAKE_CASE_ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
UpperCamelCase : str = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
UpperCamelCase : Dict = {
"""en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""],
"""de""": [
"""Maschinelles Lernen ist großartig, oder?""",
"""Ich esse gerne Bananen""",
"""Morgen ist wieder ein toller Tag!""",
],
}
UpperCamelCase : List[Any] = Path(self.get_auto_remove_tmp_dir() )
UpperCamelCase : Tuple = str(tmp_dir / """scores.json""" )
UpperCamelCase : Optional[int] = str(tmp_dir / """val.target""" )
_dump_articles(SCREAMING_SNAKE_CASE_ , text["""en"""] )
_dump_articles(SCREAMING_SNAKE_CASE_ , text["""de"""] )
UpperCamelCase : Dict = """translation_en_to_de""" if model == T5_TINY else """summarization"""
UpperCamelCase : str = f'\n run_eval_search.py\n {model}\n {str(SCREAMING_SNAKE_CASE_ )}\n {str(SCREAMING_SNAKE_CASE_ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] )
with patch.object(SCREAMING_SNAKE_CASE_ , """argv""" , SCREAMING_SNAKE_CASE_ ):
with CaptureStdout() as cs:
run_search()
UpperCamelCase : Tuple = [""" num_beams | length_penalty""", model, """Best score args"""]
UpperCamelCase : int = ["""Info"""]
if "translation" in task:
expected_strings.append("""bleu""" )
else:
expected_strings.extend(SCREAMING_SNAKE_CASE_ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(SCREAMING_SNAKE_CASE_ ).exists()
os.remove(Path(SCREAMING_SNAKE_CASE_ ) )
| 27 |
"""simple docstring"""
from typing import Any
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = data
UpperCamelCase : Optional[Any] = None
def __repr__( self ):
return f'Node({self.data})'
class lowerCamelCase :
def __init__( self ):
UpperCamelCase : Dict = None
def __iter__( self ):
UpperCamelCase : int = self.head
while node:
yield node.data
UpperCamelCase : Union[str, Any] = node.next
def __len__( self ):
return sum(1 for _ in self )
def __repr__( self ):
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
UpperCamelCase : List[Any] = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = current.next
UpperCamelCase : Optional[Any] = data
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index <= len(self ):
raise IndexError("""list index out of range""" )
UpperCamelCase : Optional[Any] = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
UpperCamelCase : Dict = new_node
elif index == 0:
UpperCamelCase : Any = self.head # link new_node to head
UpperCamelCase : Any = new_node
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : str = temp.next
UpperCamelCase : Any = temp.next
UpperCamelCase : Optional[Any] = new_node
def a_ ( self ): # print every node data
print(self )
def a_ ( self ):
return self.delete_nth(0 )
def a_ ( self ): # delete from tail
return self.delete_nth(len(self ) - 1 )
def a_ ( self , SCREAMING_SNAKE_CASE_ = 0 ):
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("""List index out of range.""" )
UpperCamelCase : Union[str, Any] = self.head # default first node
if index == 0:
UpperCamelCase : Optional[Any] = self.head.next
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : int = temp.next
UpperCamelCase : Optional[Any] = temp.next
UpperCamelCase : Dict = temp.next.next
return delete_node.data
def a_ ( self ):
return self.head is None
def a_ ( self ):
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Union[str, Any] = self.head
while current:
# Store the current node's next node.
UpperCamelCase : Optional[int] = current.next
# Make the current node's next point backwards
UpperCamelCase : Optional[Any] = prev
# Make the previous node be the current node
UpperCamelCase : int = current
# Make the current node the next node (to progress iteration)
UpperCamelCase : Optional[int] = next_node
# Return prev in order to put the head at the end
UpperCamelCase : Optional[int] = prev
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case_ ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(snake_case_ ) == i
linked_list.insert_nth(snake_case_ ,i + 1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 ,1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(snake_case_ ) == 9
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
UpperCamelCase : Optional[Any] = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8 ,1 ) )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
"""dlrow olleH""",
7,
5_5_5_5,
0,
-192.55555,
"""Hello, world!""",
77.9,
Node(1_0 ),
None,
None,
12.20,
]
UpperCamelCase : List[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case_ )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
UpperCamelCase : Dict = linked_list.delete_head()
assert result == -9
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
UpperCamelCase : int = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
UpperCamelCase : Optional[Any] = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("""Hello again, world!""" ) )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case_ )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case_ )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ):
'''simple docstring'''
from doctest import testmod
testmod()
UpperCamelCase : List[Any] = LinkedList()
linked_list.insert_head(input("""Inserting 1st at head """ ).strip() )
linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() )
linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nDelete head""" )
linked_list.delete_head()
print("""Delete tail""" )
linked_list.delete_tail()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nReverse linked list""" )
linked_list.reverse()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nString representation of linked list:""" )
print(snake_case_ )
print("""\nReading/changing Node data using indexing:""" )
print(f'Element at Position 1: {linked_list[1]}' )
UpperCamelCase : List[Any] = input("""Enter New Value: """ ).strip()
print("""New list:""" )
print(snake_case_ )
print(f'length of linked_list is : {len(snake_case_ )}' )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
import os
import sys
__A : List[Any] = os.path.join(os.path.dirname(__file__), '''src''')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
__A : List[str] = [
'''torch''',
'''numpy''',
'''tokenizers''',
'''filelock''',
'''requests''',
'''tqdm''',
'''regex''',
'''sentencepiece''',
'''sacremoses''',
'''importlib_metadata''',
'''huggingface_hub''',
]
@add_start_docstrings(AutoConfig.__doc__ )
def A_ ( *snake_case_ : List[Any] ,**snake_case_ : Optional[Any] ):
'''simple docstring'''
return AutoConfig.from_pretrained(*snake_case_ ,**snake_case_ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def A_ ( *snake_case_ : Optional[Any] ,**snake_case_ : Any ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*snake_case_ ,**snake_case_ )
@add_start_docstrings(AutoModel.__doc__ )
def A_ ( *snake_case_ : Any ,**snake_case_ : List[str] ):
'''simple docstring'''
return AutoModel.from_pretrained(*snake_case_ ,**snake_case_ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def A_ ( *snake_case_ : Any ,**snake_case_ : Optional[Any] ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*snake_case_ ,**snake_case_ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def A_ ( *snake_case_ : Dict ,**snake_case_ : str ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*snake_case_ ,**snake_case_ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def A_ ( *snake_case_ : Any ,**snake_case_ : List[Any] ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*snake_case_ ,**snake_case_ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def A_ ( *snake_case_ : Union[str, Any] ,**snake_case_ : Any ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*snake_case_ ,**snake_case_ )
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Dict = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
__A : Union[str, Any] = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : Tuple = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = 0
UpperCamelCase : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : int = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Any = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Any = [lines[index + 1]]
index += 1
else:
UpperCamelCase : List[str] = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
def _inner(snake_case_ : Tuple ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Dict ):
return x
if key is None:
UpperCamelCase : int = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Tuple = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : int ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : List[Any] ):
UpperCamelCase : Any = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[str] = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : str = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[Any] = keys[:-1]
UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ):
'''simple docstring'''
with open(snake_case_ ,"""r""" ) as f:
UpperCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : Dict = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Optional[Any] = main_blocks[block_idx]
UpperCamelCase : Optional[int] = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : Union[str, Any] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : List[str] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[Any] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Any = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
import math
class lowerCamelCase :
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = 0.0
UpperCamelCase : Dict = 0.0
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def A_ ( ):
'''simple docstring'''
# Training Examples ( m, n )
UpperCamelCase : Tuple = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCamelCase : List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCamelCase : Optional[Any] = SelfOrganizingMap()
UpperCamelCase : Tuple = 3
UpperCamelCase : int = 0.5
for _ in range(snake_case_ ):
for j in range(len(snake_case_ ) ):
# training sample
UpperCamelCase : int = training_samples[j]
# Compute the winning vector
UpperCamelCase : List[Any] = self_organizing_map.get_winner(snake_case_ ,snake_case_ )
# Update the winning vector
UpperCamelCase : str = self_organizing_map.update(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# classify test sample
UpperCamelCase : List[Any] = [0, 0, 0, 1]
UpperCamelCase : Optional[Any] = self_organizing_map.get_winner(snake_case_ ,snake_case_ )
# results
print(f'Clusters that the test sample belongs to : {winner}' )
print(f'Weights that have been trained : {weights}' )
# running the main() function
if __name__ == "__main__":
main()
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : list[int] ):
'''simple docstring'''
if not numbers:
return 0
if not isinstance(snake_case_ ,(list, tuple) ) or not all(
isinstance(snake_case_ ,snake_case_ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
UpperCamelCase : int = numbers[0]
for i in range(1 ,len(snake_case_ ) ):
# update the maximum and minimum subarray products
UpperCamelCase : List[str] = numbers[i]
if number < 0:
UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now
UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number )
UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number )
# update the maximum product found till now
UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ )
return max_prod
| 27 | 1 |
"""simple docstring"""
from __future__ import annotations
def A_ ( snake_case_ : list[list[int]] ):
'''simple docstring'''
UpperCamelCase : str = len(snake_case_ )
# We need to create solution object to save path.
UpperCamelCase : List[Any] = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
UpperCamelCase : Any = run_maze(snake_case_ ,0 ,0 ,snake_case_ )
if solved:
print("""\n""".join(str(snake_case_ ) for row in solutions ) )
else:
print("""No solution exists!""" )
return solved
def A_ ( snake_case_ : list[list[int]] ,snake_case_ : int ,snake_case_ : int ,snake_case_ : list[list[int]] ):
'''simple docstring'''
UpperCamelCase : str = len(snake_case_ )
# Final check point.
if i == j == (size - 1):
UpperCamelCase : Optional[Any] = 1
return True
UpperCamelCase : Optional[int] = (not i < 0) and (not j < 0) # Check lower bounds
UpperCamelCase : List[Any] = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
UpperCamelCase : List[str] = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
UpperCamelCase : Dict = 1
# check for directions
if (
run_maze(snake_case_ ,i + 1 ,snake_case_ ,snake_case_ )
or run_maze(snake_case_ ,snake_case_ ,j + 1 ,snake_case_ )
or run_maze(snake_case_ ,i - 1 ,snake_case_ ,snake_case_ )
or run_maze(snake_case_ ,snake_case_ ,j - 1 ,snake_case_ )
):
return True
UpperCamelCase : Optional[Any] = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Any = AudioLDMPipeline
lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS
lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS
lowercase : Tuple = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Optional[Any] = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
UpperCamelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase : int = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
UpperCamelCase : Tuple = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def a_ ( self ):
UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Any = self.get_dummy_components()
UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Tuple = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[str] = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : str = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
UpperCamelCase : Tuple = prompt_embeds
# forward
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : List[str] = self.get_dummy_components()
UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""]
UpperCamelCase : List[Any] = negative_prompt
UpperCamelCase : str = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[Any] = []
for p in [prompt, negative_prompt]:
UpperCamelCase : int = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
embeds.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Tuple = embeds
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Optional[int] = self.get_dummy_components()
UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = """egg cracking"""
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Union[str, Any] = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
UpperCamelCase : Dict = 2
UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
UpperCamelCase : List[str] = 2
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
UpperCamelCase : Any = 2
UpperCamelCase : str = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Tuple = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016
UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = ["""hey"""]
UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : str = output.audios.shape
assert audio_shape == (1, 256)
UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : List[str] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def a_ ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def a_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@slow
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) )
UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def a_ ( self ):
UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 25
UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240]
UpperCamelCase : Optional[Any] = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def a_ ( self ):
UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790]
UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 27 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def A_ ( snake_case_ : str ,snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : int = list(snake_case_ )
UpperCamelCase : Optional[int] = list(snake_case_ )
UpperCamelCase : Optional[Any] = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count += 1
UpperCamelCase : Tuple = """_"""
if count > 1:
return False
else:
return "".join(snake_case_ )
def A_ ( snake_case_ : list[str] ):
'''simple docstring'''
UpperCamelCase : int = []
while True:
UpperCamelCase : Union[str, Any] = ["""$"""] * len(snake_case_ )
UpperCamelCase : Optional[int] = []
for i in range(len(snake_case_ ) ):
for j in range(i + 1 ,len(snake_case_ ) ):
UpperCamelCase : str = compare_string(binary[i] ,binary[j] )
if k is False:
UpperCamelCase : Any = """*"""
UpperCamelCase : Union[str, Any] = """*"""
temp.append("""X""" )
for i in range(len(snake_case_ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(snake_case_ ) == 0:
return pi
UpperCamelCase : Optional[Any] = list(set(snake_case_ ) )
def A_ ( snake_case_ : int ,snake_case_ : Sequence[float] ):
'''simple docstring'''
UpperCamelCase : Optional[int] = []
for minterm in minterms:
UpperCamelCase : List[str] = """"""
for _ in range(snake_case_ ):
UpperCamelCase : Dict = str(minterm % 2 ) + string
minterm //= 2
temp.append(snake_case_ )
return temp
def A_ ( snake_case_ : str ,snake_case_ : str ,snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = list(snake_case_ )
UpperCamelCase : Optional[int] = list(snake_case_ )
UpperCamelCase : List[Any] = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def A_ ( snake_case_ : list[list[int]] ,snake_case_ : list[str] ):
'''simple docstring'''
UpperCamelCase : int = []
UpperCamelCase : Optional[Any] = [0] * len(snake_case_ )
for i in range(len(chart[0] ) ):
UpperCamelCase : Tuple = 0
UpperCamelCase : Optional[Any] = -1
for j in range(len(snake_case_ ) ):
if chart[j][i] == 1:
count += 1
UpperCamelCase : Union[str, Any] = j
if count == 1:
UpperCamelCase : Optional[int] = 1
for i in range(len(snake_case_ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(snake_case_ ) ):
UpperCamelCase : Union[str, Any] = 0
temp.append(prime_implicants[i] )
while True:
UpperCamelCase : Optional[int] = 0
UpperCamelCase : Optional[int] = -1
UpperCamelCase : List[Any] = 0
for i in range(len(snake_case_ ) ):
UpperCamelCase : Tuple = chart[i].count(1 )
if count_n > max_n:
UpperCamelCase : Tuple = count_n
UpperCamelCase : Any = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(snake_case_ ) ):
UpperCamelCase : Optional[Any] = 0
def A_ ( snake_case_ : list[str] ,snake_case_ : list[str] ):
'''simple docstring'''
UpperCamelCase : List[str] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )]
for i in range(len(snake_case_ ) ):
UpperCamelCase : Tuple = prime_implicants[i].count("""_""" )
for j in range(len(snake_case_ ) ):
if is_for_table(prime_implicants[i] ,binary[j] ,snake_case_ ):
UpperCamelCase : Optional[Any] = 1
return chart
def A_ ( ):
'''simple docstring'''
UpperCamelCase : Any = int(input("""Enter the no. of variables\n""" ) )
UpperCamelCase : Tuple = [
float(snake_case_ )
for x in input(
"""Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split()
]
UpperCamelCase : int = decimal_to_binary(snake_case_ ,snake_case_ )
UpperCamelCase : List[str] = check(snake_case_ )
print("""Prime Implicants are:""" )
print(snake_case_ )
UpperCamelCase : Dict = prime_implicant_chart(snake_case_ ,snake_case_ )
UpperCamelCase : List[Any] = selection(snake_case_ ,snake_case_ )
print("""Essential Prime Implicants are:""" )
print(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 27 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase : List[str] = args.log_outputs
UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] )
# load metric
UpperCamelCase : List[Any] = load_metric("""wer""" )
UpperCamelCase : Any = load_metric("""cer""" )
# compute metrics
UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
# print & log results
UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case_ )
with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt'
UpperCamelCase : str = f'log_{dataset_id}_targets.txt'
with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
p.write(f'{i}' + """\n""" )
p.write(batch["""prediction"""] + """\n""" )
t.write(f'{i}' + """\n""" )
t.write(batch["""target"""] + """\n""" )
result.map(snake_case_ ,with_indices=snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """]
for t in token_sequences_to_ignore:
UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) )
return text
def A_ ( snake_case_ : str ):
'''simple docstring'''
# load dataset
UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase : Dict = feature_extractor.sampling_rate
# resample audio
UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase : int = 0 if torch.cuda.is_available() else -1
UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Union[str, Any] ):
UpperCamelCase : List[Any] = asr(
batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s )
UpperCamelCase : Union[str, Any] = prediction["""text"""]
UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] )
return batch
# run inference on all examples
UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ ,snake_case_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers'''
)
parser.add_argument(
'''--dataset''',
type=str,
required=True,
help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''',
)
parser.add_argument(
'''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice'''
)
parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''')
parser.add_argument(
'''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.'''
)
parser.add_argument(
'''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.'''
)
parser.add_argument(
'''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.'''
)
parser.add_argument(
'''--device''',
type=int,
default=None,
help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''',
)
__A : Optional[Any] = parser.parse_args()
main(args)
| 27 | 1 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
__A : List[str] = pytest.mark.integration
__A : List[Any] = {'''comet'''}
__A : List[str] = importlib.util.find_spec('''fairseq''') is not None
__A : Dict = {'''code_eval'''}
__A : List[Any] = os.name == '''nt'''
__A : Tuple = {'''bertscore''', '''frugalscore''', '''perplexity'''}
__A : Union[str, Any] = importlib.util.find_spec('''transformers''') is not None
def A_ ( snake_case_ : Optional[int] ):
'''simple docstring'''
@wraps(snake_case_ )
def wrapper(self : Union[str, Any] ,snake_case_ : List[Any] ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("""\"test requires Fairseq\"""" )
else:
test_case(self ,snake_case_ )
return wrapper
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
@wraps(snake_case_ )
def wrapper(self : Optional[int] ,snake_case_ : Optional[Any] ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("""\"test requires transformers\"""" )
else:
test_case(self ,snake_case_ )
return wrapper
def A_ ( snake_case_ : Union[str, Any] ):
'''simple docstring'''
@wraps(snake_case_ )
def wrapper(self : Optional[Any] ,snake_case_ : Dict ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("""\"test not supported on Windows\"""" )
else:
test_case(self ,snake_case_ )
return wrapper
def A_ ( ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
@local
class lowerCamelCase ( parameterized.TestCase ):
lowercase : List[str] = {}
lowercase : Optional[Any] = None
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = """[...]"""
UpperCamelCase : List[str] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) ).module_path )
UpperCamelCase : int = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE_ )
# check parameters
UpperCamelCase : int = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(SCREAMING_SNAKE_CASE_ , metric_module.__name__ ):
with self.use_local_metrics():
try:
UpperCamelCase : int = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = """[...]"""
UpperCamelCase : int = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) ).module_path )
# run doctest
with self.use_local_metrics():
UpperCamelCase : str = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE_ ):
yield
else:
yield
@contextmanager
def a_ ( self ):
def load_local_metric(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return load_metric(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with patch("""datasets.load_metric""" ) as mock_load_metric:
UpperCamelCase : Any = load_local_metric
yield
@classmethod
def a_ ( cls , SCREAMING_SNAKE_CASE_ ):
def wrapper(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = contextmanager(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("""bleurt""" )
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("""sv""" ,"""""" ,"""""" ) # handle pytest cli flags
class lowerCamelCase ( _UpperCAmelCase ):
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
assert len(input_dict["""input_ids"""] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor:
UpperCamelCase : Tuple = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("""bertscore""" )
def A_ ( snake_case_ : Any ):
'''simple docstring'''
import torch
def bert_cos_score_idf(snake_case_ : List[Any] ,snake_case_ : int ,*snake_case_ : List[Any] ,**snake_case_ : Tuple ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("""bert_score.scorer.get_model""" ), patch(
"""bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf:
UpperCamelCase : Optional[int] = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("""comet""" )
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
def load_from_checkpoint(snake_case_ : List[str] ):
class lowerCamelCase :
def a_ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
assert len(SCREAMING_SNAKE_CASE_ ) == 2
UpperCamelCase : Dict = [0.19, 0.92]
return scores, sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("""comet.download_model""" ) as mock_download_model:
UpperCamelCase : Dict = None
with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint:
UpperCamelCase : Tuple = load_from_checkpoint
yield
def A_ ( ):
'''simple docstring'''
UpperCamelCase : List[str] = load_metric(os.path.join("""metrics""" ,"""seqeval""" ) )
UpperCamelCase : List[Any] = """ERROR"""
UpperCamelCase : Union[str, Any] = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'
with pytest.raises(snake_case_ ,match=re.escape(snake_case_ ) ):
metric.compute(predictions=[] ,references=[] ,scheme=snake_case_ )
| 27 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'EncodecFeatureExtractor'
lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.feature_extractor
UpperCamelCase : Any = False
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ):
return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Any = args[0]
UpperCamelCase : str = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is not None:
UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase : int = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""]
return inputs
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Optional[int] = args[0]
UpperCamelCase : Any = args[1:]
if audio_values is not None:
return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ )
else:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape
if padding_mask is None:
return list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1]
UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value
UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audio_values.tolist()
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 )
return audio_values
| 27 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowerCamelCase :
lowercase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} )
lowercase : Optional[str] = field(
default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} )
lowercase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} )
lowercase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowercase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} )
lowercase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} )
lowercase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} )
lowercase : Optional[int] = field(
default=1_0_0_0_0 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} )
lowercase : Optional[float] = field(default=2E-4 , metadata={'help': 'Learning rate fo training.'} )
lowercase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} )
lowercase : Optional[int] = field(
default=7_5_0 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} )
lowercase : Optional[int] = field(
default=1_6 , metadata={'help': 'Number of gradient accumulation steps.'} )
lowercase : Optional[bool] = field(
default=_UpperCAmelCase , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} )
lowercase : Optional[int] = field(default=5_0_0_0_0 , metadata={'help': 'Maximum number of training steps.'} )
lowercase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowercase : Optional[int] = field(default=1_0_2_4 , metadata={'help': 'Sequence lengths used for training.'} )
lowercase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} )
lowercase : Optional[int] = field(
default=1_0_2_4 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , )
lowercase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} )
lowercase : Optional[bool] = field(default=_UpperCAmelCase , metadata={'help': 'If True the data is pretokenized.'} )
@dataclass
class lowerCamelCase :
lowercase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowercase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowercase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} )
lowercase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowercase : Optional[int] = field(default=1_0_2_4 , metadata={'help': 'Length of sequences to be evaluated.'} )
lowercase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
@dataclass
class lowerCamelCase :
lowercase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowercase : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': 'Number of workers used for code evaluation.'} )
lowercase : Optional[int] = field(
default=_UpperCAmelCase , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , )
lowercase : Optional[bool] = field(
default=_UpperCAmelCase , metadata={'help': 'Sample from the language model\'s output distribution.'} )
lowercase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} )
lowercase : Optional[int] = field(default=2_5_6 , metadata={'help': 'Maximum number of newly generated tokens.'} )
lowercase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} )
lowercase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} )
lowercase : Optional[int] = field(default=1_0 , metadata={'help': 'Number of generations to run in parallel.'} )
lowercase : Optional[int] = field(
default=2_0_0 , metadata={'help': 'Number of completions to generate for each sample.'} )
lowercase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
lowercase : Optional[str] = field(
default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} )
lowercase : Optional[str] = field(
default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} )
lowercase : Optional[int] = field(
default=-1 , metadata={
'help': (
'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'
' number corresponds to which GPU device id to run on.'
)
} , )
@dataclass
class lowerCamelCase :
lowercase : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'
} , )
lowercase : Optional[str] = field(
default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} )
lowercase : Optional[str] = field(
default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} )
lowercase : Optional[int] = field(
default=1_0_0_0_0_0 , metadata={'help': 'Number of files to save per JSON output file.'} )
lowercase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowercase : Optional[float] = field(
default=1_0_0_0 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} )
lowercase : Optional[float] = field(
default=1_0_0 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} )
lowercase : Optional[float] = field(
default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} )
lowercase : Optional[float] = field(
default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} )
lowercase : Optional[float] = field(
default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} )
lowercase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , )
lowercase : Optional[bool] = field(
default=_UpperCAmelCase , metadata={'help': 'If True, near-duplicate samples are removed.'} )
lowercase : Optional[float] = field(
default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} )
@dataclass
class lowerCamelCase :
lowercase : Optional[str] = field(
default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} )
lowercase : Optional[str] = field(
default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} )
lowercase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowercase : Optional[int] = field(default=2_0_0_0_0_0 , metadata={'help': 'Number of examples to train tokenizer on.'} )
lowercase : Optional[int] = field(
default=3_2_7_6_8 , metadata={'help': 'Number of examples to train the tokenizer on.'} )
lowercase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} )
lowercase : Optional[bool] = field(default=_UpperCAmelCase , metadata={'help': 'Push saved tokenizer to the hub.'} )
@dataclass
class lowerCamelCase :
lowercase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} )
lowercase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} )
lowercase : Optional[str] = field(
default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} )
lowercase : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': 'Number of workers used for code evaluation.'} )
@dataclass
class lowerCamelCase :
lowercase : Optional[str] = field(
default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} )
lowercase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} )
lowercase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} )
lowercase : Optional[bool] = field(default=_UpperCAmelCase , metadata={'help': 'Push saved tokenizer to the hub.'} )
| 27 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ):
'''simple docstring'''
UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" )
UpperCamelCase : Optional[int] = soup.findAll("""h1""" )
UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} )
values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''')
| 27 | 1 |
"""simple docstring"""
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ):
UpperCamelCase : Dict = tokenizer
UpperCamelCase : Optional[Any] = tokenizer.bos_token_id
UpperCamelCase : Any = dataset
UpperCamelCase : List[str] = seq_length
UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self ):
UpperCamelCase : Dict = iter(self.dataset )
UpperCamelCase : Union[str, Any] = True
while more_examples:
UpperCamelCase , UpperCamelCase : Tuple = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
UpperCamelCase : Dict = False
break
UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""]
UpperCamelCase : str = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ):
UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length]
if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length:
yield torch.tensor(SCREAMING_SNAKE_CASE_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Dict = {"""streaming""": True}
UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ )
UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length )
UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size )
return eval_dataloader
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
model.eval()
UpperCamelCase : Dict = []
for step, batch in enumerate(snake_case_ ):
with torch.no_grad():
UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ )
UpperCamelCase : Any = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(snake_case_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) )
try:
UpperCamelCase : Dict = torch.exp(snake_case_ )
except OverflowError:
UpperCamelCase : Optional[int] = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
__A : List[Any] = Accelerator()
# Parse configuration
__A : str = HfArgumentParser(EvaluationArguments)
__A : List[Any] = parser.parse_args()
set_seed(args.seed)
# Logging
__A : Any = logging.getLogger(__name__)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
# Load model and tokenizer
__A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
__A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
__A : int = create_dataloader(args)
# Prepare everything with our `accelerator`.
__A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('''Evaluating and saving model after training''')
__A , __A : Tuple = evaluate(args)
logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 27 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ):
UpperCamelCase : Tuple = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : Optional[Any] = seq_length
UpperCamelCase : int = is_training
UpperCamelCase : Union[str, Any] = use_input_mask
UpperCamelCase : Union[str, Any] = use_token_type_ids
UpperCamelCase : Dict = use_labels
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : Tuple = num_hidden_layers
UpperCamelCase : Any = num_attention_heads
UpperCamelCase : int = intermediate_size
UpperCamelCase : str = hidden_act
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : List[Any] = max_position_embeddings
UpperCamelCase : Optional[Any] = type_vocab_size
UpperCamelCase : int = type_sequence_label_size
UpperCamelCase : Dict = initializer_range
UpperCamelCase : Dict = num_labels
UpperCamelCase : Tuple = num_choices
UpperCamelCase : Optional[int] = scope
UpperCamelCase : List[Any] = q_groups
UpperCamelCase : Tuple = k_groups
UpperCamelCase : Any = v_groups
UpperCamelCase : List[str] = post_attention_groups
UpperCamelCase : Tuple = intermediate_groups
UpperCamelCase : int = output_groups
def a_ ( self ):
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Tuple = None
if self.use_input_mask:
UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Optional[int] = None
UpperCamelCase : List[Any] = None
UpperCamelCase : Dict = None
if self.use_labels:
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : str = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.num_labels
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.num_labels
UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = self.num_choices
UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : Optional[int] = self.prepare_config_and_inputs()
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs
UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
lowercase : Dict = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Dict = False
lowercase : str = True
lowercase : str = False
def a_ ( self ):
UpperCamelCase : Any = SqueezeBertModelTester(self )
UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def a_ ( self ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0]
UpperCamelCase : Optional[Any] = torch.Size((1, 3) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 27 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Tuple = LayoutLMTokenizer
lowercase : List[str] = LayoutLMTokenizerFast
lowercase : List[str] = True
lowercase : str = True
def a_ ( self ):
super().setUp()
UpperCamelCase : Union[str, Any] = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = """UNwant\u00E9d,running"""
UpperCamelCase : Dict = """unwanted, running"""
return input_text, output_text
def a_ ( self ):
UpperCamelCase : int = self.tokenizer_class(self.vocab_file )
UpperCamelCase : Any = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [7, 4, 5, 10, 8, 9] )
def a_ ( self ):
pass
| 27 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCamelCase ( nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ):
super().__init__()
UpperCamelCase : int = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCamelCase : Optional[Any] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCamelCase : List[Any] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCamelCase : int = [1, 0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ):
UpperCamelCase : Dict = hidden_states
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCamelCase : str = self.transformer_index_for_condition[i]
UpperCamelCase : Any = self.transformers[transformer_index](
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCamelCase : List[str] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A : Dict = logging.get_logger(__name__)
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Tuple ,snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : int = original_name.split(""".""" )[0]
UpperCamelCase : Union[str, Any] = key.split(""".""" )
UpperCamelCase : Dict = int(key_list[key_list.index(snake_case_ ) - 2] )
UpperCamelCase : Optional[Any] = int(key_list[key_list.index(snake_case_ ) - 1] )
UpperCamelCase : List[str] = orig_block_num - offset
UpperCamelCase : Tuple = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' ,f'block.{new_block_num}.{layer_num}.{new_name}' )
return key
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : List[Any] = OrderedDict()
UpperCamelCase , UpperCamelCase : Optional[Any] = 0, 0
for key, value in state_dict.items():
if key.startswith("""network""" ):
UpperCamelCase : Tuple = key.replace("""network""" ,"""poolformer.encoder""" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("""bias""" ) and "patch_embed" not in key:
patch_emb_offset += 1
UpperCamelCase : List[str] = key[: key.find("""proj""" )]
UpperCamelCase : List[str] = key.replace(snake_case_ ,f'patch_embeddings.{total_embed_found}.' )
UpperCamelCase : Tuple = key.replace("""proj""" ,"""projection""" )
if key.endswith("""bias""" ):
total_embed_found += 1
if "patch_embeddings" in key:
UpperCamelCase : str = """poolformer.encoder.""" + key
if "mlp.fc1" in key:
UpperCamelCase : Union[str, Any] = replace_key_with_offset(snake_case_ ,snake_case_ ,"""mlp.fc1""" ,"""output.conv1""" )
if "mlp.fc2" in key:
UpperCamelCase : Union[str, Any] = replace_key_with_offset(snake_case_ ,snake_case_ ,"""mlp.fc2""" ,"""output.conv2""" )
if "norm1" in key:
UpperCamelCase : Tuple = replace_key_with_offset(snake_case_ ,snake_case_ ,"""norm1""" ,"""before_norm""" )
if "norm2" in key:
UpperCamelCase : Any = replace_key_with_offset(snake_case_ ,snake_case_ ,"""norm2""" ,"""after_norm""" )
if "layer_scale_1" in key:
UpperCamelCase : int = replace_key_with_offset(snake_case_ ,snake_case_ ,"""layer_scale_1""" ,"""layer_scale_1""" )
if "layer_scale_2" in key:
UpperCamelCase : Any = replace_key_with_offset(snake_case_ ,snake_case_ ,"""layer_scale_2""" ,"""layer_scale_2""" )
if "head" in key:
UpperCamelCase : Dict = key.replace("""head""" ,"""classifier""" )
UpperCamelCase : Any = value
return new_state_dict
def A_ ( ):
'''simple docstring'''
UpperCamelCase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCamelCase : Optional[Any] = Image.open(requests.get(snake_case_ ,stream=snake_case_ ).raw )
return image
@torch.no_grad()
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : List[Any] ,snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : str = PoolFormerConfig()
# set attributes based on model_name
UpperCamelCase : str = """huggingface/label-files"""
UpperCamelCase : Optional[Any] = model_name[-3:]
UpperCamelCase : Optional[int] = 1_0_0_0
UpperCamelCase : List[str] = """imagenet-1k-id2label.json"""
UpperCamelCase : Any = (1, 1_0_0_0)
# set config attributes
UpperCamelCase : int = json.load(open(hf_hub_download(snake_case_ ,snake_case_ ,repo_type="""dataset""" ) ,"""r""" ) )
UpperCamelCase : Union[str, Any] = {int(snake_case_ ): v for k, v in idalabel.items()}
UpperCamelCase : Optional[Any] = idalabel
UpperCamelCase : List[str] = {v: k for k, v in idalabel.items()}
if size == "s12":
UpperCamelCase : Dict = [2, 2, 6, 2]
UpperCamelCase : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2]
UpperCamelCase : Optional[Any] = 4.0
UpperCamelCase : int = 0.9
elif size == "s24":
UpperCamelCase : Optional[int] = [4, 4, 1_2, 4]
UpperCamelCase : Any = [6_4, 1_2_8, 3_2_0, 5_1_2]
UpperCamelCase : Optional[Any] = 4.0
UpperCamelCase : Tuple = 0.9
elif size == "s36":
UpperCamelCase : Union[str, Any] = [6, 6, 1_8, 6]
UpperCamelCase : Any = [6_4, 1_2_8, 3_2_0, 5_1_2]
UpperCamelCase : List[str] = 4.0
UpperCamelCase : Optional[int] = 1e-6
UpperCamelCase : List[str] = 0.9
elif size == "m36":
UpperCamelCase : Tuple = [6, 6, 1_8, 6]
UpperCamelCase : List[str] = [9_6, 1_9_2, 3_8_4, 7_6_8]
UpperCamelCase : int = 4.0
UpperCamelCase : Dict = 1e-6
UpperCamelCase : Optional[int] = 0.95
elif size == "m48":
UpperCamelCase : Any = [8, 8, 2_4, 8]
UpperCamelCase : str = [9_6, 1_9_2, 3_8_4, 7_6_8]
UpperCamelCase : List[Any] = 4.0
UpperCamelCase : int = 1e-6
UpperCamelCase : List[str] = 0.95
else:
raise ValueError(f'Size {size} not supported' )
# load image processor
UpperCamelCase : Union[str, Any] = PoolFormerImageProcessor(crop_pct=snake_case_ )
# Prepare image
UpperCamelCase : int = prepare_img()
UpperCamelCase : Tuple = image_processor(images=snake_case_ ,return_tensors="""pt""" ).pixel_values
logger.info(f'Converting model {model_name}...' )
# load original state dict
UpperCamelCase : List[str] = torch.load(snake_case_ ,map_location=torch.device("""cpu""" ) )
# rename keys
UpperCamelCase : str = rename_keys(snake_case_ )
# create HuggingFace model and load state dict
UpperCamelCase : List[Any] = PoolFormerForImageClassification(snake_case_ )
model.load_state_dict(snake_case_ )
model.eval()
# Define image processor
UpperCamelCase : Union[str, Any] = PoolFormerImageProcessor(crop_pct=snake_case_ )
UpperCamelCase : List[Any] = image_processor(images=prepare_img() ,return_tensors="""pt""" ).pixel_values
# forward pass
UpperCamelCase : Optional[int] = model(snake_case_ )
UpperCamelCase : Union[str, Any] = outputs.logits
# define expected logit slices for different models
if size == "s12":
UpperCamelCase : List[Any] = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
UpperCamelCase : Any = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
UpperCamelCase : Dict = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
UpperCamelCase : Tuple = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
UpperCamelCase : Dict = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'Size {size} not supported' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,snake_case_ ,atol=1e-2 )
# finally, save model and image processor
logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
model.save_pretrained(snake_case_ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case_ )
if __name__ == "__main__":
__A : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''poolformer_s12''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
__A : Optional[int] = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 27 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : Optional[int] = {
'''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''',
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = 'mvp'
lowercase : Optional[Any] = ['past_key_values']
lowercase : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_0267 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=800 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Dict = max_position_embeddings
UpperCamelCase : Optional[int] = d_model
UpperCamelCase : Optional[Any] = encoder_ffn_dim
UpperCamelCase : Any = encoder_layers
UpperCamelCase : List[Any] = encoder_attention_heads
UpperCamelCase : Optional[Any] = decoder_ffn_dim
UpperCamelCase : Optional[int] = decoder_layers
UpperCamelCase : Dict = decoder_attention_heads
UpperCamelCase : List[str] = dropout
UpperCamelCase : List[str] = attention_dropout
UpperCamelCase : List[Any] = activation_dropout
UpperCamelCase : Dict = activation_function
UpperCamelCase : List[str] = init_std
UpperCamelCase : int = encoder_layerdrop
UpperCamelCase : Dict = decoder_layerdrop
UpperCamelCase : Any = classifier_dropout
UpperCamelCase : Tuple = use_cache
UpperCamelCase : Dict = encoder_layers
UpperCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCamelCase : Optional[Any] = use_prompt
UpperCamelCase : Any = prompt_length
UpperCamelCase : List[Any] = prompt_mid_dim
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = self.bos_token_id
warnings.warn(
f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
"""The config can simply be saved and uploaded again to be fixed.""" )
| 27 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__A : Union[str, Any] = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = ['''YolosFeatureExtractor''']
__A : str = ['''YolosImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''YolosForObjectDetection''',
'''YolosModel''',
'''YolosPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A : Optional[Any] = 16
__A : str = 32
def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ):
'''simple docstring'''
UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
UpperCamelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" )
def tokenize_function(snake_case_ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase : Optional[Any] = datasets.map(
snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase : Optional[Any] = 1_6
elif accelerator.mixed_precision != "no":
UpperCamelCase : Any = 8
else:
UpperCamelCase : Optional[Any] = None
return tokenizer.pad(
snake_case_ ,padding="""longest""" ,max_length=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_tensors="""pt""" ,)
# Instantiate dataloaders.
UpperCamelCase : str = DataLoader(
tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
UpperCamelCase : Dict = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A : int = mocked_dataloaders # noqa: F811
def A_ ( snake_case_ : Tuple ,snake_case_ : Dict ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case_ ) == "1":
UpperCamelCase : Union[str, Any] = 2
# New Code #
UpperCamelCase : Dict = int(args.gradient_accumulation_steps )
UpperCamelCase : List[Any] = int(args.local_sgd_steps )
# Initialize accelerator
UpperCamelCase : str = Accelerator(
cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case_ )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase : Union[str, Any] = config["""lr"""]
UpperCamelCase : int = int(config["""num_epochs"""] )
UpperCamelCase : int = int(config["""seed"""] )
UpperCamelCase : List[Any] = int(config["""batch_size"""] )
UpperCamelCase : Optional[int] = evaluate.load("""glue""" ,"""mrpc""" )
set_seed(snake_case_ )
UpperCamelCase , UpperCamelCase : Dict = get_dataloaders(snake_case_ ,snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase : Tuple = model.to(accelerator.device )
# Instantiate optimizer
UpperCamelCase : List[Any] = AdamW(params=model.parameters() ,lr=snake_case_ )
# Instantiate scheduler
UpperCamelCase : str = get_linear_schedule_with_warmup(
optimizer=snake_case_ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(snake_case_ ) * num_epochs) ,)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
with LocalSGD(
accelerator=snake_case_ ,model=snake_case_ ,local_sgd_steps=snake_case_ ,enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(snake_case_ ):
UpperCamelCase : Optional[Any] = model(**snake_case_ )
UpperCamelCase : Optional[int] = output.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCamelCase : Any = model(**snake_case_ )
UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 )
UpperCamelCase , UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=snake_case_ ,references=snake_case_ ,)
UpperCamelCase : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' ,snake_case_ )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" ,type=snake_case_ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,)
parser.add_argument(
"""--local_sgd_steps""" ,type=snake_case_ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" )
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
UpperCamelCase : Dict = parser.parse_args()
UpperCamelCase : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(snake_case_ ,snake_case_ )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import gcd
def A_ ( snake_case_ : int ,snake_case_ : int = 2 ,snake_case_ : int = 1 ,snake_case_ : int = 3 ,):
'''simple docstring'''
# A value less than 2 can cause an infinite loop in the algorithm.
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(snake_case_ : int ,snake_case_ : int ,snake_case_ : int ) -> int:
return (pow(snake_case_ ,2 ) + step) % modulus
for _ in range(snake_case_ ):
# These track the position within the cycle detection logic.
UpperCamelCase : int = seed
UpperCamelCase : Optional[int] = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
UpperCamelCase : List[Any] = rand_fn(snake_case_ ,snake_case_ ,snake_case_ )
UpperCamelCase : Union[str, Any] = rand_fn(snake_case_ ,snake_case_ ,snake_case_ )
UpperCamelCase : List[Any] = rand_fn(snake_case_ ,snake_case_ ,snake_case_ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
UpperCamelCase : Tuple = gcd(hare - tortoise ,snake_case_ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
UpperCamelCase : Dict = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
__A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'''num''',
type=int,
help='''The value to find a divisor of''',
)
parser.add_argument(
'''--attempts''',
type=int,
default=3,
help='''The number of attempts before giving up''',
)
__A : Optional[int] = parser.parse_args()
__A : str = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F'''{args.num} is probably prime''')
else:
__A : List[str] = args.num // divisor
print(F'''{args.num} = {divisor} * {quotient}''')
| 27 |
"""simple docstring"""
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
__A : Any = logging.get_logger(__name__)
__A : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__A : Optional[Any] = {
'''vocab_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'''
},
'''merges_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'''
},
}
__A : Any = {'''allegro/herbert-base-cased''': 514}
__A : Optional[Any] = {}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Dict = VOCAB_FILES_NAMES
lowercase : Any = PRETRAINED_VOCAB_FILES_MAP
lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Union[str, Any] = HerbertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="</s>" , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = [self.cls_token_id]
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Tuple = [self.sep_token_id]
UpperCamelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
__A : str = 2
class lowerCamelCase :
def __init__( self , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_=None , ):
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = bos, unk, pad, eos
UpperCamelCase : Dict = []
UpperCamelCase : List[str] = []
UpperCamelCase : Dict = {}
UpperCamelCase : List[Any] = self.add_symbol(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.add_symbol(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.add_symbol(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.add_symbol(SCREAMING_SNAKE_CASE_ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = len(self.symbols )
def __eq__( self , SCREAMING_SNAKE_CASE_ ):
return self.indices == other.indices
def __getitem__( self , SCREAMING_SNAKE_CASE_ ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self ):
return len(self.symbols )
def __contains__( self , SCREAMING_SNAKE_CASE_ ):
return sym in self.indices
@classmethod
def a_ ( cls , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = cls()
d.add_from_file(SCREAMING_SNAKE_CASE_ )
return d
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=False ):
if word in self.indices and not overwrite:
UpperCamelCase : str = self.indices[word]
UpperCamelCase : List[Any] = self.count[idx] + n
return idx
else:
UpperCamelCase : Optional[int] = len(self.symbols )
UpperCamelCase : List[Any] = idx
self.symbols.append(SCREAMING_SNAKE_CASE_ )
self.count.append(SCREAMING_SNAKE_CASE_ )
return idx
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return 0
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
try:
with open(SCREAMING_SNAKE_CASE_ , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(SCREAMING_SNAKE_CASE_ ) )
return
UpperCamelCase : Union[str, Any] = f.readlines()
UpperCamelCase : str = self._load_meta(SCREAMING_SNAKE_CASE_ )
for line in lines[indices_start_line:]:
try:
UpperCamelCase , UpperCamelCase : Tuple = line.rstrip().rsplit(""" """ , 1 )
if field == "#fairseq:overwrite":
UpperCamelCase : Any = True
UpperCamelCase , UpperCamelCase : Union[str, Any] = line.rsplit(""" """ , 1 )
else:
UpperCamelCase : Optional[int] = False
UpperCamelCase : Any = int(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = line
if word in self and not overwrite:
raise RuntimeError(
"""Duplicate word found when loading Dictionary: '{}'. """
"""Duplicate words can overwrite earlier ones by adding the """
"""#fairseq:overwrite flag at the end of the corresponding row """
"""in the dictionary file. If using the Camembert model, please """
"""download an updated copy of the model file.""".format(SCREAMING_SNAKE_CASE_ ) )
self.add_symbol(SCREAMING_SNAKE_CASE_ , n=SCREAMING_SNAKE_CASE_ , overwrite=SCREAMING_SNAKE_CASE_ )
except ValueError:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
UpperCamelCase : Dict = dict((re.sub(R"""@@$""" ,"""""" ,snake_case_ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" ,"""</w>""" ,snake_case_ ), v) for k, v in d.items() )
UpperCamelCase : str = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[f'{k}</w>']
UpperCamelCase : Optional[int] = d[k] # restore
return da
def A_ ( snake_case_ : Any ,snake_case_ : int ):
'''simple docstring'''
# prep
if not os.path.exists(snake_case_ ):
raise ValueError(f'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(snake_case_ ,exist_ok=snake_case_ )
print(f'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
UpperCamelCase : Any = os.path.join(snake_case_ ,"""checkpoint.pt""" )
if not os.path.isfile(snake_case_ ):
raise ValueError(f'path to the file {checkpoint_file} does not exist!' )
UpperCamelCase : List[str] = torch.load(snake_case_ ,map_location="""cpu""" )
UpperCamelCase : List[str] = chkpt["""cfg"""]["""model"""]
# dicts
UpperCamelCase : Optional[Any] = os.path.join(snake_case_ ,"""dict.txt""" )
if not os.path.isfile(snake_case_ ):
raise ValueError(f'path to the file {dict_file} does not exist!' )
UpperCamelCase : Optional[Any] = Dictionary.load(snake_case_ )
UpperCamelCase : Union[str, Any] = rewrite_dict_keys(src_dict.indices )
UpperCamelCase : Tuple = len(snake_case_ )
UpperCamelCase : str = os.path.join(snake_case_ ,VOCAB_FILES_NAMES["""vocab_file"""] )
print(f'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_ ,ensure_ascii=snake_case_ ,indent=snake_case_ ) )
# merges_file (bpecodes)
UpperCamelCase : int = os.path.join(snake_case_ ,"""bpecodes""" )
if not os.path.isfile(snake_case_ ):
raise ValueError(f'path to the file {bpecodes_file} does not exist!' )
UpperCamelCase : Any = os.path.join(snake_case_ ,VOCAB_FILES_NAMES["""merges_file"""] )
shutil.copyfile(snake_case_ ,snake_case_ )
# model config
UpperCamelCase : Union[str, Any] = os.path.join(snake_case_ ,"""config.json""" )
UpperCamelCase : str = {
"""activation_dropout""": args["""activation_dropout"""],
"""architectures""": ["""BioGptForCausalLM"""],
"""attention_probs_dropout_prob""": args["""attention_dropout"""],
"""bos_token_id""": 0,
"""eos_token_id""": 2,
"""hidden_act""": args["""activation_fn"""],
"""hidden_dropout_prob""": args["""dropout"""],
"""hidden_size""": args["""decoder_embed_dim"""],
"""initializer_range""": 0.02,
"""intermediate_size""": args["""decoder_ffn_embed_dim"""],
"""layer_norm_eps""": 1e-12,
"""layerdrop""": args["""decoder_layerdrop"""],
"""max_position_embeddings""": args["""max_target_positions"""],
"""model_type""": """biogpt""",
"""num_attention_heads""": args["""decoder_attention_heads"""],
"""num_hidden_layers""": args["""decoder_layers"""],
"""pad_token_id""": 1,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_decoder_input_output_embed"""],
"""vocab_size""": src_vocab_size,
}
# good hparam defaults to start with
print(f'Generating {biogpt_model_config_file}' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_ ,ensure_ascii=snake_case_ ,indent=snake_case_ ) )
# tokenizer config
UpperCamelCase : Union[str, Any] = os.path.join(snake_case_ ,snake_case_ )
UpperCamelCase : Tuple = {
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
"""model_max_length""": 1_0_2_4,
"""pad_token""": """<pad>""",
"""special_tokens_map_file""": None,
"""tokenizer_class""": """BioGptTokenizer""",
"""unk_token""": """<unk>""",
}
print(f'Generating {biogpt_tokenizer_config_file}' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_ ,ensure_ascii=snake_case_ ,indent=snake_case_ ) )
# model
UpperCamelCase : int = chkpt["""model"""]
# remove unneeded keys
UpperCamelCase : Any = [
"""decoder.version""",
]
for k in ignore_keys:
model_state_dict.pop(snake_case_ ,snake_case_ )
UpperCamelCase : Tuple = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith("""output_projection.weight""" ):
UpperCamelCase : List[Any] = model_state_dict.pop(snake_case_ )
else:
UpperCamelCase : Dict = model_state_dict.pop(snake_case_ )
UpperCamelCase : Dict = BioGptConfig.from_pretrained(snake_case_ )
UpperCamelCase : List[str] = BioGptForCausalLM(snake_case_ )
# check that it loads ok
model_new.load_state_dict(snake_case_ )
# save
UpperCamelCase : str = os.path.join(snake_case_ ,snake_case_ )
print(f'Generating {pytorch_weights_dump_path}' )
torch.save(snake_case_ ,snake_case_ )
print("""Conversion is done!""" )
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__A : List[str] = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 27 |
"""simple docstring"""
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ):
UpperCamelCase : Dict = tokenizer
UpperCamelCase : Optional[Any] = tokenizer.bos_token_id
UpperCamelCase : Any = dataset
UpperCamelCase : List[str] = seq_length
UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self ):
UpperCamelCase : Dict = iter(self.dataset )
UpperCamelCase : Union[str, Any] = True
while more_examples:
UpperCamelCase , UpperCamelCase : Tuple = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
UpperCamelCase : Dict = False
break
UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""]
UpperCamelCase : str = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ):
UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length]
if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length:
yield torch.tensor(SCREAMING_SNAKE_CASE_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Dict = {"""streaming""": True}
UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ )
UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length )
UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size )
return eval_dataloader
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
model.eval()
UpperCamelCase : Dict = []
for step, batch in enumerate(snake_case_ ):
with torch.no_grad():
UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ )
UpperCamelCase : Any = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(snake_case_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) )
try:
UpperCamelCase : Dict = torch.exp(snake_case_ )
except OverflowError:
UpperCamelCase : Optional[int] = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
__A : List[Any] = Accelerator()
# Parse configuration
__A : str = HfArgumentParser(EvaluationArguments)
__A : List[Any] = parser.parse_args()
set_seed(args.seed)
# Logging
__A : Any = logging.getLogger(__name__)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
# Load model and tokenizer
__A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
__A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
__A : int = create_dataloader(args)
# Prepare everything with our `accelerator`.
__A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('''Evaluating and saving model after training''')
__A , __A : Tuple = evaluate(args)
logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 27 | 1 |
"""simple docstring"""
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
__A : str = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''')
__A : Union[str, Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split()
__A : Dict = '''|'''.join(sys.argv[1:])
__A : int = re.compile(RF'''^({joined_dirs}).*?\.py$''')
__A : List[Any] = [x for x in modified_files if regex.match(x)]
print(''' '''.join(relevant_modified_files), end='''''')
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Any = '''src/transformers'''
# Pattern that looks at the indentation in a line.
__A : Tuple = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : List[Any] = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : List[Any] = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : Any = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : str ,snake_case_ : str="" ,snake_case_ : Any=None ,snake_case_ : Union[str, Any]=None ):
'''simple docstring'''
UpperCamelCase : List[Any] = 0
UpperCamelCase : Optional[int] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Tuple = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : Tuple = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Dict = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Optional[Any] = [lines[index + 1]]
index += 1
else:
UpperCamelCase : str = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
def _inner(snake_case_ : List[str] ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Optional[int] ):
return x
if key is None:
UpperCamelCase : List[str] = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[str] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : Tuple = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : int = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Union[str, Any] = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : Any ):
UpperCamelCase : Union[str, Any] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : int = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : str = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : Optional[int] = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : int = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Tuple = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : List[Any] = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : List[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : Optional[int] = keys[:-1]
UpperCamelCase : Union[str, Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : Any = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int=True ):
'''simple docstring'''
with open(snake_case_ ,encoding="""utf-8""" ) as f:
UpperCamelCase : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : int = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Dict = main_blocks[block_idx]
UpperCamelCase : Dict = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : List[str] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : Optional[Any] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Optional[Any] = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Any = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : List[Any] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Optional[Any] = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Optional[Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Any = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : Union[str, Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[str] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Optional[int] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : List[Any] = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : str = batch_size
UpperCamelCase : int = seq_length
UpperCamelCase : Optional[Any] = is_training
UpperCamelCase : Any = use_input_lengths
UpperCamelCase : Tuple = use_token_type_ids
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = gelu_activation
UpperCamelCase : Dict = sinusoidal_embeddings
UpperCamelCase : Optional[int] = causal
UpperCamelCase : List[Any] = asm
UpperCamelCase : int = n_langs
UpperCamelCase : Optional[Any] = vocab_size
UpperCamelCase : str = n_special
UpperCamelCase : Dict = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : Any = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : str = num_labels
UpperCamelCase : Union[str, Any] = num_choices
UpperCamelCase : List[str] = summary_type
UpperCamelCase : int = use_proj
UpperCamelCase : List[str] = scope
UpperCamelCase : Dict = bos_token_id
def a_ ( self ):
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Union[str, Any] = None
if self.use_input_lengths:
UpperCamelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCamelCase : int = None
UpperCamelCase : Dict = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float()
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : List[str] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , )
((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = self.num_labels
UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = self.num_choices
UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : int = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : List[Any] = config_and_inputs
UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase : List[Any] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase : Optional[Any] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCamelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def a_ ( self ):
UpperCamelCase : List[Any] = XLMModelTester(self )
UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : int = min_length + idx + 1
UpperCamelCase : Tuple = min_length + idx + 1
UpperCamelCase : Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : List[str] = min_length + idx + 1
UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , )
pass
@slow
def a_ ( self ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president
UpperCamelCase : List[Any] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : int ):
'''simple docstring'''
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 | 1 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class lowerCamelCase ( pl.LightningModule ):
def __init__( self , SCREAMING_SNAKE_CASE_ ):
super().__init__()
UpperCamelCase : int = model
UpperCamelCase : Any = 2
UpperCamelCase : Dict = nn.Linear(self.model.config.hidden_size , self.num_labels )
def a_ ( self ):
pass
def A_ ( snake_case_ : str ,snake_case_ : str ,snake_case_ : str ):
'''simple docstring'''
# load longformer model from model identifier
UpperCamelCase : Tuple = LongformerModel.from_pretrained(snake_case_ )
UpperCamelCase : Union[str, Any] = LightningModel(snake_case_ )
UpperCamelCase : Optional[int] = torch.load(snake_case_ ,map_location=torch.device("""cpu""" ) )
lightning_model.load_state_dict(ckpt["""state_dict"""] )
# init longformer question answering model
UpperCamelCase : Optional[Any] = LongformerForQuestionAnswering.from_pretrained(snake_case_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(snake_case_ )
print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' )
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--longformer_model''',
default=None,
type=str,
required=True,
help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''',
)
parser.add_argument(
'''--longformer_question_answering_ckpt_path''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch Lightning Checkpoint.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__A : List[str] = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 27 |
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
__A : Optional[Any] = logging.get_logger(__name__)
def A_ ( snake_case_ : np.ndarray ,snake_case_ : Union[int, Iterable[int]] ,snake_case_ : bool ,snake_case_ : int ):
'''simple docstring'''
def constraint_to_multiple_of(snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : List[str]=0 ,snake_case_ : Optional[Any]=None ):
UpperCamelCase : List[str] = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
UpperCamelCase : Optional[Any] = math.floor(val / multiple ) * multiple
if x < min_val:
UpperCamelCase : Dict = math.ceil(val / multiple ) * multiple
return x
UpperCamelCase : Any = (output_size, output_size) if isinstance(snake_case_ ,snake_case_ ) else output_size
UpperCamelCase , UpperCamelCase : int = get_image_size(snake_case_ )
UpperCamelCase , UpperCamelCase : Union[str, Any] = output_size
# determine new height and width
UpperCamelCase : List[str] = output_height / input_height
UpperCamelCase : List[str] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
UpperCamelCase : int = scale_width
else:
# fit height
UpperCamelCase : Optional[Any] = scale_height
UpperCamelCase : int = constraint_to_multiple_of(scale_height * input_height ,multiple=snake_case_ )
UpperCamelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width ,multiple=snake_case_ )
return (new_height, new_width)
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : str = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384}
UpperCamelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = do_resize
UpperCamelCase : Union[str, Any] = size
UpperCamelCase : Union[str, Any] = keep_aspect_ratio
UpperCamelCase : Any = ensure_multiple_of
UpperCamelCase : List[Any] = resample
UpperCamelCase : str = do_rescale
UpperCamelCase : Optional[Any] = rescale_factor
UpperCamelCase : List[str] = do_normalize
UpperCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
UpperCamelCase : Dict = get_resize_output_image_size(
SCREAMING_SNAKE_CASE_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=SCREAMING_SNAKE_CASE_ , multiple=SCREAMING_SNAKE_CASE_ , )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase : List[Any] = size if size is not None else self.size
UpperCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
UpperCamelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
UpperCamelCase : Tuple = resample if resample is not None else self.resample
UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean
UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std
UpperCamelCase : str = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
UpperCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
UpperCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
UpperCamelCase : int = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
UpperCamelCase : List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Union[str, Any] = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : str = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = target_sizes.numpy()
UpperCamelCase : Dict = []
for idx in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCamelCase : List[Any] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : List[Any] = logits.argmax(dim=1 )
UpperCamelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 27 | 1 |
"""simple docstring"""
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
__A : List[Any] = '''base_with_context'''
def A_ ( snake_case_ : int ,snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) )
UpperCamelCase : Optional[int] = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=snake_case_ )
for lyr_num, lyr in enumerate(model.encoders ):
UpperCamelCase : Any = weights[f'layers_{lyr_num}']
UpperCamelCase : Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) )
UpperCamelCase : str = ly_weight["""attention"""]
UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
UpperCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
UpperCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
UpperCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
UpperCamelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) )
return model
def A_ ( snake_case_ : Tuple ,snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) )
UpperCamelCase : int = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=snake_case_ )
for lyr_num, lyr in enumerate(model.encoders ):
UpperCamelCase : Any = weights[f'layers_{lyr_num}']
UpperCamelCase : Optional[Any] = ly_weight["""attention"""]
UpperCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
UpperCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
UpperCamelCase : Tuple = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) )
UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
UpperCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
UpperCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
UpperCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) )
return model
def A_ ( snake_case_ : int ,snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) )
UpperCamelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) )
UpperCamelCase : List[str] = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=snake_case_ )
UpperCamelCase : List[Any] = nn.Parameter(
torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
UpperCamelCase : Union[str, Any] = weights[f'layers_{lyr_num}']
UpperCamelCase : int = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) )
UpperCamelCase : int = nn.Parameter(
torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) )
UpperCamelCase : Union[str, Any] = ly_weight["""self_attention"""]
UpperCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
UpperCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
UpperCamelCase : List[str] = ly_weight["""MultiHeadDotProductAttention_0"""]
UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
UpperCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
UpperCamelCase : Union[str, Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) )
UpperCamelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
UpperCamelCase : List[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) )
UpperCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
UpperCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
UpperCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) )
UpperCamelCase : Any = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) )
return model
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : str = checkpoints.load_tax_checkpoint(args.checkpoint_path )
UpperCamelCase : Optional[Any] = jnp.tree_util.tree_map(onp.array ,snake_case_ )
UpperCamelCase : Optional[Any] = [
"""from __gin__ import dynamic_registration""",
"""from music_spectrogram_diffusion.models.diffusion import diffusion_utils""",
"""diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""",
"""diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""",
]
UpperCamelCase : Optional[Any] = os.path.join(args.checkpoint_path ,"""..""" ,"""config.gin""" )
UpperCamelCase : Dict = inference.parse_training_gin_file(snake_case_ ,snake_case_ )
UpperCamelCase : Optional[Any] = inference.InferenceModel(args.checkpoint_path ,snake_case_ )
UpperCamelCase : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ,variance_type="""fixed_large""" )
UpperCamelCase : int = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["""inputs"""] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="""gated-gelu""" ,)
UpperCamelCase : str = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length["""targets_context"""] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="""gated-gelu""" ,)
UpperCamelCase : Dict = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length["""targets_context"""] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,)
UpperCamelCase : str = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] ,snake_case_ )
UpperCamelCase : Optional[Any] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] ,snake_case_ )
UpperCamelCase : Union[str, Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] ,snake_case_ )
UpperCamelCase : List[str] = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" )
UpperCamelCase : List[Any] = SpectrogramDiffusionPipeline(
notes_encoder=snake_case_ ,continuous_encoder=snake_case_ ,decoder=snake_case_ ,scheduler=snake_case_ ,melgan=snake_case_ ,)
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument(
'''--checkpoint_path''',
default=F'''{MODEL}/checkpoint_500000''',
type=str,
required=False,
help='''Path to the original jax model checkpoint.''',
)
__A : Optional[Any] = parser.parse_args()
main(args)
| 27 |
"""simple docstring"""
from collections.abc import Callable
def A_ ( snake_case_ : Callable[[float], float] ,snake_case_ : float ,snake_case_ : float ):
'''simple docstring'''
UpperCamelCase : float = a
UpperCamelCase : float = b
if function(snake_case_ ) == 0: # one of the a or b is a root for the function
return a
elif function(snake_case_ ) == 0:
return b
elif (
function(snake_case_ ) * function(snake_case_ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
UpperCamelCase : float = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(snake_case_ ) == 0:
return mid
elif function(snake_case_ ) * function(snake_case_ ) < 0:
UpperCamelCase : Dict = mid
else:
UpperCamelCase : List[str] = mid
UpperCamelCase : Tuple = start + (end - start) / 2.0
return mid
def A_ ( snake_case_ : float ):
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 27 | 1 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase ( _UpperCAmelCase ):
def a_ ( self ):
UpperCamelCase : Optional[int] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """embed_dim""" ) )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """num_heads""" ) )
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=[16, 48, 96] , SCREAMING_SNAKE_CASE_=[1, 3, 6] , SCREAMING_SNAKE_CASE_=[1, 2, 10] , SCREAMING_SNAKE_CASE_=[7, 3, 3] , SCREAMING_SNAKE_CASE_=[4, 2, 2] , SCREAMING_SNAKE_CASE_=[2, 1, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 2] , SCREAMING_SNAKE_CASE_=[False, False, True] , SCREAMING_SNAKE_CASE_=[0.0, 0.0, 0.0] , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , ):
UpperCamelCase : Optional[Any] = parent
UpperCamelCase : List[str] = batch_size
UpperCamelCase : Any = image_size
UpperCamelCase : str = patch_sizes
UpperCamelCase : int = patch_stride
UpperCamelCase : int = patch_padding
UpperCamelCase : Union[str, Any] = is_training
UpperCamelCase : Any = use_labels
UpperCamelCase : Optional[int] = num_labels
UpperCamelCase : Optional[int] = num_channels
UpperCamelCase : str = embed_dim
UpperCamelCase : Union[str, Any] = num_heads
UpperCamelCase : Dict = stride_kv
UpperCamelCase : Optional[Any] = depth
UpperCamelCase : List[str] = cls_token
UpperCamelCase : List[str] = attention_drop_rate
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : Tuple = layer_norm_eps
def a_ ( self ):
UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : Optional[int] = None
if self.use_labels:
# create a random int32 tensor of given shape
UpperCamelCase : str = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase : int = self.get_config()
return config, pixel_values, labels
def a_ ( self ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = TFCvtModel(config=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = (self.image_size, self.image_size)
UpperCamelCase , UpperCamelCase : Optional[Any] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
UpperCamelCase : Optional[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
UpperCamelCase : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = self.num_labels
UpperCamelCase : str = TFCvtForImageClassification(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self ):
UpperCamelCase : List[str] = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = config_and_inputs
UpperCamelCase : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : str = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
lowercase : Dict = (
{'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification}
if is_tf_available()
else {}
)
lowercase : Union[str, Any] = False
lowercase : Any = False
lowercase : str = False
lowercase : str = False
lowercase : Any = False
def a_ ( self ):
UpperCamelCase : Dict = TFCvtModelTester(self )
UpperCamelCase : List[str] = TFCvtConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def a_ ( self ):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="""Cvt does not output attentions""" )
def a_ ( self ):
pass
@unittest.skip(reason="""Cvt does not use inputs_embeds""" )
def a_ ( self ):
pass
@unittest.skip(reason="""Cvt does not support input and output embeddings""" )
def a_ ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
def a_ ( self ):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def a_ ( self ):
super().test_keras_fit()
@unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" )
def a_ ( self ):
UpperCamelCase : str = tf.keras.mixed_precision.Policy("""mixed_float16""" )
tf.keras.mixed_precision.set_global_policy(SCREAMING_SNAKE_CASE_ )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy("""float32""" )
def a_ ( self ):
UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : Any = [*signature.parameters.keys()]
UpperCamelCase : Union[str, Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : List[Any] = outputs.hidden_states
UpperCamelCase : int = len(self.model_tester.depth )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase : List[Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def a_ ( self ):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[int] = TFCvtModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def a_ ( self ):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def a_ ( self ):
UpperCamelCase : Union[str, Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
UpperCamelCase : str = self.default_image_processor
UpperCamelCase : List[Any] = prepare_img()
UpperCamelCase : List[str] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""" )
# forward pass
UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
UpperCamelCase : Optional[int] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = tf.constant([0.9285, 0.9015, -0.3150] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 27 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def a_ ( self ):
UpperCamelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCamelCase : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCamelCase : Dict = """xvjiarui/stable-diffusion-2-inpainting"""
UpperCamelCase , UpperCamelCase : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCamelCase : List[str] = jax.random.PRNGKey(0 )
UpperCamelCase : Tuple = 50
UpperCamelCase : Dict = jax.device_count()
UpperCamelCase : Optional[int] = num_samples * [prompt]
UpperCamelCase : int = num_samples * [init_image]
UpperCamelCase : List[Any] = num_samples * [mask_image]
UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# shard inputs and rng
UpperCamelCase : Optional[int] = replicate(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() )
UpperCamelCase : str = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipeline(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 512 , 512 , 3 )
UpperCamelCase : List[Any] = images[0, 253:256, 253:256, -1]
UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
UpperCamelCase : Dict = jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 27 | 1 |
"""simple docstring"""
from typing import Any
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = data
UpperCamelCase : Optional[Any] = None
def __repr__( self ):
return f'Node({self.data})'
class lowerCamelCase :
def __init__( self ):
UpperCamelCase : Dict = None
def __iter__( self ):
UpperCamelCase : int = self.head
while node:
yield node.data
UpperCamelCase : Union[str, Any] = node.next
def __len__( self ):
return sum(1 for _ in self )
def __repr__( self ):
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
UpperCamelCase : List[Any] = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = current.next
UpperCamelCase : Optional[Any] = data
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index <= len(self ):
raise IndexError("""list index out of range""" )
UpperCamelCase : Optional[Any] = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
UpperCamelCase : Dict = new_node
elif index == 0:
UpperCamelCase : Any = self.head # link new_node to head
UpperCamelCase : Any = new_node
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : str = temp.next
UpperCamelCase : Any = temp.next
UpperCamelCase : Optional[Any] = new_node
def a_ ( self ): # print every node data
print(self )
def a_ ( self ):
return self.delete_nth(0 )
def a_ ( self ): # delete from tail
return self.delete_nth(len(self ) - 1 )
def a_ ( self , SCREAMING_SNAKE_CASE_ = 0 ):
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("""List index out of range.""" )
UpperCamelCase : Union[str, Any] = self.head # default first node
if index == 0:
UpperCamelCase : Optional[Any] = self.head.next
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : int = temp.next
UpperCamelCase : Optional[Any] = temp.next
UpperCamelCase : Dict = temp.next.next
return delete_node.data
def a_ ( self ):
return self.head is None
def a_ ( self ):
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Union[str, Any] = self.head
while current:
# Store the current node's next node.
UpperCamelCase : Optional[int] = current.next
# Make the current node's next point backwards
UpperCamelCase : Optional[Any] = prev
# Make the previous node be the current node
UpperCamelCase : int = current
# Make the current node the next node (to progress iteration)
UpperCamelCase : Optional[int] = next_node
# Return prev in order to put the head at the end
UpperCamelCase : Optional[int] = prev
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case_ ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(snake_case_ ) == i
linked_list.insert_nth(snake_case_ ,i + 1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 ,1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(snake_case_ ) == 9
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
UpperCamelCase : Optional[Any] = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8 ,1 ) )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
"""dlrow olleH""",
7,
5_5_5_5,
0,
-192.55555,
"""Hello, world!""",
77.9,
Node(1_0 ),
None,
None,
12.20,
]
UpperCamelCase : List[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case_ )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
UpperCamelCase : Dict = linked_list.delete_head()
assert result == -9
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
UpperCamelCase : int = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
UpperCamelCase : Optional[Any] = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("""Hello again, world!""" ) )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case_ )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case_ )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ):
'''simple docstring'''
from doctest import testmod
testmod()
UpperCamelCase : List[Any] = LinkedList()
linked_list.insert_head(input("""Inserting 1st at head """ ).strip() )
linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() )
linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nDelete head""" )
linked_list.delete_head()
print("""Delete tail""" )
linked_list.delete_tail()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nReverse linked list""" )
linked_list.reverse()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nString representation of linked list:""" )
print(snake_case_ )
print("""\nReading/changing Node data using indexing:""" )
print(f'Element at Position 1: {linked_list[1]}' )
UpperCamelCase : List[Any] = input("""Enter New Value: """ ).strip()
print("""New list:""" )
print(snake_case_ )
print(f'length of linked_list is : {len(snake_case_ )}' )
if __name__ == "__main__":
main()
| 27 |
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def A_ ( snake_case_ : int ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def A_ ( ):
'''simple docstring'''
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
UpperCamelCase : Optional[Any] = [1, 2, 3]
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=2 )
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" ,[2, -1] )
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : List[Any] = [1, 2]
UpperCamelCase : List[Any] = {"""a""": 1, """b""": 2}
UpperCamelCase : List[str] = {"""a""": [1, 2], """b""": [3, 4]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2}
UpperCamelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
UpperCamelCase : Optional[int] = [2, 3]
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3}
UpperCamelCase : Any = {"""a""": [2, 3], """b""": [4, 5]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 2}, """b""": 3}
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
| 27 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Optional[Any] = {
'''configuration_informer''': [
'''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = [
'''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InformerForPrediction''',
'''InformerModel''',
'''InformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : str = batch_size
UpperCamelCase : int = seq_length
UpperCamelCase : Optional[Any] = is_training
UpperCamelCase : Any = use_input_lengths
UpperCamelCase : Tuple = use_token_type_ids
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = gelu_activation
UpperCamelCase : Dict = sinusoidal_embeddings
UpperCamelCase : Optional[int] = causal
UpperCamelCase : List[Any] = asm
UpperCamelCase : int = n_langs
UpperCamelCase : Optional[Any] = vocab_size
UpperCamelCase : str = n_special
UpperCamelCase : Dict = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : Any = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : str = num_labels
UpperCamelCase : Union[str, Any] = num_choices
UpperCamelCase : List[str] = summary_type
UpperCamelCase : int = use_proj
UpperCamelCase : List[str] = scope
UpperCamelCase : Dict = bos_token_id
def a_ ( self ):
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Union[str, Any] = None
if self.use_input_lengths:
UpperCamelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCamelCase : int = None
UpperCamelCase : Dict = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float()
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : List[str] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , )
((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = self.num_labels
UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = self.num_choices
UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : int = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : List[Any] = config_and_inputs
UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase : List[Any] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase : Optional[Any] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCamelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def a_ ( self ):
UpperCamelCase : List[Any] = XLMModelTester(self )
UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : int = min_length + idx + 1
UpperCamelCase : Tuple = min_length + idx + 1
UpperCamelCase : Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : List[str] = min_length + idx + 1
UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , )
pass
@slow
def a_ ( self ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president
UpperCamelCase : List[Any] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
"""simple docstring"""
from math import ceil
def A_ ( snake_case_ : int = 1_0_0_1 ):
'''simple docstring'''
UpperCamelCase : str = 1
for i in range(1 ,int(ceil(n / 2.0 ) ) ):
UpperCamelCase : Optional[Any] = 2 * i + 1
UpperCamelCase : List[str] = 2 * i
UpperCamelCase : Optional[int] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__A : Dict = int(sys.argv[1])
print(solution(n))
except ValueError:
print('''Invalid entry - please enter a number''')
| 27 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__A : int = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 | 1 |
"""simple docstring"""
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Tuple = tmp_path / """file.csv"""
UpperCamelCase : Union[str, Any] = textwrap.dedent(
"""\
header1,header2
1,2
10,20
""" )
with open(snake_case_ ,"""w""" ) as f:
f.write(snake_case_ )
return str(snake_case_ )
@pytest.fixture
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = tmp_path / """malformed_file.csv"""
UpperCamelCase : int = textwrap.dedent(
"""\
header1,header2
1,2
10,20,
""" )
with open(snake_case_ ,"""w""" ) as f:
f.write(snake_case_ )
return str(snake_case_ )
@pytest.fixture
def A_ ( snake_case_ : List[str] ,snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : Tuple = tmp_path / """csv_with_image.csv"""
UpperCamelCase : List[str] = textwrap.dedent(
f'\\n image\n {image_file}\n ' )
with open(snake_case_ ,"""w""" ) as f:
f.write(snake_case_ )
return str(snake_case_ )
@pytest.fixture
def A_ ( snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : List[Any] = tmp_path / """csv_with_label.csv"""
UpperCamelCase : Optional[Any] = textwrap.dedent(
"""\
label
good
bad
good
""" )
with open(snake_case_ ,"""w""" ) as f:
f.write(snake_case_ )
return str(snake_case_ )
@pytest.fixture
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : List[Any] = tmp_path / """csv_with_int_list.csv"""
UpperCamelCase : int = textwrap.dedent(
"""\
int_list
1 2 3
4 5 6
7 8 9
""" )
with open(snake_case_ ,"""w""" ) as f:
f.write(snake_case_ )
return str(snake_case_ )
def A_ ( snake_case_ : Dict ,snake_case_ : Optional[Any] ,snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Tuple = Csv()
UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(snake_case_ ,match="""Error tokenizing data""" ):
for _ in generator:
pass
assert any(
record.levelname == """ERROR"""
and """Failed to read file""" in record.message
and os.path.basename(snake_case_ ) in record.message
for record in caplog.records )
@require_pil
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
with open(snake_case_ ,encoding="""utf-8""" ) as f:
UpperCamelCase : Tuple = f.read().splitlines()[1]
UpperCamelCase : List[str] = Csv(encoding="""utf-8""" ,features=Features({"""image""": Image()} ) )
UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] )
UpperCamelCase : List[str] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""image""" ).type == Image()()
UpperCamelCase : List[str] = pa_table.to_pydict()["""image"""]
assert generated_content == [{"path": image_file, "bytes": None}]
def A_ ( snake_case_ : Optional[int] ):
'''simple docstring'''
with open(snake_case_ ,encoding="""utf-8""" ) as f:
UpperCamelCase : List[str] = f.read().splitlines()[1:]
UpperCamelCase : Optional[int] = Csv(encoding="""utf-8""" ,features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) )
UpperCamelCase : Any = csv._generate_tables([[csv_file_with_label]] )
UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )()
UpperCamelCase : Tuple = pa_table.to_pydict()["""label"""]
assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(snake_case_ ) for label in labels]
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Any = Csv(encoding="""utf-8""" ,sep=""",""" ,converters={"""int_list""": lambda snake_case_ : [int(snake_case_ ) for i in x.split()]} )
UpperCamelCase : Dict = csv._generate_tables([[csv_file_with_int_list]] )
UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type )
UpperCamelCase : Union[str, Any] = pa_table.to_pydict()["""int_list"""]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 27 |
"""simple docstring"""
import torch
from transformers import AutoModel
class lowerCamelCase ( torch.nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_="sayef/fsner-bert-base-uncased" ):
super(SCREAMING_SNAKE_CASE_ , self ).__init__()
UpperCamelCase : int = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCamelCase : Any = torch.nn.Softmax(dim=1 )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
return self.bert(**SCREAMING_SNAKE_CASE_ ).last_hidden_state
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return token_embeddings.sum(2 , keepdim=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ):
return self.softmax(T * self.cos(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = W_supports["""sizes"""].tolist()
UpperCamelCase : List[str] = W_supports["""start_token_id"""].item()
UpperCamelCase : List[Any] = W_supports["""end_token_id"""].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCamelCase : List[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Tuple = W_supports["""input_ids"""] == start_token_id
UpperCamelCase : Optional[Any] = W_supports["""input_ids"""] == end_token_id
for i, size in enumerate(SCREAMING_SNAKE_CASE_ ):
if i == 0:
UpperCamelCase : int = 0
else:
UpperCamelCase : Optional[int] = support_sizes[i - 1]
UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]]
UpperCamelCase : int = S[s : s + size][end_token_masks[s : s + size]]
UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) )
UpperCamelCase : Optional[Any] = torch.vstack((p_ends, p_end) )
else:
UpperCamelCase : Optional[int] = p_start
UpperCamelCase : Tuple = p_end
return p_starts, p_ends
| 27 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__A : Union[str, Any] = {
'''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''],
'''configuration_data2vec_text''': [
'''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Data2VecTextConfig''',
'''Data2VecTextOnnxConfig''',
],
'''configuration_data2vec_vision''': [
'''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Data2VecVisionConfig''',
'''Data2VecVisionOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecAudioForAudioFrameClassification''',
'''Data2VecAudioForCTC''',
'''Data2VecAudioForSequenceClassification''',
'''Data2VecAudioForXVector''',
'''Data2VecAudioModel''',
'''Data2VecAudioPreTrainedModel''',
]
__A : Tuple = [
'''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecTextForCausalLM''',
'''Data2VecTextForMaskedLM''',
'''Data2VecTextForMultipleChoice''',
'''Data2VecTextForQuestionAnswering''',
'''Data2VecTextForSequenceClassification''',
'''Data2VecTextForTokenClassification''',
'''Data2VecTextModel''',
'''Data2VecTextPreTrainedModel''',
]
__A : Any = [
'''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecVisionForImageClassification''',
'''Data2VecVisionForMaskedImageModeling''',
'''Data2VecVisionForSemanticSegmentation''',
'''Data2VecVisionModel''',
'''Data2VecVisionPreTrainedModel''',
]
if is_tf_available():
__A : Union[str, Any] = [
'''TFData2VecVisionForImageClassification''',
'''TFData2VecVisionForSemanticSegmentation''',
'''TFData2VecVisionModel''',
'''TFData2VecVisionPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
__A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 27 |
"""simple docstring"""
from typing import Any
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = data
UpperCamelCase : Optional[Any] = None
def __repr__( self ):
return f'Node({self.data})'
class lowerCamelCase :
def __init__( self ):
UpperCamelCase : Dict = None
def __iter__( self ):
UpperCamelCase : int = self.head
while node:
yield node.data
UpperCamelCase : Union[str, Any] = node.next
def __len__( self ):
return sum(1 for _ in self )
def __repr__( self ):
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
UpperCamelCase : List[Any] = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = current.next
UpperCamelCase : Optional[Any] = data
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not 0 <= index <= len(self ):
raise IndexError("""list index out of range""" )
UpperCamelCase : Optional[Any] = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
UpperCamelCase : Dict = new_node
elif index == 0:
UpperCamelCase : Any = self.head # link new_node to head
UpperCamelCase : Any = new_node
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : str = temp.next
UpperCamelCase : Any = temp.next
UpperCamelCase : Optional[Any] = new_node
def a_ ( self ): # print every node data
print(self )
def a_ ( self ):
return self.delete_nth(0 )
def a_ ( self ): # delete from tail
return self.delete_nth(len(self ) - 1 )
def a_ ( self , SCREAMING_SNAKE_CASE_ = 0 ):
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("""List index out of range.""" )
UpperCamelCase : Union[str, Any] = self.head # default first node
if index == 0:
UpperCamelCase : Optional[Any] = self.head.next
else:
UpperCamelCase : Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase : int = temp.next
UpperCamelCase : Optional[Any] = temp.next
UpperCamelCase : Dict = temp.next.next
return delete_node.data
def a_ ( self ):
return self.head is None
def a_ ( self ):
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Union[str, Any] = self.head
while current:
# Store the current node's next node.
UpperCamelCase : Optional[int] = current.next
# Make the current node's next point backwards
UpperCamelCase : Optional[Any] = prev
# Make the previous node be the current node
UpperCamelCase : int = current
# Make the current node the next node (to progress iteration)
UpperCamelCase : Optional[int] = next_node
# Return prev in order to put the head at the end
UpperCamelCase : Optional[int] = prev
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case_ ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(snake_case_ ) == i
linked_list.insert_nth(snake_case_ ,i + 1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 ,1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(snake_case_ ) == 9
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
UpperCamelCase : Optional[Any] = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8 ,1 ) )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
"""dlrow olleH""",
7,
5_5_5_5,
0,
-192.55555,
"""Hello, world!""",
77.9,
Node(1_0 ),
None,
None,
12.20,
]
UpperCamelCase : List[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case_ )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
UpperCamelCase : Dict = linked_list.delete_head()
assert result == -9
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
UpperCamelCase : int = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
UpperCamelCase : Optional[Any] = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("""Hello again, world!""" ) )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case_ )
assert (
str(snake_case_ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case_ )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ):
'''simple docstring'''
from doctest import testmod
testmod()
UpperCamelCase : List[Any] = LinkedList()
linked_list.insert_head(input("""Inserting 1st at head """ ).strip() )
linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() )
linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nDelete head""" )
linked_list.delete_head()
print("""Delete tail""" )
linked_list.delete_tail()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nReverse linked list""" )
linked_list.reverse()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nString representation of linked list:""" )
print(snake_case_ )
print("""\nReading/changing Node data using indexing:""" )
print(f'Element at Position 1: {linked_list[1]}' )
UpperCamelCase : List[Any] = input("""Enter New Value: """ ).strip()
print("""New list:""" )
print(snake_case_ )
print(f'length of linked_list is : {len(snake_case_ )}' )
if __name__ == "__main__":
main()
| 27 | 1 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : int = 'WhisperFeatureExtractor'
lowercase : Dict = 'WhisperTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.feature_extractor
UpperCamelCase : Optional[Any] = False
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ):
return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Optional[Any] = args[0]
UpperCamelCase : Dict = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
UpperCamelCase : Tuple = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if text is not None:
UpperCamelCase : Dict = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
UpperCamelCase : Optional[Any] = encodings["""input_ids"""]
return inputs
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="np" ):
return self.tokenizer.get_prompt_ids(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ )
| 27 |
"""simple docstring"""
import argparse
import os
import re
__A : Dict = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
__A : Union[str, Any] = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : Tuple = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = 0
UpperCamelCase : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : int = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Any = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Any = [lines[index + 1]]
index += 1
else:
UpperCamelCase : List[str] = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
def _inner(snake_case_ : Tuple ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Dict ):
return x
if key is None:
UpperCamelCase : int = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Tuple = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : int ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : List[Any] ):
UpperCamelCase : Any = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[str] = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : str = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[Any] = keys[:-1]
UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ):
'''simple docstring'''
with open(snake_case_ ,"""r""" ) as f:
UpperCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : Dict = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Optional[Any] = main_blocks[block_idx]
UpperCamelCase : Optional[int] = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : Union[str, Any] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : List[str] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[Any] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Any = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
__A : List[str] = logging.get_logger(__name__)
def A_ ( snake_case_ : Any ,snake_case_ : int ,snake_case_ : Any ):
'''simple docstring'''
UpperCamelCase : str = UniSpeechSatForSequenceClassification.from_pretrained(snake_case_ ,config=snake_case_ )
UpperCamelCase : List[Any] = downstream_dict["""projector.weight"""]
UpperCamelCase : Tuple = downstream_dict["""projector.bias"""]
UpperCamelCase : List[str] = downstream_dict["""model.post_net.linear.weight"""]
UpperCamelCase : int = downstream_dict["""model.post_net.linear.bias"""]
return model
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple ,snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(snake_case_ ,config=snake_case_ )
UpperCamelCase : str = downstream_dict["""model.linear.weight"""]
UpperCamelCase : int = downstream_dict["""model.linear.bias"""]
return model
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Dict ,snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = UniSpeechSatForXVector.from_pretrained(snake_case_ ,config=snake_case_ )
UpperCamelCase : Union[str, Any] = downstream_dict["""connector.weight"""]
UpperCamelCase : Optional[Any] = downstream_dict["""connector.bias"""]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
UpperCamelCase : Optional[int] = downstream_dict[
f'model.framelevel_feature_extractor.module.{i}.kernel.weight'
]
UpperCamelCase : int = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias']
UpperCamelCase : Optional[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""]
UpperCamelCase : List[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""]
UpperCamelCase : Union[str, Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""]
UpperCamelCase : str = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""]
UpperCamelCase : Optional[int] = downstream_dict["""objective.W"""]
return model
@torch.no_grad()
def A_ ( snake_case_ : Optional[int] ,snake_case_ : Dict ,snake_case_ : Optional[int] ,snake_case_ : Optional[Any] ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = torch.load(snake_case_ ,map_location="""cpu""" )
UpperCamelCase : List[str] = checkpoint["""Downstream"""]
UpperCamelCase : List[Any] = UniSpeechSatConfig.from_pretrained(snake_case_ )
UpperCamelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(
snake_case_ ,return_attention_mask=snake_case_ ,do_normalize=snake_case_ )
UpperCamelCase : str = hf_config.architectures[0]
if arch.endswith("""ForSequenceClassification""" ):
UpperCamelCase : List[Any] = convert_classification(snake_case_ ,snake_case_ ,snake_case_ )
elif arch.endswith("""ForAudioFrameClassification""" ):
UpperCamelCase : int = convert_diarization(snake_case_ ,snake_case_ ,snake_case_ )
elif arch.endswith("""ForXVector""" ):
UpperCamelCase : List[str] = convert_xvector(snake_case_ ,snake_case_ ,snake_case_ )
else:
raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' )
if hf_config.use_weighted_layer_sum:
UpperCamelCase : str = checkpoint["""Featurizer"""]["""weights"""]
hf_feature_extractor.save_pretrained(snake_case_ )
hf_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
__A : str = argparse.ArgumentParser()
parser.add_argument(
'''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.'''
)
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''')
parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''')
__A : Tuple = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 27 |
"""simple docstring"""
def A_ ( snake_case_ : list[int] ):
'''simple docstring'''
if not numbers:
return 0
if not isinstance(snake_case_ ,(list, tuple) ) or not all(
isinstance(snake_case_ ,snake_case_ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
UpperCamelCase : int = numbers[0]
for i in range(1 ,len(snake_case_ ) ):
# update the maximum and minimum subarray products
UpperCamelCase : List[str] = numbers[i]
if number < 0:
UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now
UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number )
UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number )
# update the maximum product found till now
UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ )
return max_prod
| 27 | 1 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Tuple = {'''vocab_file''': '''vocab.json'''}
__A : List[Any] = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
__A : Union[str, Any] = {'''mgp-str''': 27}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = VOCAB_FILES_NAMES
lowercase : str = PRETRAINED_VOCAB_FILES_MAP
lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="[GO]" , SCREAMING_SNAKE_CASE_="[GO]" , SCREAMING_SNAKE_CASE_="[s]" , SCREAMING_SNAKE_CASE_="[GO]" , **SCREAMING_SNAKE_CASE_ ):
super().__init__(
unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as vocab_handle:
UpperCamelCase : Dict = json.load(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {v: k for k, v in self.vocab.items()}
@property
def a_ ( self ):
return len(self.vocab )
def a_ ( self ):
return dict(self.vocab , **self.added_tokens_encoder )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = []
for s in text:
char_tokens.extend(SCREAMING_SNAKE_CASE_ )
return char_tokens
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.vocab.get(SCREAMING_SNAKE_CASE_ , self.vocab.get(self.unk_token ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error("""Vocabulary path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE_ ) )
return
UpperCamelCase : str = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + """\n""" )
return (vocab_file,)
| 27 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Any = AudioLDMPipeline
lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS
lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS
lowercase : Tuple = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Optional[Any] = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
UpperCamelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase : int = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
UpperCamelCase : Tuple = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def a_ ( self ):
UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Any = self.get_dummy_components()
UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Tuple = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[str] = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : str = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
UpperCamelCase : Tuple = prompt_embeds
# forward
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : List[str] = self.get_dummy_components()
UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""]
UpperCamelCase : List[Any] = negative_prompt
UpperCamelCase : str = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[Any] = []
for p in [prompt, negative_prompt]:
UpperCamelCase : int = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
embeds.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Tuple = embeds
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Optional[int] = self.get_dummy_components()
UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = """egg cracking"""
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Union[str, Any] = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
UpperCamelCase : Dict = 2
UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
UpperCamelCase : List[str] = 2
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
UpperCamelCase : Any = 2
UpperCamelCase : str = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Tuple = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016
UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = ["""hey"""]
UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : str = output.audios.shape
assert audio_shape == (1, 256)
UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : List[str] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def a_ ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def a_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@slow
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) )
UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def a_ ( self ):
UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 25
UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240]
UpperCamelCase : Optional[Any] = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def a_ ( self ):
UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790]
UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 27 | 1 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[Any]=1 ):
'''simple docstring'''
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def A_ ( snake_case_ : int ,snake_case_ : Union[str, Any]=0 ):
'''simple docstring'''
UpperCamelCase : int = []
for old_item in old_list:
UpperCamelCase : str = old_item.replace("""in_layers.0""" ,"""norm1""" )
UpperCamelCase : str = new_item.replace("""in_layers.2""" ,"""conv1""" )
UpperCamelCase : Optional[int] = new_item.replace("""out_layers.0""" ,"""norm2""" )
UpperCamelCase : Any = new_item.replace("""out_layers.3""" ,"""conv2""" )
UpperCamelCase : Tuple = new_item.replace("""emb_layers.1""" ,"""time_emb_proj""" )
UpperCamelCase : List[Any] = new_item.replace("""skip_connection""" ,"""conv_shortcut""" )
UpperCamelCase : Optional[int] = shave_segments(snake_case_ ,n_shave_prefix_segments=snake_case_ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def A_ ( snake_case_ : Tuple ,snake_case_ : Dict=0 ):
'''simple docstring'''
UpperCamelCase : int = []
for old_item in old_list:
UpperCamelCase : Tuple = old_item
UpperCamelCase : Optional[int] = new_item.replace("""norm.weight""" ,"""group_norm.weight""" )
UpperCamelCase : Dict = new_item.replace("""norm.bias""" ,"""group_norm.bias""" )
UpperCamelCase : Optional[int] = new_item.replace("""proj_out.weight""" ,"""proj_attn.weight""" )
UpperCamelCase : List[str] = new_item.replace("""proj_out.bias""" ,"""proj_attn.bias""" )
UpperCamelCase : Any = shave_segments(snake_case_ ,n_shave_prefix_segments=snake_case_ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def A_ ( snake_case_ : Any ,snake_case_ : Union[str, Any] ,snake_case_ : Tuple ,snake_case_ : Optional[Any]=None ,snake_case_ : Any=None ,snake_case_ : Any=None ):
'''simple docstring'''
assert isinstance(snake_case_ ,snake_case_ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
UpperCamelCase : str = old_checkpoint[path]
UpperCamelCase : Dict = old_tensor.shape[0] // 3
UpperCamelCase : Any = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
UpperCamelCase : List[str] = old_tensor.shape[0] // config["""num_head_channels"""] // 3
UpperCamelCase : Optional[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = old_tensor.split(channels // num_heads ,dim=1 )
UpperCamelCase : List[Any] = query.reshape(snake_case_ )
UpperCamelCase : Optional[Any] = key.reshape(snake_case_ )
UpperCamelCase : Any = value.reshape(snake_case_ )
for path in paths:
UpperCamelCase : Any = path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
UpperCamelCase : str = new_path.replace("""middle_block.0""" ,"""mid_block.resnets.0""" )
UpperCamelCase : Tuple = new_path.replace("""middle_block.1""" ,"""mid_block.attentions.0""" )
UpperCamelCase : Union[str, Any] = new_path.replace("""middle_block.2""" ,"""mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
UpperCamelCase : Optional[int] = new_path.replace(replacement["""old"""] ,replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
UpperCamelCase : Optional[Any] = old_checkpoint[path["""old"""]][:, :, 0]
else:
UpperCamelCase : str = old_checkpoint[path["""old"""]]
def A_ ( snake_case_ : List[Any] ,snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Tuple = {}
UpperCamelCase : str = checkpoint["""time_embed.0.weight"""]
UpperCamelCase : str = checkpoint["""time_embed.0.bias"""]
UpperCamelCase : Optional[Any] = checkpoint["""time_embed.2.weight"""]
UpperCamelCase : Union[str, Any] = checkpoint["""time_embed.2.bias"""]
UpperCamelCase : int = checkpoint["""input_blocks.0.0.weight"""]
UpperCamelCase : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""]
UpperCamelCase : Optional[int] = checkpoint["""out.0.weight"""]
UpperCamelCase : Tuple = checkpoint["""out.0.bias"""]
UpperCamelCase : str = checkpoint["""out.2.weight"""]
UpperCamelCase : Optional[int] = checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
UpperCamelCase : int = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
UpperCamelCase : Dict = {
layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key]
for layer_id in range(snake_case_ )
}
# Retrieves the keys for the middle blocks only
UpperCamelCase : Tuple = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
UpperCamelCase : Tuple = {
layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key]
for layer_id in range(snake_case_ )
}
# Retrieves the keys for the output blocks only
UpperCamelCase : Optional[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
UpperCamelCase : Optional[Any] = {
layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key]
for layer_id in range(snake_case_ )
}
for i in range(1 ,snake_case_ ):
UpperCamelCase : List[Any] = (i - 1) // (config["""num_res_blocks"""] + 1)
UpperCamelCase : str = (i - 1) % (config["""num_res_blocks"""] + 1)
UpperCamelCase : Tuple = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key]
UpperCamelCase : Dict = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key]
if f'input_blocks.{i}.0.op.weight' in checkpoint:
UpperCamelCase : Tuple = checkpoint[
f'input_blocks.{i}.0.op.weight'
]
UpperCamelCase : Any = checkpoint[
f'input_blocks.{i}.0.op.bias'
]
continue
UpperCamelCase : Optional[Any] = renew_resnet_paths(snake_case_ )
UpperCamelCase : Dict = {"""old""": f'input_blocks.{i}.0', """new""": f'down_blocks.{block_id}.resnets.{layer_in_block_id}'}
UpperCamelCase : int = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
snake_case_ ,snake_case_ ,snake_case_ ,additional_replacements=[meta_path, resnet_op] ,config=snake_case_ )
if len(snake_case_ ):
UpperCamelCase : Optional[int] = renew_attention_paths(snake_case_ )
UpperCamelCase : Any = {
"""old""": f'input_blocks.{i}.1',
"""new""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}',
}
UpperCamelCase : Dict = {
f'input_blocks.{i}.1.qkv.bias': {
"""key""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias',
"""query""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias',
"""value""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias',
},
f'input_blocks.{i}.1.qkv.weight': {
"""key""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight',
"""query""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight',
"""value""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight',
},
}
assign_to_checkpoint(
snake_case_ ,snake_case_ ,snake_case_ ,additional_replacements=[meta_path] ,attention_paths_to_split=snake_case_ ,config=snake_case_ ,)
UpperCamelCase : Optional[Any] = middle_blocks[0]
UpperCamelCase : Optional[Any] = middle_blocks[1]
UpperCamelCase : Any = middle_blocks[2]
UpperCamelCase : List[str] = renew_resnet_paths(snake_case_ )
assign_to_checkpoint(snake_case_ ,snake_case_ ,snake_case_ ,config=snake_case_ )
UpperCamelCase : Union[str, Any] = renew_resnet_paths(snake_case_ )
assign_to_checkpoint(snake_case_ ,snake_case_ ,snake_case_ ,config=snake_case_ )
UpperCamelCase : Optional[Any] = renew_attention_paths(snake_case_ )
UpperCamelCase : int = {
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
snake_case_ ,snake_case_ ,snake_case_ ,attention_paths_to_split=snake_case_ ,config=snake_case_ )
for i in range(snake_case_ ):
UpperCamelCase : int = i // (config["""num_res_blocks"""] + 1)
UpperCamelCase : Dict = i % (config["""num_res_blocks"""] + 1)
UpperCamelCase : List[Any] = [shave_segments(snake_case_ ,2 ) for name in output_blocks[i]]
UpperCamelCase : Optional[int] = {}
for layer in output_block_layers:
UpperCamelCase , UpperCamelCase : Dict = layer.split(""".""" )[0], shave_segments(snake_case_ ,1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(snake_case_ )
else:
UpperCamelCase : Tuple = [layer_name]
if len(snake_case_ ) > 1:
UpperCamelCase : Optional[Any] = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key]
UpperCamelCase : Optional[Any] = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key]
UpperCamelCase : Optional[int] = renew_resnet_paths(snake_case_ )
UpperCamelCase : int = renew_resnet_paths(snake_case_ )
UpperCamelCase : List[str] = {"""old""": f'output_blocks.{i}.0', """new""": f'up_blocks.{block_id}.resnets.{layer_in_block_id}'}
assign_to_checkpoint(snake_case_ ,snake_case_ ,snake_case_ ,additional_replacements=[meta_path] ,config=snake_case_ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
UpperCamelCase : Optional[Any] = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
UpperCamelCase : Optional[Any] = checkpoint[
f'output_blocks.{i}.{index}.conv.weight'
]
UpperCamelCase : Optional[int] = checkpoint[
f'output_blocks.{i}.{index}.conv.bias'
]
# Clear attentions as they have been attributed above.
if len(snake_case_ ) == 2:
UpperCamelCase : int = []
if len(snake_case_ ):
UpperCamelCase : Any = renew_attention_paths(snake_case_ )
UpperCamelCase : Optional[Any] = {
"""old""": f'output_blocks.{i}.1',
"""new""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}',
}
UpperCamelCase : Optional[Any] = {
f'output_blocks.{i}.1.qkv.bias': {
"""key""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias',
"""query""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias',
"""value""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias',
},
f'output_blocks.{i}.1.qkv.weight': {
"""key""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight',
"""query""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight',
"""value""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight',
},
}
assign_to_checkpoint(
snake_case_ ,snake_case_ ,snake_case_ ,additional_replacements=[meta_path] ,attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None ,config=snake_case_ ,)
else:
UpperCamelCase : Union[str, Any] = renew_resnet_paths(snake_case_ ,n_shave_prefix_segments=1 )
for path in resnet_0_paths:
UpperCamelCase : Tuple = """.""".join(["""output_blocks""", str(snake_case_ ), path["""old"""]] )
UpperCamelCase : List[Any] = """.""".join(["""up_blocks""", str(snake_case_ ), """resnets""", str(snake_case_ ), path["""new"""]] )
UpperCamelCase : Union[str, Any] = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
__A : str = parser.parse_args()
__A : int = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A : str = json.loads(f.read())
__A : int = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A : int = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A : Optional[int] = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
__A : str = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
__A : List[str] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 27 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase : List[str] = args.log_outputs
UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] )
# load metric
UpperCamelCase : List[Any] = load_metric("""wer""" )
UpperCamelCase : Any = load_metric("""cer""" )
# compute metrics
UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
# print & log results
UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case_ )
with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt'
UpperCamelCase : str = f'log_{dataset_id}_targets.txt'
with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
p.write(f'{i}' + """\n""" )
p.write(batch["""prediction"""] + """\n""" )
t.write(f'{i}' + """\n""" )
t.write(batch["""target"""] + """\n""" )
result.map(snake_case_ ,with_indices=snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """]
for t in token_sequences_to_ignore:
UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) )
return text
def A_ ( snake_case_ : str ):
'''simple docstring'''
# load dataset
UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase : Dict = feature_extractor.sampling_rate
# resample audio
UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase : int = 0 if torch.cuda.is_available() else -1
UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Union[str, Any] ):
UpperCamelCase : List[Any] = asr(
batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s )
UpperCamelCase : Union[str, Any] = prediction["""text"""]
UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] )
return batch
# run inference on all examples
UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ ,snake_case_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers'''
)
parser.add_argument(
'''--dataset''',
type=str,
required=True,
help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''',
)
parser.add_argument(
'''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice'''
)
parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''')
parser.add_argument(
'''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.'''
)
parser.add_argument(
'''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.'''
)
parser.add_argument(
'''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.'''
)
parser.add_argument(
'''--device''',
type=int,
default=None,
help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''',
)
__A : Optional[Any] = parser.parse_args()
main(args)
| 27 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
@property
def a_ ( self ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a_ ( self ):
UpperCamelCase : int = ort.SessionOptions()
UpperCamelCase : Any = False
return options
def a_ ( self ):
UpperCamelCase : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
UpperCamelCase : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
UpperCamelCase : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
UpperCamelCase : List[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = """A red cat sitting on a park bench"""
UpperCamelCase : List[Any] = np.random.RandomState(0 )
UpperCamelCase : Optional[int] = pipe(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , )
UpperCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 27 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'EncodecFeatureExtractor'
lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.feature_extractor
UpperCamelCase : Any = False
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ):
return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Any = args[0]
UpperCamelCase : str = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is not None:
UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase : int = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""]
return inputs
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Optional[int] = args[0]
UpperCamelCase : Any = args[1:]
if audio_values is not None:
return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ )
else:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape
if padding_mask is None:
return list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1]
UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value
UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audio_values.tolist()
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 )
return audio_values
| 27 | 1 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__A : Tuple = '''src/diffusers'''
# Matches is_xxx_available()
__A : List[str] = re.compile(R'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__A : Union[str, Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__A : List[str] = '''
{0} = None
'''
__A : Dict = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__A : List[str] = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Any = _re_backend.findall(snake_case_ )
if len(snake_case_ ) == 0:
return None
return "_and_".join(snake_case_ )
def A_ ( ):
'''simple docstring'''
with open(os.path.join(snake_case_ ,"""__init__.py""" ) ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f:
UpperCamelCase : Tuple = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCamelCase : Dict = 0
UpperCamelCase : Dict = {}
# Go through the end of the file
while line_index < len(snake_case_ ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCamelCase : Dict = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
UpperCamelCase : List[str] = []
# Until we unindent, add backend objects to the list
while line_index < len(snake_case_ ) and len(lines[line_index] ) > 1:
UpperCamelCase : List[Any] = lines[line_index]
UpperCamelCase : Dict = _re_single_line_import.search(snake_case_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(snake_case_ ) > 0:
UpperCamelCase : Dict = objects
else:
line_index += 1
return backend_specific_objects
def A_ ( snake_case_ : Tuple ,snake_case_ : str ):
'''simple docstring'''
if name.isupper():
return DUMMY_CONSTANT.format(snake_case_ )
elif name.islower():
return DUMMY_FUNCTION.format(snake_case_ ,snake_case_ )
else:
return DUMMY_CLASS.format(snake_case_ ,snake_case_ )
def A_ ( snake_case_ : Union[str, Any]=None ):
'''simple docstring'''
if backend_specific_objects is None:
UpperCamelCase : Optional[Any] = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCamelCase : str = {}
for backend, objects in backend_specific_objects.items():
UpperCamelCase : Optional[int] = """[""" + """, """.join(f'"{b}"' for b in backend.split("""_and_""" ) ) + """]"""
UpperCamelCase : Tuple = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(snake_case_ ,snake_case_ ) for o in objects] )
UpperCamelCase : str = dummy_file
return dummy_files
def A_ ( snake_case_ : Tuple=False ):
'''simple docstring'''
UpperCamelCase : int = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCamelCase : Any = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
UpperCamelCase : Any = os.path.join(snake_case_ ,"""utils""" )
UpperCamelCase : str = {
backend: os.path.join(snake_case_ ,f'dummy_{short_names.get(snake_case_ ,snake_case_ )}_objects.py' )
for backend in dummy_files.keys()
}
UpperCamelCase : Dict = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(snake_case_ ):
with open(snake_case_ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f:
UpperCamelCase : int = f.read()
else:
UpperCamelCase : str = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'Updating diffusers.utils.dummy_{short_names.get(snake_case_ ,snake_case_ )}_objects.py as the main '
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
f'diffusers.utils.dummy_{short_names.get(snake_case_ ,snake_case_ )}_objects.py. Run `make fix-copies` '
"""to fix this.""" )
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__A : Tuple = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 27 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ):
'''simple docstring'''
UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" )
UpperCamelCase : Optional[int] = soup.findAll("""h1""" )
UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} )
values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''')
| 27 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : Optional[int] = {
'''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''',
'''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''',
'''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''',
'''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''',
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : List[Any] = 'mobilenet_v2'
def __init__( self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu6" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.8 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.001 , SCREAMING_SNAKE_CASE_=255 , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
if depth_multiplier <= 0:
raise ValueError("""depth_multiplier must be greater than zero.""" )
UpperCamelCase : Dict = num_channels
UpperCamelCase : str = image_size
UpperCamelCase : List[str] = depth_multiplier
UpperCamelCase : Dict = depth_divisible_by
UpperCamelCase : int = min_depth
UpperCamelCase : Optional[int] = expand_ratio
UpperCamelCase : Any = output_stride
UpperCamelCase : Tuple = first_layer_is_expansion
UpperCamelCase : Optional[Any] = finegrained_output
UpperCamelCase : Dict = hidden_act
UpperCamelCase : Dict = tf_padding
UpperCamelCase : List[Any] = classifier_dropout_prob
UpperCamelCase : str = initializer_range
UpperCamelCase : Optional[int] = layer_norm_eps
UpperCamelCase : Tuple = semantic_loss_ignore_index
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[Any] = version.parse('1.11' )
@property
def a_ ( self ):
return OrderedDict([("""pixel_values""", {0: """batch"""})] )
@property
def a_ ( self ):
if self.task == "image-classification":
return OrderedDict([("""logits""", {0: """batch"""})] )
else:
return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] )
@property
def a_ ( self ):
return 1e-4
| 27 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ):
UpperCamelCase : Tuple = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : Optional[Any] = seq_length
UpperCamelCase : int = is_training
UpperCamelCase : Union[str, Any] = use_input_mask
UpperCamelCase : Union[str, Any] = use_token_type_ids
UpperCamelCase : Dict = use_labels
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : Tuple = num_hidden_layers
UpperCamelCase : Any = num_attention_heads
UpperCamelCase : int = intermediate_size
UpperCamelCase : str = hidden_act
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : List[Any] = max_position_embeddings
UpperCamelCase : Optional[Any] = type_vocab_size
UpperCamelCase : int = type_sequence_label_size
UpperCamelCase : Dict = initializer_range
UpperCamelCase : Dict = num_labels
UpperCamelCase : Tuple = num_choices
UpperCamelCase : Optional[int] = scope
UpperCamelCase : List[Any] = q_groups
UpperCamelCase : Tuple = k_groups
UpperCamelCase : Any = v_groups
UpperCamelCase : List[str] = post_attention_groups
UpperCamelCase : Tuple = intermediate_groups
UpperCamelCase : int = output_groups
def a_ ( self ):
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Tuple = None
if self.use_input_mask:
UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Optional[int] = None
UpperCamelCase : List[Any] = None
UpperCamelCase : Dict = None
if self.use_labels:
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : str = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.num_labels
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.num_labels
UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = self.num_choices
UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : Optional[int] = self.prepare_config_and_inputs()
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs
UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
lowercase : Dict = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Dict = False
lowercase : str = True
lowercase : str = False
def a_ ( self ):
UpperCamelCase : Any = SqueezeBertModelTester(self )
UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def a_ ( self ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0]
UpperCamelCase : Optional[Any] = torch.Size((1, 3) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 27 | 1 |
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('''.''')
def A_ ( snake_case_ : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase : str = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"""`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """
f'{test_file} instead.' )
UpperCamelCase : List[Any] = components[-1]
if not test_fn.endswith("""py""" ):
raise ValueError(f'`test_file` should be a python file. Got {test_fn} instead.' )
if not test_fn.startswith("""test_modeling_""" ):
raise ValueError(
f'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' )
UpperCamelCase : Dict = components[:-1] + [test_fn.replace(""".py""" ,"""""" )]
UpperCamelCase : List[str] = """.""".join(snake_case_ )
return test_module_path
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : List[Any] = get_module_path(snake_case_ )
UpperCamelCase : List[Any] = importlib.import_module(snake_case_ )
return test_module
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = []
UpperCamelCase : Any = get_test_module(snake_case_ )
for attr in dir(snake_case_ ):
if attr.endswith("""ModelTester""" ):
tester_classes.append(getattr(snake_case_ ,snake_case_ ) )
# sort with class names
return sorted(snake_case_ ,key=lambda snake_case_ : x.__name__ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Tuple = []
UpperCamelCase : Optional[int] = get_test_module(snake_case_ )
for attr in dir(snake_case_ ):
UpperCamelCase : Optional[int] = getattr(snake_case_ ,snake_case_ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
UpperCamelCase : int = getattr(snake_case_ ,"""all_model_classes""" ,[] )
if len(snake_case_ ) > 0:
test_classes.append(snake_case_ )
# sort with class names
return sorted(snake_case_ ,key=lambda snake_case_ : x.__name__ )
def A_ ( snake_case_ : Any ):
'''simple docstring'''
UpperCamelCase : str = get_test_classes(snake_case_ )
UpperCamelCase : Optional[Any] = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(snake_case_ ,key=lambda snake_case_ : x.__name__ )
def A_ ( snake_case_ : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = test_class()
if hasattr(snake_case_ ,"""setUp""" ):
test.setUp()
UpperCamelCase : Tuple = None
if hasattr(snake_case_ ,"""model_tester""" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
UpperCamelCase : int = test.model_tester.__class__
return model_tester
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[Any] ):
'''simple docstring'''
UpperCamelCase : Dict = get_test_classes(snake_case_ )
UpperCamelCase : Optional[Any] = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(snake_case_ )
# sort with class names
return sorted(snake_case_ ,key=lambda snake_case_ : x.__name__ )
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = get_test_classes_for_model(snake_case_ ,snake_case_ )
UpperCamelCase : Optional[int] = []
for test_class in test_classes:
UpperCamelCase : str = get_model_tester_from_test_class(snake_case_ )
if tester_class is not None:
tester_classes.append(snake_case_ )
# sort with class names
return sorted(snake_case_ ,key=lambda snake_case_ : x.__name__ )
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Dict = get_test_classes(snake_case_ )
UpperCamelCase : Optional[int] = {test_class: get_model_tester_from_test_class(snake_case_ ) for test_class in test_classes}
return test_tester_mapping
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
UpperCamelCase : List[str] = get_model_classes(snake_case_ )
UpperCamelCase : Union[str, Any] = {
model_class: get_test_classes_for_model(snake_case_ ,snake_case_ ) for model_class in model_classes
}
return model_test_mapping
def A_ ( snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : List[Any] = get_model_classes(snake_case_ )
UpperCamelCase : List[Any] = {
model_class: get_tester_classes_for_model(snake_case_ ,snake_case_ ) for model_class in model_classes
}
return model_to_tester_mapping
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
if isinstance(snake_case_ ,snake_case_ ):
return o
elif isinstance(snake_case_ ,snake_case_ ):
return o.__name__
elif isinstance(snake_case_ ,(list, tuple) ):
return [to_json(snake_case_ ) for x in o]
elif isinstance(snake_case_ ,snake_case_ ):
return {to_json(snake_case_ ): to_json(snake_case_ ) for k, v in o.items()}
else:
return o
| 27 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCamelCase ( nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ):
super().__init__()
UpperCamelCase : int = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCamelCase : Optional[Any] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCamelCase : List[Any] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCamelCase : int = [1, 0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ):
UpperCamelCase : Dict = hidden_states
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCamelCase : str = self.transformer_index_for_condition[i]
UpperCamelCase : Any = self.transformers[transformer_index](
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCamelCase : List[str] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 27 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.