code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__A : List[str] = {
'''configuration_blip''': [
'''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlipConfig''',
'''BlipTextConfig''',
'''BlipVisionConfig''',
],
'''processing_blip''': ['''BlipProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = ['''BlipImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlipModel''',
'''BlipPreTrainedModel''',
'''BlipForConditionalGeneration''',
'''BlipForQuestionAnswering''',
'''BlipVisionModel''',
'''BlipTextModel''',
'''BlipForImageTextRetrieval''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
'''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFBlipModel''',
'''TFBlipPreTrainedModel''',
'''TFBlipForConditionalGeneration''',
'''TFBlipForQuestionAnswering''',
'''TFBlipVisionModel''',
'''TFBlipTextModel''',
'''TFBlipForImageTextRetrieval''',
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
__A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 353 |
"""simple docstring"""
import argparse
import os
import re
__A : Dict = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
__A : Union[str, Any] = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : Tuple = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = 0
UpperCamelCase : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : int = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Any = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Any = [lines[index + 1]]
index += 1
else:
UpperCamelCase : List[str] = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
def _inner(snake_case_ : Tuple ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Dict ):
return x
if key is None:
UpperCamelCase : int = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Tuple = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : int ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : List[Any] ):
UpperCamelCase : Any = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[str] = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : str = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : List[Any] = keys[:-1]
UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ):
'''simple docstring'''
with open(snake_case_ ,"""r""" ) as f:
UpperCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : Dict = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Optional[Any] = main_blocks[block_idx]
UpperCamelCase : Optional[int] = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : Union[str, Any] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : List[str] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[Any] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Any = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : List[str] = {
'''microsoft/trocr-base-handwritten''': (
'''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'''
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : List[str] = 'trocr'
lowercase : int = ['past_key_values']
lowercase : Tuple = {
'num_attention_heads': 'decoder_attention_heads',
'hidden_size': 'd_model',
'num_hidden_layers': 'decoder_layers',
}
def __init__( self , SCREAMING_SNAKE_CASE_=5_0265 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Tuple = vocab_size
UpperCamelCase : List[Any] = d_model
UpperCamelCase : Dict = decoder_layers
UpperCamelCase : List[Any] = decoder_attention_heads
UpperCamelCase : Dict = decoder_ffn_dim
UpperCamelCase : Dict = activation_function
UpperCamelCase : Optional[int] = max_position_embeddings
UpperCamelCase : str = dropout
UpperCamelCase : Tuple = attention_dropout
UpperCamelCase : Dict = activation_dropout
UpperCamelCase : str = init_std
UpperCamelCase : Optional[int] = decoder_layerdrop
UpperCamelCase : List[Any] = use_cache
UpperCamelCase : Union[str, Any] = scale_embedding
UpperCamelCase : List[Any] = use_learned_position_embeddings
UpperCamelCase : str = layernorm_embedding
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
| 354 |
"""simple docstring"""
def A_ ( snake_case_ : list[int] ):
'''simple docstring'''
if not numbers:
return 0
if not isinstance(snake_case_ ,(list, tuple) ) or not all(
isinstance(snake_case_ ,snake_case_ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
UpperCamelCase : int = numbers[0]
for i in range(1 ,len(snake_case_ ) ):
# update the maximum and minimum subarray products
UpperCamelCase : List[str] = numbers[i]
if number < 0:
UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now
UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number )
UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number )
# update the maximum product found till now
UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ )
return max_prod
| 27 | 0 |
"""simple docstring"""
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__A : Union[str, Any] = 16
__A : List[Any] = 32
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
return int(x / 2**2_0 )
class lowerCamelCase :
def __enter__( self ):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
UpperCamelCase : Tuple = torch.cuda.memory_allocated()
return self
def __exit__( self , *SCREAMING_SNAKE_CASE_ ):
gc.collect()
torch.cuda.empty_cache()
UpperCamelCase : Optional[int] = torch.cuda.memory_allocated()
UpperCamelCase : List[Any] = torch.cuda.max_memory_allocated()
UpperCamelCase : Any = bamb(self.end - self.begin )
UpperCamelCase : Optional[int] = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ,snake_case_ : str = "bert-base-cased" ,snake_case_ : int = 3_2_0 ,snake_case_ : int = 1_6_0 ,):
'''simple docstring'''
UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(snake_case_ )
UpperCamelCase : Tuple = load_dataset(
"""glue""" ,"""mrpc""" ,split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} )
def tokenize_function(snake_case_ : Dict ):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase : Any = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCamelCase : int = datasets.map(
snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=snake_case_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(snake_case_ : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case_ ,padding="""max_length""" ,max_length=1_2_8 ,return_tensors="""pt""" )
return tokenizer.pad(snake_case_ ,padding="""longest""" ,return_tensors="""pt""" )
# Instantiate dataloaders.
UpperCamelCase : Any = DataLoader(
tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
UpperCamelCase : int = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
return train_dataloader, eval_dataloader
def A_ ( snake_case_ : int ,snake_case_ : Any ):
'''simple docstring'''
UpperCamelCase : Tuple = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase : Optional[int] = config["""lr"""]
UpperCamelCase : int = int(config["""num_epochs"""] )
UpperCamelCase : Optional[Any] = int(config["""seed"""] )
UpperCamelCase : str = int(config["""batch_size"""] )
UpperCamelCase : str = args.model_name_or_path
set_seed(snake_case_ )
UpperCamelCase : str = get_dataloaders(snake_case_ ,snake_case_ ,snake_case_ ,args.n_train ,args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(snake_case_ ,return_dict=snake_case_ )
# Instantiate optimizer
UpperCamelCase : List[Any] = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCamelCase : List[Any] = optimizer_cls(params=model.parameters() ,lr=snake_case_ )
if accelerator.state.deepspeed_plugin is not None:
UpperCamelCase : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
UpperCamelCase : Any = 1
UpperCamelCase : Union[str, Any] = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCamelCase : Union[str, Any] = get_linear_schedule_with_warmup(
optimizer=snake_case_ ,num_warmup_steps=0 ,num_training_steps=snake_case_ ,)
else:
UpperCamelCase : Tuple = DummyScheduler(snake_case_ ,total_num_steps=snake_case_ ,warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase : List[Any] = accelerator.prepare(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# We need to keep track of how many total steps we have iterated over
UpperCamelCase : Optional[Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCamelCase : Dict = 0
# Now we train the model
UpperCamelCase : List[str] = {}
for epoch in range(snake_case_ ,snake_case_ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(snake_case_ ):
UpperCamelCase : Optional[Any] = model(**snake_case_ )
UpperCamelCase : Dict = outputs.loss
UpperCamelCase : Optional[int] = loss / gradient_accumulation_steps
accelerator.backward(snake_case_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) )
accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) )
accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) )
accelerator.print(
"""Total Peak Memory consumed during the train (max): {}""".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
UpperCamelCase : int = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir ,"""peak_memory_utilization.json""" ) ,"""w""" ) as f:
json.dump(snake_case_ ,snake_case_ )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" ,type=snake_case_ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=snake_case_ ,)
parser.add_argument(
"""--output_dir""" ,type=snake_case_ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,)
parser.add_argument(
"""--peak_memory_upper_bound""" ,type=snake_case_ ,default=snake_case_ ,help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" ,)
parser.add_argument(
"""--n_train""" ,type=snake_case_ ,default=3_2_0 ,help="""Number of training examples to use.""" ,)
parser.add_argument(
"""--n_val""" ,type=snake_case_ ,default=1_6_0 ,help="""Number of validation examples to use.""" ,)
parser.add_argument(
"""--num_epochs""" ,type=snake_case_ ,default=1 ,help="""Number of train epochs.""" ,)
UpperCamelCase : List[str] = parser.parse_args()
UpperCamelCase : str = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6}
training_function(snake_case_ ,snake_case_ )
if __name__ == "__main__":
main()
| 355 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : Any = AudioLDMPipeline
lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS
lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS
lowercase : Tuple = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Optional[Any] = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
UpperCamelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase : int = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
UpperCamelCase : Tuple = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def a_ ( self ):
UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Any = self.get_dummy_components()
UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Tuple = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[str] = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : str = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
UpperCamelCase : Tuple = prompt_embeds
# forward
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : List[str] = self.get_dummy_components()
UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""]
UpperCamelCase : List[Any] = negative_prompt
UpperCamelCase : str = 3 * [inputs["""prompt"""]]
# forward
UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )]
UpperCamelCase : List[Any] = []
for p in [prompt, negative_prompt]:
UpperCamelCase : int = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , )
UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 )
embeds.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : Tuple = embeds
# forward
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Optional[int] = self.get_dummy_components()
UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = """egg cracking"""
UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 256
UpperCamelCase : Union[str, Any] = audio[:10]
UpperCamelCase : Dict = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
UpperCamelCase : Dict = 2
UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
UpperCamelCase : List[str] = 2
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
UpperCamelCase : Any = 2
UpperCamelCase : str = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def a_ ( self ):
UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase : Tuple = self.get_dummy_components()
UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate
UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016
UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032
def a_ ( self ):
UpperCamelCase : str = self.get_dummy_components()
UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = ["""hey"""]
UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : str = output.audios.shape
assert audio_shape == (1, 256)
UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 )
UpperCamelCase : List[str] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def a_ ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def a_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ )
@slow
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) )
UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def a_ ( self ):
UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 25
UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240]
UpperCamelCase : Optional[Any] = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def a_ ( self ):
UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920
UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790]
UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 27 | 0 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
__A : List[str] = pytest.mark.integration
__A : List[Any] = {'''comet'''}
__A : List[str] = importlib.util.find_spec('''fairseq''') is not None
__A : Dict = {'''code_eval'''}
__A : List[Any] = os.name == '''nt'''
__A : Tuple = {'''bertscore''', '''frugalscore''', '''perplexity'''}
__A : Union[str, Any] = importlib.util.find_spec('''transformers''') is not None
def A_ ( snake_case_ : Optional[int] ):
'''simple docstring'''
@wraps(snake_case_ )
def wrapper(self : Union[str, Any] ,snake_case_ : List[Any] ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("""\"test requires Fairseq\"""" )
else:
test_case(self ,snake_case_ )
return wrapper
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
@wraps(snake_case_ )
def wrapper(self : Optional[int] ,snake_case_ : Optional[Any] ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("""\"test requires transformers\"""" )
else:
test_case(self ,snake_case_ )
return wrapper
def A_ ( snake_case_ : Union[str, Any] ):
'''simple docstring'''
@wraps(snake_case_ )
def wrapper(self : Optional[Any] ,snake_case_ : Dict ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("""\"test not supported on Windows\"""" )
else:
test_case(self ,snake_case_ )
return wrapper
def A_ ( ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
@local
class lowerCamelCase ( parameterized.TestCase ):
lowercase : List[str] = {}
lowercase : Optional[Any] = None
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = """[...]"""
UpperCamelCase : List[str] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) ).module_path )
UpperCamelCase : int = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE_ )
# check parameters
UpperCamelCase : int = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(SCREAMING_SNAKE_CASE_ , metric_module.__name__ ):
with self.use_local_metrics():
try:
UpperCamelCase : int = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = """[...]"""
UpperCamelCase : int = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) ).module_path )
# run doctest
with self.use_local_metrics():
UpperCamelCase : str = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE_ ):
yield
else:
yield
@contextmanager
def a_ ( self ):
def load_local_metric(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return load_metric(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with patch("""datasets.load_metric""" ) as mock_load_metric:
UpperCamelCase : Any = load_local_metric
yield
@classmethod
def a_ ( cls , SCREAMING_SNAKE_CASE_ ):
def wrapper(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = contextmanager(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("""bleurt""" )
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("""sv""" ,"""""" ,"""""" ) # handle pytest cli flags
class lowerCamelCase ( _UpperCAmelCase ):
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
assert len(input_dict["""input_ids"""] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor:
UpperCamelCase : Tuple = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("""bertscore""" )
def A_ ( snake_case_ : Any ):
'''simple docstring'''
import torch
def bert_cos_score_idf(snake_case_ : List[Any] ,snake_case_ : int ,*snake_case_ : List[Any] ,**snake_case_ : Tuple ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("""bert_score.scorer.get_model""" ), patch(
"""bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf:
UpperCamelCase : Optional[int] = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("""comet""" )
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
def load_from_checkpoint(snake_case_ : List[str] ):
class lowerCamelCase :
def a_ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
assert len(SCREAMING_SNAKE_CASE_ ) == 2
UpperCamelCase : Dict = [0.19, 0.92]
return scores, sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("""comet.download_model""" ) as mock_download_model:
UpperCamelCase : Dict = None
with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint:
UpperCamelCase : Tuple = load_from_checkpoint
yield
def A_ ( ):
'''simple docstring'''
UpperCamelCase : List[str] = load_metric(os.path.join("""metrics""" ,"""seqeval""" ) )
UpperCamelCase : List[Any] = """ERROR"""
UpperCamelCase : Union[str, Any] = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'
with pytest.raises(snake_case_ ,match=re.escape(snake_case_ ) ):
metric.compute(predictions=[] ,references=[] ,scheme=snake_case_ )
| 356 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase : List[str] = args.log_outputs
UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] )
# load metric
UpperCamelCase : List[Any] = load_metric("""wer""" )
UpperCamelCase : Any = load_metric("""cer""" )
# compute metrics
UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] )
# print & log results
UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case_ )
with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt'
UpperCamelCase : str = f'log_{dataset_id}_targets.txt'
with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ):
p.write(f'{i}' + """\n""" )
p.write(batch["""prediction"""] + """\n""" )
t.write(f'{i}' + """\n""" )
t.write(batch["""target"""] + """\n""" )
result.map(snake_case_ ,with_indices=snake_case_ )
def A_ ( snake_case_ : str ):
'''simple docstring'''
UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """]
for t in token_sequences_to_ignore:
UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) )
return text
def A_ ( snake_case_ : str ):
'''simple docstring'''
# load dataset
UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase : Dict = feature_extractor.sampling_rate
# resample audio
UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase : int = 0 if torch.cuda.is_available() else -1
UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Union[str, Any] ):
UpperCamelCase : List[Any] = asr(
batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s )
UpperCamelCase : Union[str, Any] = prediction["""text"""]
UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] )
return batch
# run inference on all examples
UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ ,snake_case_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers'''
)
parser.add_argument(
'''--dataset''',
type=str,
required=True,
help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''',
)
parser.add_argument(
'''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice'''
)
parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''')
parser.add_argument(
'''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.'''
)
parser.add_argument(
'''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.'''
)
parser.add_argument(
'''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.'''
)
parser.add_argument(
'''--device''',
type=int,
default=None,
help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''',
)
__A : Optional[Any] = parser.parse_args()
main(args)
| 27 | 0 |
import re
import subprocess
import sys
__A : str = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''')
__A : Union[str, Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split()
__A : Dict = '''|'''.join(sys.argv[1:])
__A : int = re.compile(RF'''^({joined_dirs}).*?\.py$''')
__A : List[Any] = [x for x in modified_files if regex.match(x)]
print(''' '''.join(relevant_modified_files), end='''''')
| 357 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Union[str, Any] = 'EncodecFeatureExtractor'
lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.feature_extractor
UpperCamelCase : Any = False
def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ):
return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Any = args[0]
UpperCamelCase : str = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is not None:
UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase : int = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""]
return inputs
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Optional[int] = args[0]
UpperCamelCase : Any = args[1:]
if audio_values is not None:
return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ )
else:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape
if padding_mask is None:
return list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1]
UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value
UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = audio_values.tolist()
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 )
return audio_values
| 27 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__A : Union[str, Any] = {
'''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''],
'''configuration_data2vec_text''': [
'''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Data2VecTextConfig''',
'''Data2VecTextOnnxConfig''',
],
'''configuration_data2vec_vision''': [
'''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Data2VecVisionConfig''',
'''Data2VecVisionOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecAudioForAudioFrameClassification''',
'''Data2VecAudioForCTC''',
'''Data2VecAudioForSequenceClassification''',
'''Data2VecAudioForXVector''',
'''Data2VecAudioModel''',
'''Data2VecAudioPreTrainedModel''',
]
__A : Tuple = [
'''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecTextForCausalLM''',
'''Data2VecTextForMaskedLM''',
'''Data2VecTextForMultipleChoice''',
'''Data2VecTextForQuestionAnswering''',
'''Data2VecTextForSequenceClassification''',
'''Data2VecTextForTokenClassification''',
'''Data2VecTextModel''',
'''Data2VecTextPreTrainedModel''',
]
__A : Any = [
'''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecVisionForImageClassification''',
'''Data2VecVisionForMaskedImageModeling''',
'''Data2VecVisionForSemanticSegmentation''',
'''Data2VecVisionModel''',
'''Data2VecVisionPreTrainedModel''',
]
if is_tf_available():
__A : Union[str, Any] = [
'''TFData2VecVisionForImageClassification''',
'''TFData2VecVisionForSemanticSegmentation''',
'''TFData2VecVisionModel''',
'''TFData2VecVisionPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
__A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 358 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ):
'''simple docstring'''
UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" )
UpperCamelCase : Optional[int] = soup.findAll("""h1""" )
UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} )
values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''')
| 27 | 0 |
import qiskit
def A_ ( snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : str = qiskit.Aer.get_backend("""aer_simulator""" )
UpperCamelCase : Any = qiskit.QuantumCircuit(4 ,2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 ,2 )
qc_ha.cx(1 ,2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 ,1 ,3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 ,0 ) # extract XOR value
qc_ha.measure(3 ,1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCamelCase : Optional[Any] = qiskit.execute(snake_case_ ,snake_case_ ,shots=1_0_0_0 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(snake_case_ )
if __name__ == "__main__":
__A : str = half_adder(1, 1)
print(F'''Half Adder Output Qubit Counts: {counts}''')
| 359 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ):
UpperCamelCase : Tuple = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : Optional[Any] = seq_length
UpperCamelCase : int = is_training
UpperCamelCase : Union[str, Any] = use_input_mask
UpperCamelCase : Union[str, Any] = use_token_type_ids
UpperCamelCase : Dict = use_labels
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : Tuple = num_hidden_layers
UpperCamelCase : Any = num_attention_heads
UpperCamelCase : int = intermediate_size
UpperCamelCase : str = hidden_act
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : List[Any] = max_position_embeddings
UpperCamelCase : Optional[Any] = type_vocab_size
UpperCamelCase : int = type_sequence_label_size
UpperCamelCase : Dict = initializer_range
UpperCamelCase : Dict = num_labels
UpperCamelCase : Tuple = num_choices
UpperCamelCase : Optional[int] = scope
UpperCamelCase : List[Any] = q_groups
UpperCamelCase : Tuple = k_groups
UpperCamelCase : Any = v_groups
UpperCamelCase : List[str] = post_attention_groups
UpperCamelCase : Tuple = intermediate_groups
UpperCamelCase : int = output_groups
def a_ ( self ):
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Tuple = None
if self.use_input_mask:
UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Optional[int] = None
UpperCamelCase : List[Any] = None
UpperCamelCase : Dict = None
if self.use_labels:
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : str = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.num_labels
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = self.num_labels
UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = self.num_choices
UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : Optional[int] = self.prepare_config_and_inputs()
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs
UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
lowercase : Dict = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Dict = False
lowercase : str = True
lowercase : str = False
def a_ ( self ):
UpperCamelCase : Any = SqueezeBertModelTester(self )
UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def a_ ( self ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0]
UpperCamelCase : Optional[Any] = torch.Size((1, 3) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 27 | 0 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCamelCase ( nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ):
super().__init__()
UpperCamelCase : int = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCamelCase : Optional[Any] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCamelCase : List[Any] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCamelCase : int = [1, 0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ):
UpperCamelCase : Dict = hidden_states
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCamelCase : str = self.transformer_index_for_condition[i]
UpperCamelCase : Any = self.transformers[transformer_index](
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCamelCase : List[str] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 360 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCamelCase ( nn.Module ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ):
super().__init__()
UpperCamelCase : int = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCamelCase : Optional[Any] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCamelCase : List[Any] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCamelCase : int = [1, 0]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ):
UpperCamelCase : Dict = hidden_states
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCamelCase : str = self.transformer_index_for_condition[i]
UpperCamelCase : Any = self.transformers[transformer_index](
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCamelCase : List[str] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 27 | 0 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
UpperCamelCase : List[str] = fname.split(os.path.sep )[-1]
return re.search(R"""^(.*)_\d+\.jpg$""" ,snake_case_ ).groups()[0]
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ):
UpperCamelCase : Union[str, Any] = file_names
UpperCamelCase : Any = image_transform
UpperCamelCase : Tuple = label_to_id
def __len__( self ):
return len(self.file_names )
def __getitem__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = self.file_names[idx]
UpperCamelCase : Optional[int] = PIL.Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = raw_image.convert("""RGB""" )
if self.image_transform is not None:
UpperCamelCase : List[str] = self.image_transform(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = extract_label(SCREAMING_SNAKE_CASE_ )
if self.label_to_id is not None:
UpperCamelCase : Tuple = self.label_to_id[label]
return {"image": image, "label": label}
def A_ ( snake_case_ : List[str] ,snake_case_ : Any ):
'''simple docstring'''
# Initialize accelerator
if args.with_tracking:
UpperCamelCase : List[Any] = Accelerator(
cpu=args.cpu ,mixed_precision=args.mixed_precision ,log_with="""all""" ,project_dir=args.project_dir )
else:
UpperCamelCase : Dict = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase : int = config["""lr"""]
UpperCamelCase : Any = int(config["""num_epochs"""] )
UpperCamelCase : Any = int(config["""seed"""] )
UpperCamelCase : List[Any] = int(config["""batch_size"""] )
UpperCamelCase : Optional[int] = config["""image_size"""]
if not isinstance(snake_case_ ,(list, tuple) ):
UpperCamelCase : List[Any] = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps ,"""isdigit""" ):
if args.checkpointing_steps == "epoch":
UpperCamelCase : int = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCamelCase : List[str] = int(args.checkpointing_steps )
else:
raise ValueError(
f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' )
else:
UpperCamelCase : int = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCamelCase : List[Any] = os.path.split(snake_case_ )[-1].split(""".""" )[0]
accelerator.init_trackers(snake_case_ ,snake_case_ )
# Grab all the image filenames
UpperCamelCase : Optional[Any] = [os.path.join(args.data_dir ,snake_case_ ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )]
# Build the label correspondences
UpperCamelCase : int = [extract_label(snake_case_ ) for fname in file_names]
UpperCamelCase : int = list(set(snake_case_ ) )
id_to_label.sort()
UpperCamelCase : Optional[int] = {lbl: i for i, lbl in enumerate(snake_case_ )}
# Set the seed before splitting the data.
np.random.seed(snake_case_ )
torch.manual_seed(snake_case_ )
torch.cuda.manual_seed_all(snake_case_ )
# Split our filenames between train and validation
UpperCamelCase : Any = np.random.permutation(len(snake_case_ ) )
UpperCamelCase : Any = int(0.8 * len(snake_case_ ) )
UpperCamelCase : List[str] = random_perm[:cut]
UpperCamelCase : int = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCamelCase : Any = Compose([RandomResizedCrop(snake_case_ ,scale=(0.5, 1.0) ), ToTensor()] )
UpperCamelCase : Dict = PetsDataset(
[file_names[i] for i in train_split] ,image_transform=snake_case_ ,label_to_id=snake_case_ )
# For evaluation, we use a deterministic Resize
UpperCamelCase : str = Compose([Resize(snake_case_ ), ToTensor()] )
UpperCamelCase : int = PetsDataset([file_names[i] for i in eval_split] ,image_transform=snake_case_ ,label_to_id=snake_case_ )
# Instantiate dataloaders.
UpperCamelCase : Optional[Any] = DataLoader(snake_case_ ,shuffle=snake_case_ ,batch_size=snake_case_ ,num_workers=4 )
UpperCamelCase : Tuple = DataLoader(snake_case_ ,shuffle=snake_case_ ,batch_size=snake_case_ ,num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase : List[Any] = create_model("""resnet50d""" ,pretrained=snake_case_ ,num_classes=len(snake_case_ ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase : str = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCamelCase : int = False
for param in model.get_classifier().parameters():
UpperCamelCase : List[Any] = True
# We normalize the batches of images to be a bit faster.
UpperCamelCase : Union[str, Any] = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device )
UpperCamelCase : Optional[int] = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCamelCase : Any = torch.optim.Adam(params=model.parameters() ,lr=lr / 2_5 )
# Instantiate learning rate scheduler
UpperCamelCase : Optional[int] = OneCycleLR(optimizer=snake_case_ ,max_lr=snake_case_ ,epochs=snake_case_ ,steps_per_epoch=len(snake_case_ ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase : Tuple = accelerator.prepare(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# We need to keep track of how many total steps we have iterated over
UpperCamelCase : Optional[Any] = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCamelCase : Optional[int] = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' )
accelerator.load_state(args.resume_from_checkpoint )
UpperCamelCase : int = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCamelCase : Dict = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCamelCase : str = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCamelCase : List[Any] = os.path.splitext(snake_case_ )[0]
if "epoch" in training_difference:
UpperCamelCase : Tuple = int(training_difference.replace("""epoch_""" ,"""""" ) ) + 1
UpperCamelCase : Dict = None
else:
UpperCamelCase : int = int(training_difference.replace("""step_""" ,"""""" ) )
UpperCamelCase : Optional[int] = resume_step // len(snake_case_ )
resume_step -= starting_epoch * len(snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ,snake_case_ ):
model.train()
if args.with_tracking:
UpperCamelCase : List[str] = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCamelCase : Any = accelerator.skip_first_batches(snake_case_ ,snake_case_ )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCamelCase : str = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCamelCase : Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCamelCase : Union[str, Any] = (batch["""image"""] - mean) / std
UpperCamelCase : str = model(snake_case_ )
UpperCamelCase : List[Any] = torch.nn.functional.cross_entropy(snake_case_ ,batch["""label"""] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(snake_case_ ,snake_case_ ):
UpperCamelCase : Union[str, Any] = f'step_{overall_step}'
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCamelCase : int = os.path.join(args.output_dir ,snake_case_ )
accelerator.save_state(snake_case_ )
model.eval()
UpperCamelCase : int = 0
UpperCamelCase : List[Any] = 0
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCamelCase : str = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCamelCase : Optional[int] = (batch["""image"""] - mean) / std
with torch.no_grad():
UpperCamelCase : Any = model(snake_case_ )
UpperCamelCase : List[str] = outputs.argmax(dim=-1 )
UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""label"""]) )
UpperCamelCase : Dict = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCamelCase : int = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}: {1_0_0 * eval_metric:.2f}' )
if args.with_tracking:
accelerator.log(
{
"""accuracy""": 1_0_0 * eval_metric,
"""train_loss""": total_loss.item() / len(snake_case_ ),
"""epoch""": epoch,
} ,step=snake_case_ ,)
if checkpointing_steps == "epoch":
UpperCamelCase : Any = f'epoch_{epoch}'
if args.output_dir is not None:
UpperCamelCase : int = os.path.join(args.output_dir ,snake_case_ )
accelerator.save_state(snake_case_ )
if args.with_tracking:
accelerator.end_training()
def A_ ( ):
'''simple docstring'''
UpperCamelCase : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument("""--data_dir""" ,required=snake_case_ ,help="""The data folder on disk.""" )
parser.add_argument("""--fp16""" ,action="""store_true""" ,help="""If passed, will use FP16 training.""" )
parser.add_argument(
"""--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
parser.add_argument(
"""--checkpointing_steps""" ,type=snake_case_ ,default=snake_case_ ,help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" ,)
parser.add_argument(
"""--output_dir""" ,type=snake_case_ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,)
parser.add_argument(
"""--resume_from_checkpoint""" ,type=snake_case_ ,default=snake_case_ ,help="""If the training should continue from a checkpoint folder.""" ,)
parser.add_argument(
"""--with_tracking""" ,action="""store_true""" ,help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" ,)
parser.add_argument(
"""--project_dir""" ,type=snake_case_ ,default="""logs""" ,help="""Location on where to store experiment tracking logs` and relevent project information""" ,)
UpperCamelCase : int = parser.parse_args()
UpperCamelCase : List[Any] = {"""lr""": 3e-2, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 6_4, """image_size""": 2_2_4}
training_function(snake_case_ ,snake_case_ )
if __name__ == "__main__":
main()
| 361 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : Optional[int] = {
'''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''',
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Optional[int] = 'mvp'
lowercase : Optional[Any] = ['past_key_values']
lowercase : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_0267 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=800 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Dict = max_position_embeddings
UpperCamelCase : Optional[int] = d_model
UpperCamelCase : Optional[Any] = encoder_ffn_dim
UpperCamelCase : Any = encoder_layers
UpperCamelCase : List[Any] = encoder_attention_heads
UpperCamelCase : Optional[Any] = decoder_ffn_dim
UpperCamelCase : Optional[int] = decoder_layers
UpperCamelCase : Dict = decoder_attention_heads
UpperCamelCase : List[str] = dropout
UpperCamelCase : List[str] = attention_dropout
UpperCamelCase : List[Any] = activation_dropout
UpperCamelCase : Dict = activation_function
UpperCamelCase : List[str] = init_std
UpperCamelCase : int = encoder_layerdrop
UpperCamelCase : Dict = decoder_layerdrop
UpperCamelCase : Any = classifier_dropout
UpperCamelCase : Tuple = use_cache
UpperCamelCase : Dict = encoder_layers
UpperCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCamelCase : Optional[Any] = use_prompt
UpperCamelCase : Any = prompt_length
UpperCamelCase : List[Any] = prompt_mid_dim
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = self.bos_token_id
warnings.warn(
f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
"""The config can simply be saved and uploaded again to be fixed.""" )
| 27 | 0 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__A : Tuple = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__A : List[Any] = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__A : Tuple = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( snake_case_ : str ):
'''simple docstring'''
def remove_articles(snake_case_ : Dict ):
UpperCamelCase : str = re.compile(R"""\b(a|an|the)\b""" ,re.UNICODE )
return re.sub(snake_case_ ,""" """ ,snake_case_ )
def white_space_fix(snake_case_ : Optional[int] ):
return " ".join(text.split() )
def remove_punc(snake_case_ : Union[str, Any] ):
UpperCamelCase : Union[str, Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(snake_case_ : Optional[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) )
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Union[str, Any] ):
'''simple docstring'''
return int(normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) )
def A_ ( snake_case_ : Any ,snake_case_ : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase : List[Any] = [any(compute_exact(snake_case_ ,snake_case_ ) for ref in refs ) for pred, refs in zip(snake_case_ ,snake_case_ )]
return (sum(snake_case_ ) / len(snake_case_ )) * 1_0_0
def A_ ( snake_case_ : str ,snake_case_ : Any ,snake_case_ : List[str] ,snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams]
UpperCamelCase : Dict = Counter(snake_case_ )
UpperCamelCase : Optional[int] = Counter(snake_case_ )
UpperCamelCase : Optional[int] = Counter()
for sgram, scount in sgramcounter.items():
UpperCamelCase : List[str] = scount * numref
UpperCamelCase : Any = Counter(snake_case_ )
UpperCamelCase : Any = Counter()
for cgram, ccount in cgramcounter.items():
UpperCamelCase : Union[str, Any] = ccount * numref
# KEEP
UpperCamelCase : Optional[Any] = sgramcounter_rep & cgramcounter_rep
UpperCamelCase : Optional[int] = keepgramcounter_rep & rgramcounter
UpperCamelCase : int = sgramcounter_rep & rgramcounter
UpperCamelCase : Union[str, Any] = 0
UpperCamelCase : Tuple = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCamelCase : List[Any] = 1
UpperCamelCase : List[str] = 1
if len(snake_case_ ) > 0:
UpperCamelCase : List[Any] = keeptmpscorea / len(snake_case_ )
if len(snake_case_ ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
UpperCamelCase : Tuple = keeptmpscorea / sum(keepgramcounterall_rep.values() )
UpperCamelCase : List[Any] = 0
if keepscore_precision > 0 or keepscore_recall > 0:
UpperCamelCase : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
UpperCamelCase : str = sgramcounter_rep - cgramcounter_rep
UpperCamelCase : Optional[int] = delgramcounter_rep - rgramcounter
UpperCamelCase : List[Any] = sgramcounter_rep - rgramcounter
UpperCamelCase : List[Any] = 0
UpperCamelCase : Optional[Any] = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCamelCase : Tuple = 1
if len(snake_case_ ) > 0:
UpperCamelCase : str = deltmpscorea / len(snake_case_ )
# ADDITION
UpperCamelCase : str = set(snake_case_ ) - set(snake_case_ )
UpperCamelCase : Any = set(snake_case_ ) & set(snake_case_ )
UpperCamelCase : Union[str, Any] = set(snake_case_ ) - set(snake_case_ )
UpperCamelCase : Any = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCamelCase : Any = 1
UpperCamelCase : Tuple = 1
if len(snake_case_ ) > 0:
UpperCamelCase : List[str] = addtmpscore / len(snake_case_ )
if len(snake_case_ ) > 0:
UpperCamelCase : Any = addtmpscore / len(snake_case_ )
UpperCamelCase : Optional[Any] = 0
if addscore_precision > 0 or addscore_recall > 0:
UpperCamelCase : Optional[int] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Union[str, Any] ,snake_case_ : Any ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = len(snake_case_ )
UpperCamelCase : Dict = ssent.split(""" """ )
UpperCamelCase : Optional[Any] = csent.split(""" """ )
UpperCamelCase : Union[str, Any] = []
UpperCamelCase : List[str] = []
UpperCamelCase : str = []
UpperCamelCase : Any = []
UpperCamelCase : Optional[Any] = []
UpperCamelCase : str = []
UpperCamelCase : Any = []
UpperCamelCase : Tuple = []
UpperCamelCase : Any = []
UpperCamelCase : Optional[Any] = []
for rsent in rsents:
UpperCamelCase : Any = rsent.split(""" """ )
UpperCamelCase : Union[str, Any] = []
UpperCamelCase : List[str] = []
UpperCamelCase : str = []
ragramslist.append(snake_case_ )
for i in range(0 ,len(snake_case_ ) - 1 ):
if i < len(snake_case_ ) - 1:
UpperCamelCase : str = ragrams[i] + """ """ + ragrams[i + 1]
ragrams.append(snake_case_ )
if i < len(snake_case_ ) - 2:
UpperCamelCase : Optional[int] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2]
ragrams.append(snake_case_ )
if i < len(snake_case_ ) - 3:
UpperCamelCase : Any = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3]
ragrams.append(snake_case_ )
ragramslist.append(snake_case_ )
ragramslist.append(snake_case_ )
ragramslist.append(snake_case_ )
for i in range(0 ,len(snake_case_ ) - 1 ):
if i < len(snake_case_ ) - 1:
UpperCamelCase : Dict = sagrams[i] + """ """ + sagrams[i + 1]
sagrams.append(snake_case_ )
if i < len(snake_case_ ) - 2:
UpperCamelCase : Optional[Any] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2]
sagrams.append(snake_case_ )
if i < len(snake_case_ ) - 3:
UpperCamelCase : List[str] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3]
sagrams.append(snake_case_ )
for i in range(0 ,len(snake_case_ ) - 1 ):
if i < len(snake_case_ ) - 1:
UpperCamelCase : Optional[Any] = cagrams[i] + """ """ + cagrams[i + 1]
cagrams.append(snake_case_ )
if i < len(snake_case_ ) - 2:
UpperCamelCase : Optional[Any] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2]
cagrams.append(snake_case_ )
if i < len(snake_case_ ) - 3:
UpperCamelCase : Optional[int] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3]
cagrams.append(snake_case_ )
(UpperCamelCase) : str = SARIngram(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
(UpperCamelCase) : List[Any] = SARIngram(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
(UpperCamelCase) : List[Any] = SARIngram(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
(UpperCamelCase) : Any = SARIngram(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
UpperCamelCase : Optional[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
UpperCamelCase : Any = sum([delascore, delascore, delascore, delascore] ) / 4
UpperCamelCase : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4
UpperCamelCase : Any = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : bool = True ,snake_case_ : str = "13a" ,snake_case_ : bool = True ):
'''simple docstring'''
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
UpperCamelCase : int = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
UpperCamelCase : Any = sacrebleu.metrics.bleu._get_tokenizer(snake_case_ )()(snake_case_ )
else:
UpperCamelCase : List[str] = sacrebleu.TOKENIZERS[tokenizer]()(snake_case_ )
elif tokenizer == "moses":
UpperCamelCase : Any = sacremoses.MosesTokenizer().tokenize(snake_case_ ,return_str=snake_case_ ,escape=snake_case_ )
elif tokenizer == "penn":
UpperCamelCase : str = sacremoses.MosesTokenizer().penn_tokenize(snake_case_ ,return_str=snake_case_ )
else:
UpperCamelCase : List[str] = sentence
if not return_str:
UpperCamelCase : Union[str, Any] = normalized_sent.split()
return normalized_sent
def A_ ( snake_case_ : List[str] ,snake_case_ : List[Any] ,snake_case_ : int ):
'''simple docstring'''
if not (len(snake_case_ ) == len(snake_case_ ) == len(snake_case_ )):
raise ValueError("""Sources length must match predictions and references lengths.""" )
UpperCamelCase : Tuple = 0
for src, pred, refs in zip(snake_case_ ,snake_case_ ,snake_case_ ):
sari_score += SARIsent(normalize(snake_case_ ) ,normalize(snake_case_ ) ,[normalize(snake_case_ ) for sent in refs] )
UpperCamelCase : List[Any] = sari_score / len(snake_case_ )
return 1_0_0 * sari_score
def A_ ( snake_case_ : Optional[Any] ,snake_case_ : List[Any] ,snake_case_ : List[Any]="exp" ,snake_case_ : Dict=None ,snake_case_ : int=False ,snake_case_ : List[str]=False ,snake_case_ : Optional[Any]=False ,):
'''simple docstring'''
UpperCamelCase : Dict = len(references[0] )
if any(len(snake_case_ ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
UpperCamelCase : Dict = [[refs[i] for refs in references] for i in range(snake_case_ )]
UpperCamelCase : Optional[int] = sacrebleu.corpus_bleu(
snake_case_ ,snake_case_ ,smooth_method=snake_case_ ,smooth_value=snake_case_ ,force=snake_case_ ,lowercase=snake_case_ ,use_effective_order=snake_case_ ,)
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def a_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=[
"""https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""",
"""https://github.com/cocoxu/simplification/blob/master/SARI.py""",
"""https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""",
"""https://github.com/mjpost/sacreBLEU""",
] , reference_urls=[
"""https://www.aclweb.org/anthology/Q16-1029.pdf""",
"""https://github.com/mjpost/sacreBLEU""",
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[int] = {}
result.update({"""sari""": compute_sari(sources=SCREAMING_SNAKE_CASE_ , predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ )} )
result.update({"""sacrebleu""": compute_sacrebleu(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ )} )
result.update({"""exact""": compute_em(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ )} )
return result
| 362 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A : Optional[Any] = 16
__A : str = 32
def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ):
'''simple docstring'''
UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
UpperCamelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" )
def tokenize_function(snake_case_ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase : Optional[Any] = datasets.map(
snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase : Optional[Any] = 1_6
elif accelerator.mixed_precision != "no":
UpperCamelCase : Any = 8
else:
UpperCamelCase : Optional[Any] = None
return tokenizer.pad(
snake_case_ ,padding="""longest""" ,max_length=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_tensors="""pt""" ,)
# Instantiate dataloaders.
UpperCamelCase : str = DataLoader(
tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
UpperCamelCase : Dict = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A : int = mocked_dataloaders # noqa: F811
def A_ ( snake_case_ : Tuple ,snake_case_ : Dict ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case_ ) == "1":
UpperCamelCase : Union[str, Any] = 2
# New Code #
UpperCamelCase : Dict = int(args.gradient_accumulation_steps )
UpperCamelCase : List[Any] = int(args.local_sgd_steps )
# Initialize accelerator
UpperCamelCase : str = Accelerator(
cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case_ )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase : Union[str, Any] = config["""lr"""]
UpperCamelCase : int = int(config["""num_epochs"""] )
UpperCamelCase : int = int(config["""seed"""] )
UpperCamelCase : List[Any] = int(config["""batch_size"""] )
UpperCamelCase : Optional[int] = evaluate.load("""glue""" ,"""mrpc""" )
set_seed(snake_case_ )
UpperCamelCase , UpperCamelCase : Dict = get_dataloaders(snake_case_ ,snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase : Tuple = model.to(accelerator.device )
# Instantiate optimizer
UpperCamelCase : List[Any] = AdamW(params=model.parameters() ,lr=snake_case_ )
# Instantiate scheduler
UpperCamelCase : str = get_linear_schedule_with_warmup(
optimizer=snake_case_ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(snake_case_ ) * num_epochs) ,)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare(
snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
with LocalSGD(
accelerator=snake_case_ ,model=snake_case_ ,local_sgd_steps=snake_case_ ,enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(snake_case_ ):
UpperCamelCase : Optional[Any] = model(**snake_case_ )
UpperCamelCase : Optional[int] = output.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCamelCase : Any = model(**snake_case_ )
UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 )
UpperCamelCase , UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=snake_case_ ,references=snake_case_ ,)
UpperCamelCase : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' ,snake_case_ )
def A_ ( ):
'''simple docstring'''
UpperCamelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" ,type=snake_case_ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,)
parser.add_argument(
"""--local_sgd_steps""" ,type=snake_case_ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" )
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
UpperCamelCase : Dict = parser.parse_args()
UpperCamelCase : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(snake_case_ ,snake_case_ )
if __name__ == "__main__":
main()
| 27 | 0 |
"""simple docstring"""
def A_ ( snake_case_ : list[list[int]] ,snake_case_ : int ,snake_case_ : int ,snake_case_ : set ):
'''simple docstring'''
UpperCamelCase : int = len(snake_case_ ), len(grid[0] )
if (
min(snake_case_ ,snake_case_ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
UpperCamelCase : Optional[int] = 0
count += depth_first_search(snake_case_ ,row + 1 ,snake_case_ ,snake_case_ )
count += depth_first_search(snake_case_ ,row - 1 ,snake_case_ ,snake_case_ )
count += depth_first_search(snake_case_ ,snake_case_ ,col + 1 ,snake_case_ )
count += depth_first_search(snake_case_ ,snake_case_ ,col - 1 ,snake_case_ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363 |
"""simple docstring"""
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
__A : Any = logging.get_logger(__name__)
__A : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__A : Optional[Any] = {
'''vocab_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'''
},
'''merges_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'''
},
}
__A : Any = {'''allegro/herbert-base-cased''': 514}
__A : Optional[Any] = {}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : Dict = VOCAB_FILES_NAMES
lowercase : Any = PRETRAINED_VOCAB_FILES_MAP
lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Union[str, Any] = HerbertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="</s>" , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Dict = [self.cls_token_id]
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Tuple = [self.sep_token_id]
UpperCamelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
| 27 | 0 |
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A : str = logging.get_logger(__name__)
__A : List[str] = {'''vocab_file''': '''spiece.model'''}
__A : List[Any] = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
}
}
__A : List[str] = {
'''google/bigbird-roberta-base''': 4096,
'''google/bigbird-roberta-large''': 4096,
'''google/bigbird-base-trivia-itc''': 4096,
}
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : int = VOCAB_FILES_NAMES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] = ['input_ids', 'attention_mask']
lowercase : List[int] = []
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
UpperCamelCase : Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
UpperCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Dict = vocab_file
UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(SCREAMING_SNAKE_CASE_ )
@property
def a_ ( self ):
return self.sp_model.get_piece_size()
def a_ ( self ):
UpperCamelCase : Any = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
UpperCamelCase : Dict = self.__dict__.copy()
UpperCamelCase : List[str] = None
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCamelCase : Optional[Any] = {}
UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : str = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ )
return token
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = []
UpperCamelCase : Dict = """"""
UpperCamelCase : Tuple = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token
UpperCamelCase : List[str] = True
UpperCamelCase : str = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = False
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ )
return out_string.strip()
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = kwargs.pop("""use_source_tokenizer""" , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
UpperCamelCase : Dict = []
UpperCamelCase : Union[str, Any] = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Any = []
sub_texts.append(SCREAMING_SNAKE_CASE_ )
else:
current_sub_text.append(SCREAMING_SNAKE_CASE_ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
UpperCamelCase : List[Any] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(SCREAMING_SNAKE_CASE_ ) )
else:
UpperCamelCase : int = """""".join(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
UpperCamelCase : Union[str, Any] = self.clean_up_tokenization(SCREAMING_SNAKE_CASE_ )
return clean_text
else:
return text
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi:
UpperCamelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase : Optional[int] = [self.cls_token_id]
UpperCamelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : str = [self.sep_token_id]
UpperCamelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 364 |
"""simple docstring"""
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ):
UpperCamelCase : Dict = tokenizer
UpperCamelCase : Optional[Any] = tokenizer.bos_token_id
UpperCamelCase : Any = dataset
UpperCamelCase : List[str] = seq_length
UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self ):
UpperCamelCase : Dict = iter(self.dataset )
UpperCamelCase : Union[str, Any] = True
while more_examples:
UpperCamelCase , UpperCamelCase : Tuple = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
UpperCamelCase : Dict = False
break
UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""]
UpperCamelCase : str = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ):
UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length]
if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length:
yield torch.tensor(SCREAMING_SNAKE_CASE_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
UpperCamelCase : Dict = {"""streaming""": True}
UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ )
UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length )
UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size )
return eval_dataloader
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
model.eval()
UpperCamelCase : Dict = []
for step, batch in enumerate(snake_case_ ):
with torch.no_grad():
UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ )
UpperCamelCase : Any = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(snake_case_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) )
try:
UpperCamelCase : Dict = torch.exp(snake_case_ )
except OverflowError:
UpperCamelCase : Optional[int] = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
__A : List[Any] = Accelerator()
# Parse configuration
__A : str = HfArgumentParser(EvaluationArguments)
__A : List[Any] = parser.parse_args()
set_seed(args.seed)
# Logging
__A : Any = logging.getLogger(__name__)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
# Load model and tokenizer
__A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
__A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
__A : int = create_dataloader(args)
# Prepare everything with our `accelerator`.
__A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('''Evaluating and saving model after training''')
__A , __A : Tuple = evaluate(args)
logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 27 | 0 |
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def A_ ( snake_case_ : Any ):
'''simple docstring'''
UpperCamelCase : Optional[int] = VideoMAEConfig()
set_architecture_configs(snake_case_ ,snake_case_ )
if "finetuned" not in model_name:
UpperCamelCase : Tuple = False
if "finetuned" in model_name:
UpperCamelCase : Union[str, Any] = """huggingface/label-files"""
if "kinetics" in model_name:
UpperCamelCase : Dict = 4_0_0
UpperCamelCase : str = """kinetics400-id2label.json"""
elif "ssv2" in model_name:
UpperCamelCase : int = 1_7_4
UpperCamelCase : int = """something-something-v2-id2label.json"""
else:
raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" )
UpperCamelCase : List[str] = json.load(open(hf_hub_download(snake_case_ ,snake_case_ ,repo_type="""dataset""" ) ,"""r""" ) )
UpperCamelCase : Union[str, Any] = {int(snake_case_ ): v for k, v in idalabel.items()}
UpperCamelCase : List[Any] = idalabel
UpperCamelCase : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def A_ ( snake_case_ : Optional[int] ,snake_case_ : List[Any] ):
'''simple docstring'''
if "small" in model_name:
UpperCamelCase : List[Any] = 3_8_4
UpperCamelCase : Any = 1_5_3_6
UpperCamelCase : Any = 1_2
UpperCamelCase : Union[str, Any] = 1_6
UpperCamelCase : List[str] = 1_2
UpperCamelCase : Union[str, Any] = 3
UpperCamelCase : Any = 1_9_2
UpperCamelCase : Tuple = 7_6_8
elif "large" in model_name:
UpperCamelCase : str = 1_0_2_4
UpperCamelCase : Union[str, Any] = 4_0_9_6
UpperCamelCase : Optional[int] = 2_4
UpperCamelCase : Dict = 1_6
UpperCamelCase : Optional[int] = 1_2
UpperCamelCase : Optional[int] = 8
UpperCamelCase : int = 5_1_2
UpperCamelCase : List[Any] = 2_0_4_8
elif "huge" in model_name:
UpperCamelCase : Tuple = 1_2_8_0
UpperCamelCase : List[str] = 5_1_2_0
UpperCamelCase : List[str] = 3_2
UpperCamelCase : int = 1_6
UpperCamelCase : Union[str, Any] = 1_2
UpperCamelCase : int = 8
UpperCamelCase : Union[str, Any] = 6_4_0
UpperCamelCase : Optional[Any] = 2_5_6_0
elif "base" not in model_name:
raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" )
def A_ ( snake_case_ : Dict ):
'''simple docstring'''
if "encoder." in name:
UpperCamelCase : List[str] = name.replace("""encoder.""" ,"""""" )
if "cls_token" in name:
UpperCamelCase : Tuple = name.replace("""cls_token""" ,"""videomae.embeddings.cls_token""" )
if "decoder_pos_embed" in name:
UpperCamelCase : Optional[Any] = name.replace("""decoder_pos_embed""" ,"""decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
UpperCamelCase : Optional[int] = name.replace("""pos_embed""" ,"""videomae.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
UpperCamelCase : List[Any] = name.replace("""patch_embed.proj""" ,"""videomae.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
UpperCamelCase : Optional[int] = name.replace("""patch_embed.norm""" ,"""videomae.embeddings.norm""" )
if "decoder.blocks" in name:
UpperCamelCase : List[str] = name.replace("""decoder.blocks""" ,"""decoder.decoder_layers""" )
if "blocks" in name:
UpperCamelCase : str = name.replace("""blocks""" ,"""videomae.encoder.layer""" )
if "attn.proj" in name:
UpperCamelCase : Any = name.replace("""attn.proj""" ,"""attention.output.dense""" )
if "attn" in name and "bias" not in name:
UpperCamelCase : Union[str, Any] = name.replace("""attn""" ,"""attention.self""" )
if "attn" in name:
UpperCamelCase : Tuple = name.replace("""attn""" ,"""attention.attention""" )
if "norm1" in name:
UpperCamelCase : str = name.replace("""norm1""" ,"""layernorm_before""" )
if "norm2" in name:
UpperCamelCase : Any = name.replace("""norm2""" ,"""layernorm_after""" )
if "mlp.fc1" in name:
UpperCamelCase : int = name.replace("""mlp.fc1""" ,"""intermediate.dense""" )
if "mlp.fc2" in name:
UpperCamelCase : Union[str, Any] = name.replace("""mlp.fc2""" ,"""output.dense""" )
if "decoder_embed" in name:
UpperCamelCase : Dict = name.replace("""decoder_embed""" ,"""decoder.decoder_embed""" )
if "decoder_norm" in name:
UpperCamelCase : int = name.replace("""decoder_norm""" ,"""decoder.decoder_norm""" )
if "decoder_pred" in name:
UpperCamelCase : Optional[int] = name.replace("""decoder_pred""" ,"""decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
UpperCamelCase : Tuple = name.replace("""norm.weight""" ,"""videomae.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
UpperCamelCase : int = name.replace("""norm.bias""" ,"""videomae.layernorm.bias""" )
if "head" in name and "decoder" not in name:
UpperCamelCase : Dict = name.replace("""head""" ,"""classifier""" )
return name
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCamelCase : Tuple = orig_state_dict.pop(snake_case_ )
if key.startswith("""encoder.""" ):
UpperCamelCase : Union[str, Any] = key.replace("""encoder.""" ,"""""" )
if "qkv" in key:
UpperCamelCase : Optional[Any] = key.split(""".""" )
if key.startswith("""decoder.blocks""" ):
UpperCamelCase : Optional[int] = config.decoder_hidden_size
UpperCamelCase : List[str] = int(key_split[2] )
UpperCamelCase : Optional[Any] = """decoder.decoder_layers."""
if "weight" in key:
UpperCamelCase : Union[str, Any] = val[:dim, :]
UpperCamelCase : Optional[int] = val[dim : dim * 2, :]
UpperCamelCase : Optional[int] = val[-dim:, :]
else:
UpperCamelCase : List[str] = config.hidden_size
UpperCamelCase : Optional[int] = int(key_split[1] )
UpperCamelCase : List[Any] = """videomae.encoder.layer."""
if "weight" in key:
UpperCamelCase : str = val[:dim, :]
UpperCamelCase : Optional[int] = val[dim : dim * 2, :]
UpperCamelCase : List[str] = val[-dim:, :]
else:
UpperCamelCase : Tuple = val
return orig_state_dict
def A_ ( ):
'''simple docstring'''
UpperCamelCase : List[str] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" )
UpperCamelCase : List[Any] = np.load(snake_case_ )
return list(snake_case_ )
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Optional[Any] ,snake_case_ : Optional[Any] ,snake_case_ : Tuple ):
'''simple docstring'''
UpperCamelCase : int = get_videomae_config(snake_case_ )
if "finetuned" in model_name:
UpperCamelCase : Any = VideoMAEForVideoClassification(snake_case_ )
else:
UpperCamelCase : Dict = VideoMAEForPreTraining(snake_case_ )
# download original checkpoint, hosted on Google Drive
UpperCamelCase : str = """pytorch_model.bin"""
gdown.cached_download(snake_case_ ,snake_case_ ,quiet=snake_case_ )
UpperCamelCase : Optional[Any] = torch.load(snake_case_ ,map_location="""cpu""" )
if "model" in files:
UpperCamelCase : Optional[Any] = files["""model"""]
else:
UpperCamelCase : Optional[Any] = files["""module"""]
UpperCamelCase : Optional[int] = convert_state_dict(snake_case_ ,snake_case_ )
model.load_state_dict(snake_case_ )
model.eval()
# verify model on basic input
UpperCamelCase : Dict = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] )
UpperCamelCase : Optional[int] = prepare_video()
UpperCamelCase : Any = image_processor(snake_case_ ,return_tensors="""pt""" )
if "finetuned" not in model_name:
UpperCamelCase : Tuple = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" ,filename="""bool_masked_pos.pt""" )
UpperCamelCase : Optional[Any] = torch.load(snake_case_ )
UpperCamelCase : Any = model(**snake_case_ )
UpperCamelCase : List[Any] = outputs.logits
UpperCamelCase : Tuple = [
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
UpperCamelCase : Tuple = torch.Size([1, 4_0_0] )
UpperCamelCase : Optional[Any] = torch.tensor([-0.9291, -0.4061, -0.9307] )
elif model_name == "videomae-small-finetuned-ssv2":
UpperCamelCase : Optional[Any] = torch.Size([1, 1_7_4] )
UpperCamelCase : Dict = torch.tensor([0.2671, -0.4689, -0.8235] )
elif model_name == "videomae-base":
UpperCamelCase : List[Any] = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : Dict = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] )
elif model_name == "videomae-base-short":
UpperCamelCase : Optional[int] = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : Optional[int] = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] )
# we verified the loss both for normalized and unnormalized targets for this one
UpperCamelCase : str = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] )
elif model_name == "videomae-large":
UpperCamelCase : Any = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : str = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] )
elif model_name == "videomae-large-finetuned-kinetics":
UpperCamelCase : Optional[int] = torch.Size([1, 4_0_0] )
UpperCamelCase : Union[str, Any] = torch.tensor([0.0771, 0.0011, -0.3625] )
elif model_name == "videomae-huge-finetuned-kinetics":
UpperCamelCase : int = torch.Size([1, 4_0_0] )
UpperCamelCase : Tuple = torch.tensor([0.2433, 0.1632, -0.4894] )
elif model_name == "videomae-base-short-finetuned-kinetics":
UpperCamelCase : Union[str, Any] = torch.Size([1, 4_0_0] )
UpperCamelCase : Any = torch.tensor([0.6588, 0.0990, -0.2493] )
elif model_name == "videomae-base-finetuned-kinetics":
UpperCamelCase : Optional[int] = torch.Size([1, 4_0_0] )
UpperCamelCase : Optional[int] = torch.tensor([0.3669, -0.0688, -0.2421] )
elif model_name == "videomae-base-short-ssv2":
UpperCamelCase : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : List[Any] = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
UpperCamelCase : int = torch.Size([1, 1_7_4] )
UpperCamelCase : Union[str, Any] = torch.tensor([-0.0537, -0.1539, -0.3266] )
elif model_name == "videomae-base-ssv2":
UpperCamelCase : int = torch.Size([1, 1_4_0_8, 1_5_3_6] )
UpperCamelCase : Union[str, Any] = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] )
elif model_name == "videomae-base-finetuned-ssv2":
UpperCamelCase : int = torch.Size([1, 1_7_4] )
UpperCamelCase : Any = torch.tensor([0.1961, -0.8337, -0.6389] )
else:
raise ValueError(f'Model name not supported. Should be one of {model_names}' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] ,snake_case_ ,atol=1e-4 )
else:
print("""Logits:""" ,logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] ,snake_case_ ,atol=1e-4 )
print("""Logits ok!""" )
# verify loss, if applicable
if model_name == "videomae-base-short":
UpperCamelCase : Tuple = outputs.loss
assert torch.allclose(snake_case_ ,snake_case_ ,atol=1e-4 )
print("""Loss ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model and image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case_ )
model.save_pretrained(snake_case_ )
if push_to_hub:
print("""Pushing to the hub...""" )
model.push_to_hub(snake_case_ ,organization="""nielsr""" )
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''',
type=str,
help=(
'''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct'''
''' download link.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/Users/nielsrogge/Documents/VideoMAE/Test''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''')
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__A : Optional[Any] = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 365 |
"""simple docstring"""
import argparse
import os
import re
__A : Any = '''src/transformers'''
# Pattern that looks at the indentation in a line.
__A : Tuple = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__A : List[Any] = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__A : Dict = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__A : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__A : List[Any] = re.compile(R'''\[([^\]]+)\]''')
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : Any = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def A_ ( snake_case_ : str ,snake_case_ : str="" ,snake_case_ : Any=None ,snake_case_ : Union[str, Any]=None ):
'''simple docstring'''
UpperCamelCase : List[Any] = 0
UpperCamelCase : Optional[int] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
UpperCamelCase : Tuple = ["""\n""".join(lines[:index] )]
else:
UpperCamelCase : Tuple = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
UpperCamelCase : Dict = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
UpperCamelCase : Optional[Any] = [lines[index + 1]]
index += 1
else:
UpperCamelCase : str = []
else:
blocks.append("""\n""".join(snake_case_ ) )
UpperCamelCase : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append("""\n""".join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
def _inner(snake_case_ : List[str] ):
return key(snake_case_ ).lower().replace("""_""" ,"""""" )
return _inner
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(snake_case_ : Optional[int] ):
return x
if key is None:
UpperCamelCase : List[str] = noop
# Constants are all uppercase, they go first.
UpperCamelCase : List[str] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
UpperCamelCase : Tuple = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
UpperCamelCase : int = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
UpperCamelCase : Union[str, Any] = ignore_underscore(snake_case_ )
return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(snake_case_ : Any ):
UpperCamelCase : Union[str, Any] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
UpperCamelCase : int = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : str = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]"
UpperCamelCase : Optional[int] = import_statement.split("""\n""" )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
UpperCamelCase : int = 2 if lines[1].strip() == """[""" else 1
UpperCamelCase : Tuple = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
UpperCamelCase : List[Any] = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] )
UpperCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,lines[1] )
else:
UpperCamelCase : List[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
UpperCamelCase : Optional[int] = keys[:-1]
UpperCamelCase : Union[str, Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
UpperCamelCase : Any = _re_bracket_content.sub(_replace ,snake_case_ )
return import_statement
def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int=True ):
'''simple docstring'''
with open(snake_case_ ,encoding="""utf-8""" ) as f:
UpperCamelCase : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
UpperCamelCase : int = split_code_in_indented_blocks(
snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 ,len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
UpperCamelCase : Dict = main_blocks[block_idx]
UpperCamelCase : Dict = block.split("""\n""" )
# Get to the start of the imports.
UpperCamelCase : List[str] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
UpperCamelCase : Optional[Any] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
UpperCamelCase : Optional[Any] = """\n""".join(block_lines[line_idx:-1] )
UpperCamelCase : Any = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
UpperCamelCase : List[Any] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
UpperCamelCase : Optional[Any] = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
UpperCamelCase : Optional[Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
UpperCamelCase : Any = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
UpperCamelCase : Union[str, Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
UpperCamelCase : str = 0
UpperCamelCase : List[str] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
UpperCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write("""\n""".join(snake_case_ ) )
def A_ ( snake_case_ : int=True ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
UpperCamelCase : Optional[int] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ )
if result:
UpperCamelCase : List[Any] = [os.path.join(snake_case_ ,"""__init__.py""" )]
if len(snake_case_ ) > 0:
raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__A : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 27 | 0 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__A : List[str] = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , **SCREAMING_SNAKE_CASE_ ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
if self.framework != "pt":
raise ValueError(f'The {self.__class__} is only available in PyTorch.' )
# No specific FOR_XXX available yet
def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = {}
if "candidate_labels" in kwargs:
UpperCamelCase : Optional[int] = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
UpperCamelCase : int = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="This is a sound of {}." ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
UpperCamelCase : List[Any] = requests.get(SCREAMING_SNAKE_CASE_ ).content
else:
with open(SCREAMING_SNAKE_CASE_ , """rb""" ) as f:
UpperCamelCase : Union[str, Any] = f.read()
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = ffmpeg_read(SCREAMING_SNAKE_CASE_ , self.feature_extractor.sampling_rate )
if not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
UpperCamelCase : int = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
UpperCamelCase : Tuple = candidate_labels
UpperCamelCase : Optional[int] = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels]
UpperCamelCase : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = [text_inputs]
return inputs
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = model_inputs.pop("""candidate_labels""" )
UpperCamelCase : Any = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = text_inputs[0]
else:
# Batching case.
UpperCamelCase : List[Any] = text_inputs[0][0]
UpperCamelCase : Dict = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = model_outputs.pop("""candidate_labels""" )
UpperCamelCase : int = model_outputs["""logits"""][0]
if self.framework == "pt":
UpperCamelCase : Dict = logits.softmax(dim=0 )
UpperCamelCase : str = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
UpperCamelCase : Dict = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] )
]
return result
| 366 |
"""simple docstring"""
def A_ ( snake_case_ : int ):
'''simple docstring'''
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 | 0 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : str = batch_size
UpperCamelCase : int = seq_length
UpperCamelCase : Optional[Any] = is_training
UpperCamelCase : Any = use_input_lengths
UpperCamelCase : Tuple = use_token_type_ids
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = gelu_activation
UpperCamelCase : Dict = sinusoidal_embeddings
UpperCamelCase : Optional[int] = causal
UpperCamelCase : List[Any] = asm
UpperCamelCase : int = n_langs
UpperCamelCase : Optional[Any] = vocab_size
UpperCamelCase : str = n_special
UpperCamelCase : Dict = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : Any = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : str = num_labels
UpperCamelCase : Union[str, Any] = num_choices
UpperCamelCase : List[str] = summary_type
UpperCamelCase : int = use_proj
UpperCamelCase : List[str] = scope
UpperCamelCase : Dict = bos_token_id
def a_ ( self ):
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Union[str, Any] = None
if self.use_input_lengths:
UpperCamelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCamelCase : int = None
UpperCamelCase : Dict = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float()
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : List[str] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , )
(UpperCamelCase ) : Union[str, Any] = result_with_labels.to_tuple()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
(UpperCamelCase ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = self.num_labels
UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = self.num_choices
UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : int = self.prepare_config_and_inputs()
(
UpperCamelCase
) : List[Any] = config_and_inputs
UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase : List[Any] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase : Optional[Any] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCamelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def a_ ( self ):
UpperCamelCase : List[Any] = XLMModelTester(self )
UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : int = min_length + idx + 1
UpperCamelCase : Tuple = min_length + idx + 1
UpperCamelCase : Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : List[str] = min_length + idx + 1
UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , )
pass
@slow
def a_ ( self ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president
UpperCamelCase : List[Any] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 367 |
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
__A : Optional[Any] = logging.get_logger(__name__)
def A_ ( snake_case_ : np.ndarray ,snake_case_ : Union[int, Iterable[int]] ,snake_case_ : bool ,snake_case_ : int ):
'''simple docstring'''
def constraint_to_multiple_of(snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : List[str]=0 ,snake_case_ : Optional[Any]=None ):
UpperCamelCase : List[str] = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
UpperCamelCase : Optional[Any] = math.floor(val / multiple ) * multiple
if x < min_val:
UpperCamelCase : Dict = math.ceil(val / multiple ) * multiple
return x
UpperCamelCase : Any = (output_size, output_size) if isinstance(snake_case_ ,snake_case_ ) else output_size
UpperCamelCase , UpperCamelCase : int = get_image_size(snake_case_ )
UpperCamelCase , UpperCamelCase : Union[str, Any] = output_size
# determine new height and width
UpperCamelCase : List[str] = output_height / input_height
UpperCamelCase : List[str] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
UpperCamelCase : int = scale_width
else:
# fit height
UpperCamelCase : Optional[Any] = scale_height
UpperCamelCase : int = constraint_to_multiple_of(scale_height * input_height ,multiple=snake_case_ )
UpperCamelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width ,multiple=snake_case_ )
return (new_height, new_width)
class lowerCamelCase ( _UpperCAmelCase ):
lowercase : str = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384}
UpperCamelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = do_resize
UpperCamelCase : Union[str, Any] = size
UpperCamelCase : Union[str, Any] = keep_aspect_ratio
UpperCamelCase : Any = ensure_multiple_of
UpperCamelCase : List[Any] = resample
UpperCamelCase : str = do_rescale
UpperCamelCase : Optional[Any] = rescale_factor
UpperCamelCase : List[str] = do_normalize
UpperCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
UpperCamelCase : Dict = get_resize_output_image_size(
SCREAMING_SNAKE_CASE_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=SCREAMING_SNAKE_CASE_ , multiple=SCREAMING_SNAKE_CASE_ , )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase : List[Any] = size if size is not None else self.size
UpperCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
UpperCamelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
UpperCamelCase : Tuple = resample if resample is not None else self.resample
UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean
UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std
UpperCamelCase : str = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
UpperCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
UpperCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
UpperCamelCase : int = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
UpperCamelCase : List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
UpperCamelCase : Union[str, Any] = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase : str = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[Any] = target_sizes.numpy()
UpperCamelCase : Dict = []
for idx in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCamelCase : List[Any] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : List[Any] = logits.argmax(dim=1 )
UpperCamelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 27 | 0 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
__A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 100 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ):
if audio_length_in_s is None:
UpperCamelCase : Any = self.unet.config.sample_size / self.unet.config.sample_rate
UpperCamelCase : int = audio_length_in_s * self.unet.config.sample_rate
UpperCamelCase : Dict = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'
f' {3 * down_scale_factor / self.unet.config.sample_rate}.' )
UpperCamelCase : Dict = int(SCREAMING_SNAKE_CASE_ )
if sample_size % down_scale_factor != 0:
UpperCamelCase : Dict = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'
f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'
""" process.""" )
UpperCamelCase : List[Any] = int(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = next(iter(self.unet.parameters() ) ).dtype
UpperCamelCase : int = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size:
raise ValueError(
f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch'
f' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
UpperCamelCase : Optional[int] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=audio.device )
UpperCamelCase : Optional[Any] = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCamelCase : Dict = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample
# 2. compute previous image: x_t -> t_t-1
UpperCamelCase : Optional[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample
UpperCamelCase : Any = audio.clamp(-1 , 1 ).float().cpu().numpy()
UpperCamelCase : Dict = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE_ )
| 368 |
"""simple docstring"""
from collections.abc import Callable
def A_ ( snake_case_ : Callable[[float], float] ,snake_case_ : float ,snake_case_ : float ):
'''simple docstring'''
UpperCamelCase : float = a
UpperCamelCase : float = b
if function(snake_case_ ) == 0: # one of the a or b is a root for the function
return a
elif function(snake_case_ ) == 0:
return b
elif (
function(snake_case_ ) * function(snake_case_ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
UpperCamelCase : float = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(snake_case_ ) == 0:
return mid
elif function(snake_case_ ) * function(snake_case_ ) < 0:
UpperCamelCase : Dict = mid
else:
UpperCamelCase : List[str] = mid
UpperCamelCase : Tuple = start + (end - start) / 2.0
return mid
def A_ ( snake_case_ : float ):
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 27 | 0 |
"""simple docstring"""
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = parent
UpperCamelCase : Union[str, Any] = 13
UpperCamelCase : Optional[int] = 7
UpperCamelCase : List[str] = 30
UpperCamelCase : Optional[Any] = self.seq_length + self.mem_len
UpperCamelCase : Dict = 15
UpperCamelCase : List[str] = True
UpperCamelCase : str = True
UpperCamelCase : int = 99
UpperCamelCase : List[Any] = [10, 50, 80]
UpperCamelCase : Union[str, Any] = 32
UpperCamelCase : str = 32
UpperCamelCase : List[str] = 4
UpperCamelCase : Tuple = 8
UpperCamelCase : str = 128
UpperCamelCase : Any = 2
UpperCamelCase : int = 2
UpperCamelCase : str = None
UpperCamelCase : Union[str, Any] = 1
UpperCamelCase : Tuple = 0
UpperCamelCase : Union[str, Any] = 3
UpperCamelCase : Optional[Any] = self.vocab_size - 1
UpperCamelCase : List[Any] = 0.01
def a_ ( self ):
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : List[str] = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def a_ ( self ):
random.seed(self.seed )
tf.random.set_seed(self.seed )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Any = TFTransfoXLModel(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ).to_tuple()
UpperCamelCase : Optional[int] = {"""input_ids""": input_ids_a, """mems""": mems_a}
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ).to_tuple()
UpperCamelCase : Tuple = {"""input_ids""": input_ids_a, """labels""": lm_labels}
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ).to_tuple()
UpperCamelCase : Any = model([input_ids_a, mems_a] ).to_tuple()
UpperCamelCase : Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self ):
UpperCamelCase : Any = self.prepare_config_and_inputs()
(UpperCamelCase) : int = config_and_inputs
UpperCamelCase : int = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : List[str] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
lowercase : List[Any] = () if is_tf_available() else ()
lowercase : List[str] = (
{
'feature-extraction': TFTransfoXLModel,
'text-classification': TFTransfoXLForSequenceClassification,
'text-generation': TFTransfoXLLMHeadModel,
'zero-shot': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
lowercase : List[str] = False
lowercase : Optional[Any] = False
lowercase : Optional[Any] = False
lowercase : Dict = False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def a_ ( self ):
UpperCamelCase : Optional[int] = TFTransfoXLModelTester(self )
UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , d_embed=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
self.model_tester.set_seed()
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
self.model_tester.set_seed()
UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : List[str] = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
UpperCamelCase : Tuple = model.get_output_embeddings()
assert isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer )
UpperCamelCase : List[Any] = model.get_bias()
assert name is None
else:
UpperCamelCase : Optional[Any] = model.get_output_embeddings()
assert x is None
UpperCamelCase : Tuple = model.get_bias()
assert name is None
def a_ ( self ):
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def a_ ( self ):
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[Any] = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" )
def a_ ( self ):
pass
@require_tf
class lowerCamelCase ( unittest.TestCase ):
@unittest.skip("""Skip test until #12651 is resolved.""" )
@slow
def a_ ( self ):
UpperCamelCase : int = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" )
# fmt: off
UpperCamelCase : Optional[Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
UpperCamelCase : List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
UpperCamelCase : List[Any] = model.generate(SCREAMING_SNAKE_CASE_ , max_length=200 , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 369 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def a_ ( self ):
UpperCamelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCamelCase : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCamelCase : Dict = """xvjiarui/stable-diffusion-2-inpainting"""
UpperCamelCase , UpperCamelCase : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCamelCase : List[str] = jax.random.PRNGKey(0 )
UpperCamelCase : Tuple = 50
UpperCamelCase : Dict = jax.device_count()
UpperCamelCase : Optional[int] = num_samples * [prompt]
UpperCamelCase : int = num_samples * [init_image]
UpperCamelCase : List[Any] = num_samples * [mask_image]
UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# shard inputs and rng
UpperCamelCase : Optional[int] = replicate(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() )
UpperCamelCase : str = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipeline(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 512 , 512 , 3 )
UpperCamelCase : List[Any] = images[0, 253:256, 253:256, -1]
UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
UpperCamelCase : Dict = jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 27 | 0 |
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__A : Dict = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def A_ ( snake_case_ : Optional[Any] ):
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def A_ ( snake_case_ : List[Any] ):
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_terminal_summary_main
UpperCamelCase : Dict = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(snake_case_ ,id=snake_case_ )
| 370 |
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def A_ ( snake_case_ : int ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def A_ ( ):
'''simple docstring'''
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
UpperCamelCase : Optional[Any] = [1, 2, 3]
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=2 )
with pytest.raises(snake_case_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(snake_case_ ,snake_case_ ,num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" ,[2, -1] )
def A_ ( snake_case_ : List[str] ):
'''simple docstring'''
UpperCamelCase : List[Any] = [1, 2]
UpperCamelCase : List[Any] = {"""a""": 1, """b""": 2}
UpperCamelCase : List[str] = {"""a""": [1, 2], """b""": [3, 4]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2}
UpperCamelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
UpperCamelCase : Optional[int] = [2, 3]
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3}
UpperCamelCase : Any = {"""a""": [2, 3], """b""": [4, 5]}
UpperCamelCase : Tuple = {"""a""": {"""1""": 2}, """b""": 3}
UpperCamelCase : List[str] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
| 27 | 0 |
"""simple docstring"""
from math import factorial
def A_ ( snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("""Please enter positive integers for n and k where n >= k""" )
return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
F'''fifty-two card deck is: {combinations(52, 5)}\n''',
)
print(
'''If a class of 40 students must be arranged into groups of''',
F'''4 for group projects, there are {combinations(40, 4)} ways''',
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
F'''are {combinations(10, 3)} ways that first, second and''',
'''third place can be awarded.''',
)
| 371 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : str = batch_size
UpperCamelCase : int = seq_length
UpperCamelCase : Optional[Any] = is_training
UpperCamelCase : Any = use_input_lengths
UpperCamelCase : Tuple = use_token_type_ids
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = gelu_activation
UpperCamelCase : Dict = sinusoidal_embeddings
UpperCamelCase : Optional[int] = causal
UpperCamelCase : List[Any] = asm
UpperCamelCase : int = n_langs
UpperCamelCase : Optional[Any] = vocab_size
UpperCamelCase : str = n_special
UpperCamelCase : Dict = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : str = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : Any = type_sequence_label_size
UpperCamelCase : str = initializer_range
UpperCamelCase : str = num_labels
UpperCamelCase : Union[str, Any] = num_choices
UpperCamelCase : List[str] = summary_type
UpperCamelCase : int = use_proj
UpperCamelCase : List[str] = scope
UpperCamelCase : Dict = bos_token_id
def a_ ( self ):
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Union[str, Any] = None
if self.use_input_lengths:
UpperCamelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCamelCase : int = None
UpperCamelCase : Dict = None
UpperCamelCase : str = None
if self.use_labels:
UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float()
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : List[str] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Any = model(
SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , )
((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple()
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : int = self.num_labels
UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase : List[Any] = self.num_choices
UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ):
UpperCamelCase : int = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : List[Any] = config_and_inputs
UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowercase : Dict = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase : List[Any] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase : Optional[Any] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCamelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def a_ ( self ):
UpperCamelCase : List[Any] = XLMModelTester(self )
UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ )
def a_ ( self ):
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : int = min_length + idx + 1
UpperCamelCase : Tuple = min_length + idx + 1
UpperCamelCase : Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) )
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ):
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
[isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ):
# adds PAD dummy token
UpperCamelCase : List[str] = min_length + idx + 1
UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , )
pass
@slow
def a_ ( self ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def a_ ( self ):
UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president
UpperCamelCase : List[Any] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
| 27 | 0 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__UpperCAmelCase = {'tokenization_byt5': ['ByT5Tokenizer']}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 1 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class __a :
def __init__( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : List[Any]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : str=True , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=99 , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : int=37 , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Any=5_12 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : int=None , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : List[Any] = batch_size
lowerCAmelCase_ : List[Any] = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[Any] = use_input_mask
lowerCAmelCase_ : Dict = use_token_type_ids
lowerCAmelCase_ : Dict = use_labels
lowerCAmelCase_ : Optional[int] = vocab_size
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : List[str] = num_hidden_layers
lowerCAmelCase_ : Any = num_attention_heads
lowerCAmelCase_ : Union[str, Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Tuple = hidden_dropout_prob
lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : List[Any] = type_vocab_size
lowerCAmelCase_ : Any = type_sequence_label_size
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : Any = num_labels
lowerCAmelCase_ : Union[str, Any] = num_choices
lowerCAmelCase_ : Tuple = scope
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : List[Any] = None
if self.use_token_type_ids:
lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : Tuple = None
lowerCAmelCase_ : str = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase_ : List[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : str ):
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=UpperCAmelCase , )
def A ( self : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : Optional[int] = OpenLlamaModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , ):
lowerCAmelCase_ : Optional[int] = True
lowerCAmelCase_ : Dict = OpenLlamaModel(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : str = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )
lowerCAmelCase_ : str = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , ):
lowerCAmelCase_ : int = OpenLlamaForCausalLM(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , ):
lowerCAmelCase_ : List[Any] = True
lowerCAmelCase_ : Any = True
lowerCAmelCase_ : Dict = OpenLlamaForCausalLM(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
# first forward pass
lowerCAmelCase_ : str = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase_ : str = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
lowerCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase_ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
lowerCAmelCase_ : List[str] = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )["""hidden_states"""][0]
lowerCAmelCase_ : Union[str, Any] = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
lowerCAmelCase_ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase_ : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : str = self.prepare_config_and_inputs()
(
(
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) ,
) : List[Any] = config_and_inputs
lowerCAmelCase_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
__snake_case : Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else ()
__snake_case : List[str] = (
{
"""feature-extraction""": OpenLlamaModel,
"""text-classification""": OpenLlamaForSequenceClassification,
"""text-generation""": OpenLlamaForCausalLM,
"""zero-shot""": OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__snake_case : Dict = False
__snake_case : Union[str, Any] = False
def A ( self : List[Any] ):
lowerCAmelCase_ : Any = OpenLlamaModelTester(self )
lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
def A ( self : List[str] ):
lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : Any ):
lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase_ : List[Any] = type
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : Any ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : str = 3
lowerCAmelCase_ : Optional[Any] = input_dict["""input_ids"""]
lowerCAmelCase_ : int = input_ids.ne(1 ).to(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase_ : str = OpenLlamaForSequenceClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Optional[Any] = 3
lowerCAmelCase_ : int = """single_label_classification"""
lowerCAmelCase_ : Any = input_dict["""input_ids"""]
lowerCAmelCase_ : Tuple = input_ids.ne(1 ).to(UpperCAmelCase )
lowerCAmelCase_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase_ : Optional[int] = OpenLlamaForSequenceClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A ( self : Optional[int] ):
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Tuple = 3
lowerCAmelCase_ : Optional[int] = """multi_label_classification"""
lowerCAmelCase_ : Any = input_dict["""input_ids"""]
lowerCAmelCase_ : Dict = input_ids.ne(1 ).to(UpperCAmelCase )
lowerCAmelCase_ : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCAmelCase_ : int = OpenLlamaForSequenceClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def A ( self : int ):
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def A ( self : Optional[int] , UpperCAmelCase : Optional[int] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = ids_tensor([1, 10] , config.vocab_size )
lowerCAmelCase_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase_ : str = OpenLlamaModel(UpperCAmelCase )
original_model.to(UpperCAmelCase )
original_model.eval()
lowerCAmelCase_ : str = original_model(UpperCAmelCase ).last_hidden_state
lowerCAmelCase_ : str = original_model(UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase_ : Tuple = {"""type""": scaling_type, """factor""": 10.0}
lowerCAmelCase_ : Union[str, Any] = OpenLlamaModel(UpperCAmelCase )
scaled_model.to(UpperCAmelCase )
scaled_model.eval()
lowerCAmelCase_ : Optional[int] = scaled_model(UpperCAmelCase ).last_hidden_state
lowerCAmelCase_ : Optional[int] = scaled_model(UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) )
| 28 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 | 1 |
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__UpperCAmelCase = 25_60_47
__UpperCAmelCase = 25_61_45
@require_sentencepiece
@require_tokenizers
class __a ( __UpperCamelCase ,unittest.TestCase ):
__snake_case : Tuple = NllbTokenizer
__snake_case : List[Any] = NllbTokenizerFast
__snake_case : int = True
__snake_case : int = True
__snake_case : int = {}
def A ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase_ : Tuple = NllbTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def A ( self : int ):
lowerCAmelCase_ : Any = NllbTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase )
lowerCAmelCase_ : Any = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowerCAmelCase_ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
lowerCAmelCase_ : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
self.assertListEqual(
UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowerCAmelCase_ : int = tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertListEqual(
UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def A ( self : int ):
lowerCAmelCase_ : int = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
lowerCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Any = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Any = tempfile.mkdtemp()
lowerCAmelCase_ : Dict = tokenizer_r.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Tuple = tokenizer_p.save_pretrained(UpperCAmelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
lowerCAmelCase_ : str = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase )
# Checks everything loads correctly in the same way
lowerCAmelCase_ : str = tokenizer_r.from_pretrained(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = tokenizer_p.from_pretrained(UpperCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) )
shutil.rmtree(UpperCAmelCase )
# Save tokenizer rust, legacy_format=True
lowerCAmelCase_ : int = tempfile.mkdtemp()
lowerCAmelCase_ : int = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase )
lowerCAmelCase_ : Any = tokenizer_p.save_pretrained(UpperCAmelCase )
# Checks it save with the same files
self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase )
# Checks everything loads correctly in the same way
lowerCAmelCase_ : Tuple = tokenizer_r.from_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) )
shutil.rmtree(UpperCAmelCase )
# Save tokenizer rust, legacy_format=False
lowerCAmelCase_ : Dict = tempfile.mkdtemp()
lowerCAmelCase_ : int = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase )
lowerCAmelCase_ : Any = tokenizer_p.save_pretrained(UpperCAmelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowerCAmelCase_ : List[str] = tokenizer_r.from_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Any = tokenizer_p.from_pretrained(UpperCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) )
shutil.rmtree(UpperCAmelCase )
@require_torch
def A ( self : List[Any] ):
if not self.test_seqaseq:
return
lowerCAmelCase_ : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Longer text that will definitely require truncation.
lowerCAmelCase_ : Tuple = [
""" UN Chief Says There Is No Military Solution in Syria""",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"""
""" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"""
""" will only worsen the violence and misery for millions of people.""",
]
lowerCAmelCase_ : Union[str, Any] = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
"""Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al"""
""" Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi"""
""" că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""",
]
try:
lowerCAmelCase_ : Union[str, Any] = tokenizer.prepare_seqaseq_batch(
src_texts=UpperCAmelCase , tgt_texts=UpperCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 10 )
# max_target_length will default to max_length if not specified
lowerCAmelCase_ : Optional[int] = tokenizer.prepare_seqaseq_batch(
UpperCAmelCase , tgt_texts=UpperCAmelCase , max_length=3 , return_tensors="""pt""" )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 3 )
lowerCAmelCase_ : Any = tokenizer.prepare_seqaseq_batch(
src_texts=UpperCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" )
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 )
self.assertNotIn("""decoder_input_ids""" , UpperCAmelCase )
@unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" )
def A ( self : Any ):
pass
def A ( self : List[Any] ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
lowerCAmelCase_ : Optional[int] = [AddedToken("""<special>""" , lstrip=UpperCAmelCase )]
lowerCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : int = tokenizer_r.encode("""Hey this is a <special> token""" )
lowerCAmelCase_ : int = tokenizer_r.encode("""<special>""" , add_special_tokens=UpperCAmelCase )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
lowerCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained(
UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = tokenizer_p.encode("""Hey this is a <special> token""" )
lowerCAmelCase_ : List[Any] = tokenizer_cr.encode("""Hey this is a <special> token""" )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class __a ( unittest.TestCase ):
__snake_case : List[str] = """facebook/nllb-200-distilled-600M"""
__snake_case : Dict = [
""" UN Chief Says There Is No Military Solution in Syria""",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
]
__snake_case : Dict = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
"""Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"""
""" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"""
""" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""",
]
__snake_case : Optional[Any] = [
25_6047,
1_6297,
13_4408,
8165,
24_8066,
1_4734,
950,
1135,
10_5721,
3573,
83,
2_7352,
108,
4_9486,
2,
]
@classmethod
def A ( cls : Union[str, Any] ):
lowerCAmelCase_ : NllbTokenizer = NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" )
lowerCAmelCase_ : int = 1
return cls
def A ( self : Any ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 25_60_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 25_60_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 25_60_57 )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , UpperCAmelCase )
def A ( self : List[str] ):
self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids )
# fmt: off
lowerCAmelCase_ : Tuple = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47]
# fmt: on
lowerCAmelCase_ : Optional[Any] = self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase )
def A ( self : Any ):
lowerCAmelCase_ : Any = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , UpperCAmelCase )
lowerCAmelCase_ : str = 10
lowerCAmelCase_ : str = self.tokenizer(UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-1] , 2 )
self.assertEqual(ids[0] , UpperCAmelCase )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
def A ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_62_03, 3] )
def A ( self : List[Any] ):
lowerCAmelCase_ : int = tempfile.mkdtemp()
lowerCAmelCase_ : Optional[int] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : List[str] = NllbTokenizer.from_pretrained(UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase )
@require_torch
def A ( self : Optional[Any] ):
lowerCAmelCase_ : str = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
lowerCAmelCase_ : int = shift_tokens_right(
batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual((2, 15) , batch.input_ids.shape )
self.assertEqual((2, 15) , batch.attention_mask.shape )
lowerCAmelCase_ : List[str] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def A ( self : List[str] ):
lowerCAmelCase_ : Optional[Any] = self.tokenizer(self.src_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=3 , return_tensors="""pt""" )
lowerCAmelCase_ : List[Any] = self.tokenizer(
text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=10 , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = targets["""input_ids"""]
lowerCAmelCase_ : List[Any] = shift_tokens_right(
UpperCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def A ( self : Tuple ):
lowerCAmelCase_ : int = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , {
# A, test, EOS, en_XX
"""input_ids""": [[25_60_47, 70, 73_56, 2]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 25_60_57,
} , )
@require_torch
def A ( self : Any ):
lowerCAmelCase_ : str = True
lowerCAmelCase_ : Any = self.tokenizer(
"""UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" )
self.assertEqual(
inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : str = self.tokenizer(
"""UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" )
self.assertEqual(
inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
| 28 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __a :
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[int] = use_input_mask
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Union[str, Any] = vocab_size - 1
lowerCAmelCase_ : str = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
def A ( self : List[Any] ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs
lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : str = 20
lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Dict = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model(
input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ):
lowerCAmelCase_ : int = 20
lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Tuple = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def A ( self : Any ):
lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self )
def A ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@tooslow
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id
lowerCAmelCase_ : List[Any] = jax.jit(model.generate )
lowerCAmelCase_ : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase )
lowerCAmelCase_ : List[str] = fx_state
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase )
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def A ( self : str ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 28 | 1 |
from typing import Any
import numpy as np
def __UpperCamelCase ( lowercase__ : np.ndarray ) -> bool:
'''simple docstring'''
return np.array_equal(lowercase__ , matrix.conjugate().T )
def __UpperCamelCase ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = v.conjugate().T
lowerCAmelCase_ : Union[str, Any] = v_star.dot(lowercase__ )
assert isinstance(lowercase__ , np.ndarray )
return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ ))
def __UpperCamelCase ( ) -> None:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
lowerCAmelCase_ : Any = np.array([[1], [2], [3]] )
assert is_hermitian(lowercase__ ), f'{a} is not hermitian.'
print(rayleigh_quotient(lowercase__ , lowercase__ ) )
lowerCAmelCase_ : Tuple = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(lowercase__ ), f'{a} is not hermitian.'
assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 28 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 | 1 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=99 , UpperCAmelCase : Tuple=24 , UpperCAmelCase : str=2 , UpperCAmelCase : Dict=6 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Union[str, Any]=5_12 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Any=3 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=10_00 , ):
lowerCAmelCase_ : Union[str, Any] = parent
lowerCAmelCase_ : Optional[int] = batch_size
lowerCAmelCase_ : Optional[int] = seq_length
lowerCAmelCase_ : int = is_training
lowerCAmelCase_ : Optional[Any] = use_input_mask
lowerCAmelCase_ : Dict = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : List[Any] = vocab_size
lowerCAmelCase_ : Optional[Any] = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[str] = intermediate_size
lowerCAmelCase_ : str = hidden_act
lowerCAmelCase_ : List[str] = hidden_dropout_prob
lowerCAmelCase_ : str = attention_probs_dropout_prob
lowerCAmelCase_ : Tuple = max_position_embeddings
lowerCAmelCase_ : List[str] = type_vocab_size
lowerCAmelCase_ : Dict = type_sequence_label_size
lowerCAmelCase_ : List[str] = initializer_range
lowerCAmelCase_ : Union[str, Any] = num_labels
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : List[str] = range_bbox
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase_ : List[str] = bbox[i, j, 3]
lowerCAmelCase_ : Union[str, Any] = bbox[i, j, 1]
lowerCAmelCase_ : Any = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase_ : str = bbox[i, j, 2]
lowerCAmelCase_ : Union[str, Any] = bbox[i, j, 0]
lowerCAmelCase_ : str = t
lowerCAmelCase_ : Tuple = None
if self.use_input_mask:
lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
lowerCAmelCase_ : int = None
if self.use_token_type_ids:
lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase_ : List[str] = None
lowerCAmelCase_ : str = None
if self.use_labels:
lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase_ : Optional[Any] = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def A ( self : Any ):
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def A ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] , ):
lowerCAmelCase_ : Union[str, Any] = LiltModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase )
lowerCAmelCase_ : int = model(UpperCAmelCase , bbox=UpperCAmelCase , token_type_ids=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , bbox=UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , ):
lowerCAmelCase_ : str = self.num_labels
lowerCAmelCase_ : Optional[int] = LiltForTokenClassification(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : Optional[Any] = model(
UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : int , ):
lowerCAmelCase_ : Dict = LiltForQuestionAnswering(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(
UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : Any ):
lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) ,
) : List[Any] = config_and_inputs
lowerCAmelCase_ : Union[str, Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Optional[Any] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__snake_case : Optional[int] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__snake_case : str = False
__snake_case : Tuple = False
def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] ):
return True
def A ( self : str ):
lowerCAmelCase_ : List[str] = LiltModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def A ( self : str ):
self.config_tester.run_common_tests()
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase_ : List[Any] = type
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
def A ( self : Any ):
lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
@slow
def A ( self : Any ):
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : List[Any] = LiltModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_torch
@slow
class __a ( unittest.TestCase ):
def A ( self : Dict ):
lowerCAmelCase_ : Union[str, Any] = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = torch.tensor([[1, 2]] , device=UpperCAmelCase )
lowerCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Union[str, Any] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase )
lowerCAmelCase_ : Tuple = torch.Size([1, 2, 7_68] )
lowerCAmelCase_ : str = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCAmelCase , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase , atol=1e-3 ) )
| 28 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase_ : Optional[Any] = Vector()
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" )
def A ( self : Any ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase ) , 4 )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = Vector([1, 2] )
lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Dict = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase_ : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def A ( self : List[str] ):
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def A ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : int = x.copy()
self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" )
def A ( self : Any ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase_ : Any = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def A ( self : Dict ):
lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def A ( self : Optional[int] ):
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 28 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 1 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json',
'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json',
'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[int] = """owlvit_text_model"""
def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any]=4_94_08 , UpperCAmelCase : Tuple=5_12 , UpperCAmelCase : Optional[Any]=20_48 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : str=16 , UpperCAmelCase : Union[str, Any]="quick_gelu" , UpperCAmelCase : Any=1e-5 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : List[Any]=1.0 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=4_94_06 , UpperCAmelCase : List[str]=4_94_07 , **UpperCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : List[str] = vocab_size
lowerCAmelCase_ : int = hidden_size
lowerCAmelCase_ : int = intermediate_size
lowerCAmelCase_ : int = num_hidden_layers
lowerCAmelCase_ : List[str] = num_attention_heads
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Optional[Any] = hidden_act
lowerCAmelCase_ : List[str] = layer_norm_eps
lowerCAmelCase_ : List[str] = attention_dropout
lowerCAmelCase_ : Tuple = initializer_range
lowerCAmelCase_ : int = initializer_factor
@classmethod
def A ( cls : str , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : List[str] ):
cls._set_token_in_kwargs(UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : str = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
lowerCAmelCase_ : Tuple = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
__snake_case : List[str] = """owlvit_vision_model"""
def __init__( self : List[Any] , UpperCAmelCase : Dict=7_68 , UpperCAmelCase : Union[str, Any]=30_72 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : int=3 , UpperCAmelCase : Dict=7_68 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Tuple="quick_gelu" , UpperCAmelCase : str=1e-5 , UpperCAmelCase : int=0.0 , UpperCAmelCase : str=0.02 , UpperCAmelCase : Optional[Any]=1.0 , **UpperCAmelCase : Dict , ):
super().__init__(**UpperCAmelCase )
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Tuple = intermediate_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : List[Any] = num_attention_heads
lowerCAmelCase_ : Any = num_channels
lowerCAmelCase_ : Optional[int] = image_size
lowerCAmelCase_ : int = patch_size
lowerCAmelCase_ : Optional[Any] = hidden_act
lowerCAmelCase_ : Any = layer_norm_eps
lowerCAmelCase_ : Any = attention_dropout
lowerCAmelCase_ : List[Any] = initializer_range
lowerCAmelCase_ : Any = initializer_factor
@classmethod
def A ( cls : List[str] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : Optional[Any] ):
cls._set_token_in_kwargs(UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
lowerCAmelCase_ : Optional[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
__snake_case : Dict = """owlvit"""
__snake_case : List[str] = True
def __init__( self : Tuple , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=5_12 , UpperCAmelCase : Tuple=2.6592 , UpperCAmelCase : List[str]=True , **UpperCAmelCase : str , ):
super().__init__(**UpperCAmelCase )
if text_config is None:
lowerCAmelCase_ : List[str] = {}
logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" )
if vision_config is None:
lowerCAmelCase_ : str = {}
logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" )
lowerCAmelCase_ : Union[str, Any] = OwlViTTextConfig(**UpperCAmelCase )
lowerCAmelCase_ : Tuple = OwlViTVisionConfig(**UpperCAmelCase )
lowerCAmelCase_ : int = projection_dim
lowerCAmelCase_ : int = logit_scale_init_value
lowerCAmelCase_ : Dict = return_dict
lowerCAmelCase_ : Optional[int] = 1.0
@classmethod
def A ( cls : Union[str, Any] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : Dict ):
cls._set_token_in_kwargs(UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Dict = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(UpperCAmelCase , **UpperCAmelCase )
@classmethod
def A ( cls : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase_ : Tuple = {}
lowerCAmelCase_ : List[str] = text_config
lowerCAmelCase_ : List[Any] = vision_config
return cls.from_dict(UpperCAmelCase , **UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ : str = self.text_config.to_dict()
lowerCAmelCase_ : Optional[int] = self.vision_config.to_dict()
lowerCAmelCase_ : Dict = self.__class__.model_type
return output
class __a ( __UpperCamelCase ):
@property
def A ( self : Tuple ):
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
] )
@property
def A ( self : Optional[Any] ):
return OrderedDict(
[
("""logits_per_image""", {0: """batch"""}),
("""logits_per_text""", {0: """batch"""}),
("""text_embeds""", {0: """batch"""}),
("""image_embeds""", {0: """batch"""}),
] )
@property
def A ( self : Dict ):
return 1e-4
def A ( self : Any , UpperCAmelCase : "ProcessorMixin" , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : Optional["TensorType"] = None , ):
lowerCAmelCase_ : List[Any] = super().generate_dummy_inputs(
processor.tokenizer , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , framework=UpperCAmelCase )
lowerCAmelCase_ : Dict = super().generate_dummy_inputs(
processor.image_processor , batch_size=UpperCAmelCase , framework=UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def A ( self : List[Any] ):
return 14
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 1 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
__UpperCAmelCase = '\\n\n'
__UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
__UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __a ( datasets.Metric ):
def A ( self : int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def A ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int = 16 , UpperCAmelCase : bool = True , UpperCAmelCase : Any=None ):
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
lowerCAmelCase_ : List[str] = """cuda"""
else:
lowerCAmelCase_ : List[str] = """cuda""" if torch.cuda.is_available() else """cpu"""
lowerCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.to(UpperCAmelCase )
lowerCAmelCase_ : str = AutoTokenizer.from_pretrained(UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
lowerCAmelCase_ : Tuple = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
lowerCAmelCase_ : List[str] = model.config.max_length - 1
else:
lowerCAmelCase_ : Optional[Any] = model.config.max_length
lowerCAmelCase_ : str = tokenizer(
UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=UpperCAmelCase , ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = encodings["""input_ids"""]
lowerCAmelCase_ : int = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
lowerCAmelCase_ : List[Any] = []
lowerCAmelCase_ : Union[str, Any] = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(UpperCAmelCase ) , UpperCAmelCase ) ):
lowerCAmelCase_ : Tuple = min(start_index + batch_size , len(UpperCAmelCase ) )
lowerCAmelCase_ : str = encoded_texts[start_index:end_index]
lowerCAmelCase_ : List[str] = attn_masks[start_index:end_index]
if add_start_token:
lowerCAmelCase_ : Tuple = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
lowerCAmelCase_ : int = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(UpperCAmelCase ), attn_mask] , dim=1 )
lowerCAmelCase_ : Union[str, Any] = encoded_batch
with torch.no_grad():
lowerCAmelCase_ : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase ).logits
lowerCAmelCase_ : Any = out_logits[..., :-1, :].contiguous()
lowerCAmelCase_ : Optional[int] = labels[..., 1:].contiguous()
lowerCAmelCase_ : Union[str, Any] = attn_mask[..., 1:].contiguous()
lowerCAmelCase_ : List[str] = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCAmelCase )}
| 28 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class __a ( unittest.TestCase ):
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase_ : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""]
# fmt: on
lowerCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
lowerCAmelCase_ : str = {
"""do_resize""": True,
"""size""": {"""height""": 18, """width""": 18},
"""do_normalize""": True,
"""image_mean""": [0.5, 0.5, 0.5],
"""image_std""": [0.5, 0.5, 0.5],
}
lowerCAmelCase_ : Any = os.path.join(self.tmpdirname , UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(UpperCAmelCase , UpperCAmelCase )
def A ( self : str , **UpperCAmelCase : str ):
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def A ( self : Dict , **UpperCAmelCase : List[Any] ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def A ( self : int ):
shutil.rmtree(self.tmpdirname )
def A ( self : str ):
lowerCAmelCase_ : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
lowerCAmelCase_ : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = self.get_tokenizer()
lowerCAmelCase_ : str = self.get_image_processor()
lowerCAmelCase_ : Any = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase_ : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase_ : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowerCAmelCase_ : str = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
lowerCAmelCase_ : Dict = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = self.get_image_processor()
lowerCAmelCase_ : List[Any] = self.get_tokenizer()
lowerCAmelCase_ : Any = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCAmelCase_ : List[str] = self.prepare_image_inputs()
lowerCAmelCase_ : Optional[Any] = image_processor(UpperCAmelCase , return_tensors="""np""" )
lowerCAmelCase_ : str = processor(images=UpperCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Any = self.get_image_processor()
lowerCAmelCase_ : Any = self.get_tokenizer()
lowerCAmelCase_ : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = """lower newer"""
lowerCAmelCase_ : int = processor(text=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = tokenizer(UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = self.get_image_processor()
lowerCAmelCase_ : List[str] = self.get_tokenizer()
lowerCAmelCase_ : str = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = """lower newer"""
lowerCAmelCase_ : Optional[Any] = self.prepare_image_inputs()
lowerCAmelCase_ : List[str] = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with self.assertRaises(UpperCAmelCase ):
processor()
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = self.get_image_processor()
lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase_ : str = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCAmelCase_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase_ : List[str] = processor.batch_decode(UpperCAmelCase )
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def A ( self : Any ):
lowerCAmelCase_ : Optional[int] = self.get_image_processor()
lowerCAmelCase_ : Any = self.get_tokenizer()
lowerCAmelCase_ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCAmelCase_ : List[str] = """lower newer"""
lowerCAmelCase_ : str = self.prepare_image_inputs()
lowerCAmelCase_ : Optional[int] = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 28 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 1 |
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__UpperCAmelCase = logging.getLogger(__name__)
class __a ( __UpperCamelCase ):
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[int]=None ):
lowerCAmelCase_ : List[str] = self.layer[current_layer](UpperCAmelCase , UpperCAmelCase , head_mask[current_layer] )
lowerCAmelCase_ : Optional[int] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"""The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" ,__UpperCamelCase ,)
class __a ( __UpperCamelCase ):
def __init__( self : Dict , UpperCAmelCase : Union[str, Any] ):
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : int = BertEncoderWithPabee(UpperCAmelCase )
self.init_weights()
lowerCAmelCase_ : Union[str, Any] = 0
lowerCAmelCase_ : int = 0
lowerCAmelCase_ : str = 0
lowerCAmelCase_ : List[str] = 0
def A ( self : List[Any] , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : List[Any] = threshold
def A ( self : Any , UpperCAmelCase : str ):
lowerCAmelCase_ : Any = patience
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = 0
lowerCAmelCase_ : List[Any] = 0
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = self.inference_layers_num / self.inference_instances_num
lowerCAmelCase_ : Optional[Any] = (
F'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ='
F' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'
)
print(UpperCAmelCase )
@add_start_docstrings_to_model_forward(UpperCAmelCase )
def A ( self : Any , UpperCAmelCase : str=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" )
elif input_ids is not None:
lowerCAmelCase_ : List[Any] = input_ids.size()
elif inputs_embeds is not None:
lowerCAmelCase_ : List[Any] = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""" )
lowerCAmelCase_ : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowerCAmelCase_ : str = torch.ones(UpperCAmelCase , device=UpperCAmelCase )
if token_type_ids is None:
lowerCAmelCase_ : int = torch.zeros(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowerCAmelCase_ : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = encoder_hidden_states.size()
lowerCAmelCase_ : Any = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
lowerCAmelCase_ : Optional[int] = torch.ones(UpperCAmelCase , device=UpperCAmelCase )
lowerCAmelCase_ : str = self.invert_attention_mask(UpperCAmelCase )
else:
lowerCAmelCase_ : int = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowerCAmelCase_ : Optional[Any] = self.get_head_mask(UpperCAmelCase , self.config.num_hidden_layers )
lowerCAmelCase_ : Optional[Any] = self.embeddings(
input_ids=UpperCAmelCase , position_ids=UpperCAmelCase , token_type_ids=UpperCAmelCase , inputs_embeds=UpperCAmelCase )
lowerCAmelCase_ : Tuple = embedding_output
if self.training:
lowerCAmelCase_ : Optional[Any] = []
for i in range(self.config.num_hidden_layers ):
lowerCAmelCase_ : Dict = self.encoder.adaptive_forward(
UpperCAmelCase , current_layer=UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = self.pooler(UpperCAmelCase )
lowerCAmelCase_ : Any = output_layers[i](output_dropout(UpperCAmelCase ) )
res.append(UpperCAmelCase )
elif self.patience == 0: # Use all layers for inference
lowerCAmelCase_ : List[Any] = self.encoder(
UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )
lowerCAmelCase_ : List[Any] = self.pooler(encoder_outputs[0] )
lowerCAmelCase_ : Union[str, Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase )]
else:
lowerCAmelCase_ : Dict = 0
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : Optional[int] = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
lowerCAmelCase_ : Optional[int] = self.encoder.adaptive_forward(
UpperCAmelCase , current_layer=UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = self.pooler(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = output_layers[i](UpperCAmelCase )
if regression:
lowerCAmelCase_ : List[Any] = logits.detach()
if patient_result is not None:
lowerCAmelCase_ : int = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
lowerCAmelCase_ : Any = 0
else:
lowerCAmelCase_ : Any = logits.detach().argmax(dim=1 )
if patient_result is not None:
lowerCAmelCase_ : str = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase ) ):
patient_counter += 1
else:
lowerCAmelCase_ : Union[str, Any] = 0
lowerCAmelCase_ : List[Any] = logits
if patient_counter == self.patience:
break
lowerCAmelCase_ : Any = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"""Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """ ,__UpperCamelCase ,)
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : Union[str, Any] ):
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = config.num_labels
lowerCAmelCase_ : Tuple = BertModelWithPabee(UpperCAmelCase )
lowerCAmelCase_ : List[str] = nn.Dropout(config.hidden_dropout_prob )
lowerCAmelCase_ : Any = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCAmelCase )
def A ( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : int=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=None , ):
lowerCAmelCase_ : Dict = self.bert(
input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
lowerCAmelCase_ : int = (logits[-1],)
if labels is not None:
lowerCAmelCase_ : Any = None
lowerCAmelCase_ : Union[str, Any] = 0
for ix, logits_item in enumerate(UpperCAmelCase ):
if self.num_labels == 1:
# We are doing regression
lowerCAmelCase_ : Dict = MSELoss()
lowerCAmelCase_ : Dict = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
lowerCAmelCase_ : Optional[Any] = CrossEntropyLoss()
lowerCAmelCase_ : int = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
lowerCAmelCase_ : Any = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
lowerCAmelCase_ : Tuple = (total_loss / total_weights,) + outputs
return outputs
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = OrderedDict(
[
('align', 'EfficientNetImageProcessor'),
('beit', 'BeitImageProcessor'),
('bit', 'BitImageProcessor'),
('blip', 'BlipImageProcessor'),
('blip-2', 'BlipImageProcessor'),
('bridgetower', 'BridgeTowerImageProcessor'),
('chinese_clip', 'ChineseCLIPImageProcessor'),
('clip', 'CLIPImageProcessor'),
('clipseg', 'ViTImageProcessor'),
('conditional_detr', 'ConditionalDetrImageProcessor'),
('convnext', 'ConvNextImageProcessor'),
('convnextv2', 'ConvNextImageProcessor'),
('cvt', 'ConvNextImageProcessor'),
('data2vec-vision', 'BeitImageProcessor'),
('deformable_detr', 'DeformableDetrImageProcessor'),
('deit', 'DeiTImageProcessor'),
('deta', 'DetaImageProcessor'),
('detr', 'DetrImageProcessor'),
('dinat', 'ViTImageProcessor'),
('donut-swin', 'DonutImageProcessor'),
('dpt', 'DPTImageProcessor'),
('efficientformer', 'EfficientFormerImageProcessor'),
('efficientnet', 'EfficientNetImageProcessor'),
('flava', 'FlavaImageProcessor'),
('focalnet', 'BitImageProcessor'),
('git', 'CLIPImageProcessor'),
('glpn', 'GLPNImageProcessor'),
('groupvit', 'CLIPImageProcessor'),
('imagegpt', 'ImageGPTImageProcessor'),
('instructblip', 'BlipImageProcessor'),
('layoutlmv2', 'LayoutLMv2ImageProcessor'),
('layoutlmv3', 'LayoutLMv3ImageProcessor'),
('levit', 'LevitImageProcessor'),
('mask2former', 'Mask2FormerImageProcessor'),
('maskformer', 'MaskFormerImageProcessor'),
('mgp-str', 'ViTImageProcessor'),
('mobilenet_v1', 'MobileNetV1ImageProcessor'),
('mobilenet_v2', 'MobileNetV2ImageProcessor'),
('mobilevit', 'MobileViTImageProcessor'),
('mobilevit', 'MobileViTImageProcessor'),
('mobilevitv2', 'MobileViTImageProcessor'),
('nat', 'ViTImageProcessor'),
('oneformer', 'OneFormerImageProcessor'),
('owlvit', 'OwlViTImageProcessor'),
('perceiver', 'PerceiverImageProcessor'),
('pix2struct', 'Pix2StructImageProcessor'),
('poolformer', 'PoolFormerImageProcessor'),
('regnet', 'ConvNextImageProcessor'),
('resnet', 'ConvNextImageProcessor'),
('sam', 'SamImageProcessor'),
('segformer', 'SegformerImageProcessor'),
('swiftformer', 'ViTImageProcessor'),
('swin', 'ViTImageProcessor'),
('swin2sr', 'Swin2SRImageProcessor'),
('swinv2', 'ViTImageProcessor'),
('table-transformer', 'DetrImageProcessor'),
('timesformer', 'VideoMAEImageProcessor'),
('tvlt', 'TvltImageProcessor'),
('upernet', 'SegformerImageProcessor'),
('van', 'ConvNextImageProcessor'),
('videomae', 'VideoMAEImageProcessor'),
('vilt', 'ViltImageProcessor'),
('vit', 'ViTImageProcessor'),
('vit_hybrid', 'ViTHybridImageProcessor'),
('vit_mae', 'ViTImageProcessor'),
('vit_msn', 'ViTImageProcessor'),
('xclip', 'CLIPImageProcessor'),
('yolos', 'YolosImageProcessor'),
]
)
__UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def __UpperCamelCase ( lowercase__ : str ) -> Any:
'''simple docstring'''
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCAmelCase_ : List[str] = model_type_to_module_name(lowercase__ )
lowerCAmelCase_ : List[str] = importlib.import_module(f'.{module_name}' , """transformers.models""" )
try:
return getattr(lowercase__ , lowercase__ )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(lowercase__ , """__name__""" , lowercase__ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCAmelCase_ : List[str] = importlib.import_module("""transformers""" )
if hasattr(lowercase__ , lowercase__ ):
return getattr(lowercase__ , lowercase__ )
return None
def __UpperCamelCase ( lowercase__ : Union[str, os.PathLike] , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : Optional[Dict[str, str]] = None , lowercase__ : Optional[Union[bool, str]] = None , lowercase__ : Optional[str] = None , lowercase__ : bool = False , **lowercase__ : str , ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Tuple = get_file_from_repo(
lowercase__ , lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , resume_download=lowercase__ , proxies=lowercase__ , use_auth_token=lowercase__ , revision=lowercase__ , local_files_only=lowercase__ , )
if resolved_config_file is None:
logger.info(
"""Could not locate the image processor configuration file, will try to use the model config instead.""" )
return {}
with open(lowercase__ , encoding="""utf-8""" ) as reader:
return json.load(lowercase__ )
class __a :
def __init__( self : List[str] ):
raise EnvironmentError(
"""AutoImageProcessor is designed to be instantiated """
"""using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(UpperCAmelCase )
def A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : List[str] ):
lowerCAmelCase_ : int = kwargs.pop("""config""" , UpperCAmelCase )
lowerCAmelCase_ : str = kwargs.pop("""trust_remote_code""" , UpperCAmelCase )
lowerCAmelCase_ : List[str] = True
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Dict = config_dict.get("""image_processor_type""" , UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = None
if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ):
lowerCAmelCase_ : List[str] = config_dict["""auto_map"""]["""AutoImageProcessor"""]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
lowerCAmelCase_ : Optional[int] = config_dict.pop("""feature_extractor_type""" , UpperCAmelCase )
if feature_extractor_class is not None:
logger.warning(
"""Could not find image processor class in the image processor config or the model config. Loading"""
""" based on pattern matching with the model's feature extractor configuration.""" )
lowerCAmelCase_ : Union[str, Any] = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" )
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
lowerCAmelCase_ : int = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
lowerCAmelCase_ : Tuple = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" )
logger.warning(
"""Could not find image processor auto map in the image processor config or the model config."""
""" Loading based on pattern matching with the model's feature extractor configuration.""" )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
# It could be in `config.image_processor_type``
lowerCAmelCase_ : Union[str, Any] = getattr(UpperCAmelCase , """image_processor_type""" , UpperCAmelCase )
if hasattr(UpperCAmelCase , """auto_map""" ) and "AutoImageProcessor" in config.auto_map:
lowerCAmelCase_ : List[str] = config.auto_map["""AutoImageProcessor"""]
if image_processor_class is not None:
lowerCAmelCase_ : int = image_processor_class_from_name(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = image_processor_auto_map is not None
lowerCAmelCase_ : Tuple = image_processor_class is not None or type(UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING
lowerCAmelCase_ : Union[str, Any] = resolve_trust_remote_code(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
if has_remote_code and trust_remote_code:
lowerCAmelCase_ : Tuple = get_class_from_dynamic_module(
UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Tuple = kwargs.pop("""code_revision""" , UpperCAmelCase )
if os.path.isdir(UpperCAmelCase ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase )
elif image_processor_class is not None:
return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING:
lowerCAmelCase_ : Union[str, Any] = IMAGE_PROCESSOR_MAPPING[type(UpperCAmelCase )]
return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase )
raise ValueError(
F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '
F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '
F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' )
@staticmethod
def A ( UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
IMAGE_PROCESSOR_MAPPING.register(UpperCAmelCase , UpperCAmelCase )
| 28 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 1 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'nielsr/canine-s': 20_48,
}
# Unicode defines 1,114,112 total “codepoints”
__UpperCAmelCase = 1_11_41_12
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
__UpperCAmelCase = 0
__UpperCAmelCase = 0XE_000
__UpperCAmelCase = 0XE_001
__UpperCAmelCase = 0XE_002
__UpperCAmelCase = 0XE_003
__UpperCAmelCase = 0XE_004
# Maps special codepoints to human-readable names.
__UpperCAmelCase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
__UpperCAmelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=chr(UpperCAmelCase ) , UpperCAmelCase : Any=chr(UpperCAmelCase ) , UpperCAmelCase : int=chr(UpperCAmelCase ) , UpperCAmelCase : Optional[int]=chr(UpperCAmelCase ) , UpperCAmelCase : Union[str, Any]=chr(UpperCAmelCase ) , UpperCAmelCase : List[str]=chr(UpperCAmelCase ) , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[Any]=20_48 , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Optional[int] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
lowerCAmelCase_ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
lowerCAmelCase_ : int = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
lowerCAmelCase_ : Any = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
lowerCAmelCase_ : Optional[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase_ : int = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , model_max_length=UpperCAmelCase , **UpperCAmelCase , )
# Creates a mapping for looking up the IDs of special symbols.
lowerCAmelCase_ : Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
lowerCAmelCase_ : Any = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
lowerCAmelCase_ : Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
lowerCAmelCase_ : List[Any] = UNICODE_VOCAB_SIZE
lowerCAmelCase_ : Tuple = len(self._special_codepoints )
@property
def A ( self : int ):
return self._unicode_vocab_size
def A ( self : str , UpperCAmelCase : str ):
return list(UpperCAmelCase )
def A ( self : str , UpperCAmelCase : str ):
try:
return ord(UpperCAmelCase )
except TypeError:
raise ValueError(F'invalid token: \'{token}\'' )
def A ( self : Optional[int] , UpperCAmelCase : int ):
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(UpperCAmelCase )
except TypeError:
raise ValueError(F'invalid id: {index}' )
def A ( self : int , UpperCAmelCase : Dict ):
return "".join(UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : Dict = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
lowerCAmelCase_ : List[str] = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def A ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Tuple = [1] + ([0] * len(UpperCAmelCase )) + [1]
if token_ids_a is not None:
result += ([0] * len(UpperCAmelCase )) + [1]
return result
def A ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : List[str] = [self.cls_token_id]
lowerCAmelCase_ : str = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def A ( self : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
return ()
| 28 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : bytes ) -> str:
'''simple docstring'''
return "".join([hex(lowercase__ )[2:].zfill(2 ).upper() for byte in list(lowercase__ )] )
def __UpperCamelCase ( lowercase__ : str ) -> bytes:
'''simple docstring'''
if (len(lowercase__ ) % 2) != 0:
raise ValueError(
"""Base16 encoded data is invalid:
Data does not have an even number of hex digits.""" )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(lowercase__ ) <= set("""0123456789ABCDEF""" ):
raise ValueError(
"""Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.""" )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase__ ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
__UpperCAmelCase = {
'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'],
'processing_speech_to_text': ['Speech2TextProcessor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['Speech2TextTokenizer']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['Speech2TextFeatureExtractor']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSpeech2TextForConditionalGeneration',
'TFSpeech2TextModel',
'TFSpeech2TextPreTrainedModel',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Speech2TextForConditionalGeneration',
'Speech2TextModel',
'Speech2TextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__UpperCAmelCase = get_tests_dir('fixtures')
class __a ( unittest.TestCase ):
def A ( self : Any ):
# A mock response for an HTTP head request to emulate server down
lowerCAmelCase_ : Tuple = mock.Mock()
lowerCAmelCase_ : int = 5_00
lowerCAmelCase_ : Dict = {}
lowerCAmelCase_ : List[str] = HTTPError
lowerCAmelCase_ : List[Any] = {}
# Download this model to make sure it's in the cache.
lowerCAmelCase_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("""requests.Session.request""" , return_value=UpperCAmelCase ) as mock_head:
lowerCAmelCase_ : Tuple = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" )
# This check we did call the fake head request
mock_head.assert_called()
def A ( self : Optional[Any] ):
# This test is for deprecated behavior and can be removed in v5
lowerCAmelCase_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(
"""https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" )
@is_staging_test
class __a ( unittest.TestCase ):
@classmethod
def A ( cls : Dict ):
lowerCAmelCase_ : Optional[int] = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def A ( cls : str ):
try:
delete_repo(token=cls._token , repo_id="""test-feature-extractor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" )
except HTTPError:
pass
def A ( self : Dict ):
lowerCAmelCase_ : Tuple = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase )
feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token )
lowerCAmelCase_ : str = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-feature-extractor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
UpperCAmelCase , repo_id="""test-feature-extractor""" , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCAmelCase_ : Dict = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Any ):
lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase )
feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token )
lowerCAmelCase_ : Tuple = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
UpperCAmelCase , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCAmelCase_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
CustomFeatureExtractor.register_for_auto_class()
lowerCAmelCase_ : Tuple = CustomFeatureExtractor.from_pretrained(UpperCAmelCase )
feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , )
lowerCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained(
F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=UpperCAmelCase )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
| 28 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def __UpperCamelCase ( lowercase__ : str ) -> List[str]:
'''simple docstring'''
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
lowerCAmelCase_ : int = k.replace(lowercase__ , lowercase__ )
if k.startswith("""encoder""" ):
lowerCAmelCase_ : Optional[int] = k.replace(""".attn""" , """.self_attn""" )
lowerCAmelCase_ : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" )
lowerCAmelCase_ : Tuple = k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
lowerCAmelCase_ : int = k.replace("""norm1""" , """self_attn_layer_norm""" )
lowerCAmelCase_ : List[str] = k.replace("""norm2""" , """encoder_attn_layer_norm""" )
lowerCAmelCase_ : Optional[Any] = k.replace("""norm3""" , """final_layer_norm""" )
return k
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
lowerCAmelCase_ : str = sd.pop(lowercase__ )
lowerCAmelCase_ : int = k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
lowerCAmelCase_ : List[Any] = v
__UpperCAmelCase = ['START']
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Optional[int] ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Dict = torch.load(lowercase__ , map_location="""cpu""" )
lowerCAmelCase_ : str = model["""model"""]
lowerCAmelCase_ : Optional[Any] = BlenderbotConfig.from_json_file(lowercase__ )
lowerCAmelCase_ : Tuple = BlenderbotForConditionalGeneration(lowercase__ )
lowerCAmelCase_ : Optional[Any] = m.model.state_dict().keys()
lowerCAmelCase_ : Optional[int] = []
lowerCAmelCase_ : Dict = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
lowerCAmelCase_ : int = rename_state_dict_key(lowercase__ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
lowerCAmelCase_ : List[Any] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase__ )
m.model.load_state_dict(lowercase__ , strict=lowercase__ )
m.half()
m.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
__UpperCAmelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 28 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 | 1 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,)
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
if self.framework == "pytorch":
subprocess.run(
F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="""utf-8""" , check=UpperCAmelCase , )
assert hasattr(self , """env""" )
def A ( self : List[Any] , UpperCAmelCase : Tuple ):
# configuration for running training on smdistributed Model Parallel
lowerCAmelCase_ : Optional[Any] = {
"""enabled""": True,
"""processes_per_host""": 8,
}
lowerCAmelCase_ : Dict = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
lowerCAmelCase_ : int = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
lowerCAmelCase_ : Optional[Any] = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 5_00,
} , metric_definitions=self.env.metric_definitions , distribution=UpperCAmelCase , py_version="""py36""" , )
def A ( self : List[str] , UpperCAmelCase : Tuple ):
TrainingJobAnalytics(UpperCAmelCase ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' )
@parameterized.expand([(1,)] )
def A ( self : Dict , UpperCAmelCase : Dict ):
# create estimator
lowerCAmelCase_ : Dict = self.create_estimator(UpperCAmelCase )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase_ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase_ : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
lowerCAmelCase_ : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase_ : Dict = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'{estimator.latest_training_job.name}.json' , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , UpperCAmelCase )
| 28 |
from datetime import datetime as dt
import os
from github import Github
__UpperCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCAmelCase_ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ )
lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : int ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = abs(lowercase__ )
lowerCAmelCase_ : int = 0
while n > 0:
res += n % 10
n //= 10
return res
def __UpperCamelCase ( lowercase__ : int ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = abs(lowercase__ )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def __UpperCamelCase ( lowercase__ : int ) -> int:
'''simple docstring'''
return sum(int(lowercase__ ) for c in str(abs(lowercase__ ) ) )
def __UpperCamelCase ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowercase__ : Callable , lowercase__ : int ) -> None:
lowerCAmelCase_ : Union[str, Any] = f'{func.__name__}({value})'
lowerCAmelCase_ : Any = timeit(f'__main__.{call}' , setup="""import __main__""" )
print(f'{call:56} = {func(lowercase__ )} -- {timing:.4f} seconds' )
for value in (262144, 1125899906842624, 1267650600228229401496703205376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(lowercase__ , lowercase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 28 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase_ : Optional[Any] = Vector()
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" )
def A ( self : Any ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase ) , 4 )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = Vector([1, 2] )
lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Dict = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase_ : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def A ( self : List[str] ):
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def A ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : int = x.copy()
self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" )
def A ( self : Any ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase_ : Any = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def A ( self : Dict ):
lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def A ( self : Optional[int] ):
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 28 | 1 |
import argparse
import json
import subprocess
def __UpperCamelCase ( lowercase__ : int , lowercase__ : List[str] ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = []
lowerCAmelCase_ : List[str] = (
f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"'
""" https://api.github.com/repos/huggingface/transformers/actions/runners"""
)
lowerCAmelCase_ : Tuple = subprocess.run(lowercase__ , shell=lowercase__ , stdout=subprocess.PIPE )
lowerCAmelCase_ : List[Any] = output.stdout.decode("""utf-8""" )
lowerCAmelCase_ : Optional[Any] = json.loads(lowercase__ )
lowerCAmelCase_ : Tuple = status["""runners"""]
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(lowercase__ )
# save the result so we can report them on Slack
with open("""offline_runners.txt""" , """w""" ) as fp:
fp.write(json.dumps(lowercase__ ) )
if len(lowercase__ ) > 0:
lowerCAmelCase_ : Optional[Any] = """\n""".join([x["""name"""] for x in offline_runners] )
raise ValueError(f'The following runners are offline:\n{failed}' )
if __name__ == "__main__":
def __UpperCamelCase ( lowercase__ : Tuple ) -> Any:
'''simple docstring'''
return values.split(""",""" )
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--target_runners',
default=None,
type=list_str,
required=True,
help='Comma-separated list of runners to check status.',
)
parser.add_argument(
'--token', default=None, type=str, required=True, help='A token that has actions:read permission.'
)
__UpperCAmelCase = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 28 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Union[str, Any] = """pixel_values"""
__snake_case : Optional[Any] = False
__snake_case : Dict = TimmBackboneConfig
def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ):
requires_backends(self , """timm""" )
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,)
lowerCAmelCase_ : Optional[int] = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers
lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
requires_backends(cls , ["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels )
lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only )
lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone )
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices )
lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
pass
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ):
lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase_ : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCAmelCase_ : Optional[Any] = self._all_layers
lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = self._return_layers
lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase )
lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCAmelCase_ : Optional[Any] = (feature_maps,)
if output_hidden_states:
lowerCAmelCase_ : Tuple = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 28 | 1 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
__UpperCAmelCase = TypeVar('T')
class __a ( Generic[T] ):
__snake_case : deque[T] # Cache store of keys
__snake_case : set[T] # References of the keys in cache
__snake_case : int = 10 # Maximum capacity of cache
def __init__( self : int , UpperCAmelCase : int ):
lowerCAmelCase_ : int = deque()
lowerCAmelCase_ : int = set()
if not n:
lowerCAmelCase_ : Optional[Any] = sys.maxsize
elif n < 0:
raise ValueError("""n should be an integer greater than 0.""" )
else:
lowerCAmelCase_ : str = n
def A ( self : List[Any] , UpperCAmelCase : T ):
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
lowerCAmelCase_ : Tuple = self.dq_store.pop()
self.key_reference.remove(UpperCAmelCase )
else:
self.dq_store.remove(UpperCAmelCase )
self.dq_store.appendleft(UpperCAmelCase )
self.key_reference.add(UpperCAmelCase )
def A ( self : Any ):
for k in self.dq_store:
print(UpperCAmelCase )
def __repr__( self : Tuple ):
return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}'
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = LRUCache(4)
lru_cache.refer('A')
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer('A')
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 28 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """mra"""
def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = vocab_size
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : str = initializer_range
lowerCAmelCase_ : str = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = position_embedding_type
lowerCAmelCase_ : Any = block_per_row
lowerCAmelCase_ : int = approx_mode
lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks
lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> str:
'''simple docstring'''
return "\n".join(
f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 28 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowerCAmelCase_ : Any = precision
lowerCAmelCase_ : Any = ceil(precision / 14 )
lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 13591409
lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ )
for k in range(1 , lowercase__ ):
lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__UpperCAmelCase = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 28 | 1 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
__UpperCAmelCase = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
__UpperCAmelCase = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
__UpperCAmelCase = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __a ( datasets.Metric ):
def A ( self : Union[str, Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/ROUGE_(metric)""",
"""https://github.com/google-research/google-research/tree/master/rouge""",
] , )
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=None , UpperCAmelCase : str=True , UpperCAmelCase : int=False ):
if rouge_types is None:
lowerCAmelCase_ : Optional[int] = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""]
lowerCAmelCase_ : int = rouge_scorer.RougeScorer(rouge_types=UpperCAmelCase , use_stemmer=UpperCAmelCase )
if use_aggregator:
lowerCAmelCase_ : int = scoring.BootstrapAggregator()
else:
lowerCAmelCase_ : List[str] = []
for ref, pred in zip(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : Tuple = scorer.score(UpperCAmelCase , UpperCAmelCase )
if use_aggregator:
aggregator.add_scores(UpperCAmelCase )
else:
scores.append(UpperCAmelCase )
if use_aggregator:
lowerCAmelCase_ : Union[str, Any] = aggregator.aggregate()
else:
lowerCAmelCase_ : Dict = {}
for key in scores[0]:
lowerCAmelCase_ : str = [score[key] for score in scores]
return result
| 28 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 1 |
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : str ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = FunnelConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
lowerCAmelCase_ : List[str] = FunnelBaseModel(lowercase__ ) if base_model else FunnelModel(lowercase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.'
)
__UpperCAmelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 28 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 | 1 |
from __future__ import annotations
def __UpperCamelCase ( lowercase__ : str ) -> list[int]:
'''simple docstring'''
return [ord(lowercase__ ) - 96 for elem in plain]
def __UpperCamelCase ( lowercase__ : list[int] ) -> str:
'''simple docstring'''
return "".join(chr(elem + 96 ) for elem in encoded )
def __UpperCamelCase ( ) -> None:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = encode(input("""-> """ ).strip().lower() )
print("""Encoded: """ , lowercase__ )
print("""Decoded:""" , decode(lowercase__ ) )
if __name__ == "__main__":
main()
| 28 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __a :
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[int] = use_input_mask
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Union[str, Any] = vocab_size - 1
lowerCAmelCase_ : str = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
def A ( self : List[Any] ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs
lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : str = 20
lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Dict = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model(
input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ):
lowerCAmelCase_ : int = 20
lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Tuple = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def A ( self : Any ):
lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self )
def A ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@tooslow
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id
lowerCAmelCase_ : List[Any] = jax.jit(model.generate )
lowerCAmelCase_ : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase )
lowerCAmelCase_ : List[str] = fx_state
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase )
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def A ( self : str ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : float , lowercase__ : float ) -> float:
'''simple docstring'''
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(lowercase__ ) * abs(lowercase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 28 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class __a ( __UpperCamelCase ):
__snake_case : jnp.ndarray
__snake_case : jnp.ndarray
class __a ( nn.Module ):
__snake_case : int
__snake_case : Tuple[int] = (16, 32, 96, 256)
__snake_case : jnp.dtype = jnp.floataa
def A ( self : str ):
lowerCAmelCase_ : int = nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
lowerCAmelCase_ : int = []
for i in range(len(self.block_out_channels ) - 1 ):
lowerCAmelCase_ : Optional[Any] = self.block_out_channels[i]
lowerCAmelCase_ : Union[str, Any] = self.block_out_channels[i + 1]
lowerCAmelCase_ : Dict = nn.Conv(
UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(UpperCAmelCase )
lowerCAmelCase_ : Any = nn.Conv(
UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(UpperCAmelCase )
lowerCAmelCase_ : List[str] = blocks
lowerCAmelCase_ : Optional[Any] = nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Dict = self.conv_in(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = nn.silu(UpperCAmelCase )
for block in self.blocks:
lowerCAmelCase_ : str = block(UpperCAmelCase )
lowerCAmelCase_ : Any = nn.silu(UpperCAmelCase )
lowerCAmelCase_ : int = self.conv_out(UpperCAmelCase )
return embedding
@flax_register_to_config
class __a ( nn.Module ,__UpperCamelCase ,__UpperCamelCase ):
__snake_case : int = 32
__snake_case : int = 4
__snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
__snake_case : Union[bool, Tuple[bool]] = False
__snake_case : Tuple[int] = (320, 640, 1280, 1280)
__snake_case : int = 2
__snake_case : Union[int, Tuple[int]] = 8
__snake_case : Optional[Union[int, Tuple[int]]] = None
__snake_case : int = 1280
__snake_case : float = 0.0
__snake_case : bool = False
__snake_case : jnp.dtype = jnp.floataa
__snake_case : bool = True
__snake_case : int = 0
__snake_case : str = "rgb"
__snake_case : Tuple[int] = (16, 32, 96, 256)
def A ( self : int , UpperCAmelCase : jax.random.KeyArray ):
# init input tensors
lowerCAmelCase_ : List[str] = (1, self.in_channels, self.sample_size, self.sample_size)
lowerCAmelCase_ : Tuple = jnp.zeros(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa )
lowerCAmelCase_ : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = (1, 3, self.sample_size * 8, self.sample_size * 8)
lowerCAmelCase_ : Union[str, Any] = jnp.zeros(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = jax.random.split(UpperCAmelCase )
lowerCAmelCase_ : Dict = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )["params"]
def A ( self : Tuple ):
lowerCAmelCase_ : Optional[Any] = self.block_out_channels
lowerCAmelCase_ : Dict = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
lowerCAmelCase_ : int = self.num_attention_heads or self.attention_head_dim
# input
lowerCAmelCase_ : Dict = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
lowerCAmelCase_ : List[Any] = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
lowerCAmelCase_ : List[Any] = FlaxTimestepEmbedding(UpperCAmelCase , dtype=self.dtype )
lowerCAmelCase_ : str = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
lowerCAmelCase_ : Any = self.only_cross_attention
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : str = (only_cross_attention,) * len(self.down_block_types )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : Dict = (num_attention_heads,) * len(self.down_block_types )
# down
lowerCAmelCase_ : List[Any] = []
lowerCAmelCase_ : Optional[Any] = []
lowerCAmelCase_ : Optional[Any] = block_out_channels[0]
lowerCAmelCase_ : int = nn.Conv(
UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(UpperCAmelCase )
for i, down_block_type in enumerate(self.down_block_types ):
lowerCAmelCase_ : int = output_channel
lowerCAmelCase_ : int = block_out_channels[i]
lowerCAmelCase_ : int = i == len(UpperCAmelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
lowerCAmelCase_ : Optional[Any] = FlaxCrossAttnDownBlockaD(
in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
lowerCAmelCase_ : Union[str, Any] = FlaxDownBlockaD(
in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(UpperCAmelCase )
for _ in range(self.layers_per_block ):
lowerCAmelCase_ : Optional[Any] = nn.Conv(
UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(UpperCAmelCase )
if not is_final_block:
lowerCAmelCase_ : str = nn.Conv(
UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = down_blocks
lowerCAmelCase_ : List[str] = controlnet_down_blocks
# mid
lowerCAmelCase_ : Optional[Any] = block_out_channels[-1]
lowerCAmelCase_ : str = FlaxUNetMidBlockaDCrossAttn(
in_channels=UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
lowerCAmelCase_ : str = nn.Conv(
UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , ):
lowerCAmelCase_ : str = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
lowerCAmelCase_ : int = jnp.flip(UpperCAmelCase , axis=1 )
# 1. time
if not isinstance(UpperCAmelCase , jnp.ndarray ):
lowerCAmelCase_ : str = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0:
lowerCAmelCase_ : List[str] = timesteps.astype(dtype=jnp.floataa )
lowerCAmelCase_ : Any = jnp.expand_dims(UpperCAmelCase , 0 )
lowerCAmelCase_ : Union[str, Any] = self.time_proj(UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.time_embedding(UpperCAmelCase )
# 2. pre-process
lowerCAmelCase_ : List[Any] = jnp.transpose(UpperCAmelCase , (0, 2, 3, 1) )
lowerCAmelCase_ : Tuple = self.conv_in(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = jnp.transpose(UpperCAmelCase , (0, 2, 3, 1) )
lowerCAmelCase_ : Dict = self.controlnet_cond_embedding(UpperCAmelCase )
sample += controlnet_cond
# 3. down
lowerCAmelCase_ : Optional[Any] = (sample,)
for down_block in self.down_blocks:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ , lowerCAmelCase_ : str = down_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train )
else:
lowerCAmelCase_ , lowerCAmelCase_ : str = down_block(UpperCAmelCase , UpperCAmelCase , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
lowerCAmelCase_ : List[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train )
# 5. contronet blocks
lowerCAmelCase_ : int = ()
for down_block_res_sample, controlnet_block in zip(UpperCAmelCase , self.controlnet_down_blocks ):
lowerCAmelCase_ : str = controlnet_block(UpperCAmelCase )
controlnet_down_block_res_samples += (down_block_res_sample,)
lowerCAmelCase_ : Any = controlnet_down_block_res_samples
lowerCAmelCase_ : Union[str, Any] = self.controlnet_mid_block(UpperCAmelCase )
# 6. scaling
lowerCAmelCase_ : Union[str, Any] = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=UpperCAmelCase , mid_block_res_sample=UpperCAmelCase )
| 28 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 1 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__UpperCAmelCase = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __a :
__snake_case : Optional[Any] = PegasusConfig
__snake_case : List[str] = {}
__snake_case : Dict = """gelu"""
def __init__( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : str=20 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=1 , UpperCAmelCase : Union[str, Any]=0 , ):
lowerCAmelCase_ : Optional[Any] = parent
lowerCAmelCase_ : Any = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Union[str, Any] = is_training
lowerCAmelCase_ : Any = use_labels
lowerCAmelCase_ : Optional[int] = vocab_size
lowerCAmelCase_ : Dict = hidden_size
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Optional[int] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Optional[Any] = eos_token_id
lowerCAmelCase_ : List[Any] = pad_token_id
lowerCAmelCase_ : Any = bos_token_id
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
lowerCAmelCase_ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Union[str, Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCAmelCase_ : List[str] = prepare_pegasus_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def A ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Dict ):
lowerCAmelCase_ : Optional[Any] = 20
lowerCAmelCase_ : int = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : str = model.encode(inputs_dict["""input_ids"""] )
lowerCAmelCase_ , lowerCAmelCase_ : Any = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowerCAmelCase_ : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Optional[int] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase_ : List[str] = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model.decode(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = 20
lowerCAmelCase_ : Union[str, Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : List[str] = model.encode(inputs_dict["""input_ids"""] )
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowerCAmelCase_ : Optional[int] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowerCAmelCase_ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase_ : Optional[Any] = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
lowerCAmelCase_ : str = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
lowerCAmelCase_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any , lowercase__ : Union[str, Any]=None , lowercase__ : Any=None , ) -> List[str]:
'''simple docstring'''
if attention_mask is None:
lowerCAmelCase_ : List[Any] = np.not_equal(lowercase__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowerCAmelCase_ : Tuple = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __a ( __UpperCamelCase ,unittest.TestCase ):
__snake_case : Tuple = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__snake_case : List[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__snake_case : List[str] = True
__snake_case : Tuple = False
__snake_case : List[Any] = False
__snake_case : str = False
def A ( self : Dict ):
lowerCAmelCase_ : Union[str, Any] = FlaxPegasusModelTester(self )
lowerCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase )
def A ( self : Optional[int] ):
self.config_tester.run_common_tests()
def A ( self : str ):
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Any ):
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Optional[int] ):
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase_ : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Union[str, Any] ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
lowerCAmelCase_ : List[str] = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowerCAmelCase_ : Optional[int] = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def A ( self : int ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase_ : Union[str, Any] = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
lowerCAmelCase_ : Union[str, Any] = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
lowerCAmelCase_ : Union[str, Any] = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowerCAmelCase_ : Tuple = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def A ( self : List[str] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Dict = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCAmelCase )
lowerCAmelCase_ : List[str] = np.ones((1, 1) )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@slow
def A ( self : int ):
lowerCAmelCase_ : Tuple = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
lowerCAmelCase_ : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
lowerCAmelCase_ : str = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
lowerCAmelCase_ : int = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
lowerCAmelCase_ : Any = tokenizer(UpperCAmelCase , return_tensors="""np""" , truncation=UpperCAmelCase , max_length=5_12 , padding=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = model.generate(**UpperCAmelCase , num_beams=2 ).sequences
lowerCAmelCase_ : List[str] = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
assert tgt_text == decoded
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 1 |
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class __a ( __UpperCamelCase ):
__snake_case : Optional[int] = ["""image_processor"""]
__snake_case : Union[str, Any] = """SamImageProcessor"""
def __init__( self : Tuple , UpperCAmelCase : List[Any] ):
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : Any = self.image_processor
lowerCAmelCase_ : Tuple = -10
lowerCAmelCase_ : Tuple = self.image_processor.size["""longest_edge"""]
def __call__( self : Optional[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Union[str, Any] , ):
lowerCAmelCase_ : List[Any] = self.image_processor(
UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
# pop arguments that are not used in the foward but used nevertheless
lowerCAmelCase_ : Tuple = encoding_image_processor["""original_sizes"""]
if hasattr(UpperCAmelCase , """numpy""" ): # Checks if Torch or TF tensor
lowerCAmelCase_ : Union[str, Any] = original_sizes.numpy()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self._check_and_preprocess_points(
input_points=UpperCAmelCase , input_labels=UpperCAmelCase , input_boxes=UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = self._normalize_and_convert(
UpperCAmelCase , UpperCAmelCase , input_points=UpperCAmelCase , input_labels=UpperCAmelCase , input_boxes=UpperCAmelCase , return_tensors=UpperCAmelCase , )
return encoding_image_processor
def A ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple="pt" , ):
if input_points is not None:
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
lowerCAmelCase_ : List[Any] = [
self._normalize_coordinates(self.target_size , UpperCAmelCase , original_sizes[0] ) for point in input_points
]
else:
lowerCAmelCase_ : Tuple = [
self._normalize_coordinates(self.target_size , UpperCAmelCase , UpperCAmelCase )
for point, original_size in zip(UpperCAmelCase , UpperCAmelCase )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self._pad_points_and_labels(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = np.array(UpperCAmelCase )
if input_labels is not None:
lowerCAmelCase_ : Tuple = np.array(UpperCAmelCase )
if input_boxes is not None:
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
lowerCAmelCase_ : int = [
self._normalize_coordinates(self.target_size , UpperCAmelCase , original_sizes[0] , is_bounding_box=UpperCAmelCase )
for box in input_boxes
]
else:
lowerCAmelCase_ : Tuple = [
self._normalize_coordinates(self.target_size , UpperCAmelCase , UpperCAmelCase , is_bounding_box=UpperCAmelCase )
for box, original_size in zip(UpperCAmelCase , UpperCAmelCase )
]
lowerCAmelCase_ : List[Any] = np.array(UpperCAmelCase )
if input_boxes is not None:
if return_tensors == "pt":
lowerCAmelCase_ : Optional[int] = torch.from_numpy(UpperCAmelCase )
# boxes batch size of 1 by default
lowerCAmelCase_ : List[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
lowerCAmelCase_ : str = tf.convert_to_tensor(UpperCAmelCase )
# boxes batch size of 1 by default
lowerCAmelCase_ : Tuple = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"""input_boxes""": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
lowerCAmelCase_ : Union[str, Any] = torch.from_numpy(UpperCAmelCase )
# point batch size of 1 by default
lowerCAmelCase_ : List[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
lowerCAmelCase_ : str = tf.convert_to_tensor(UpperCAmelCase )
# point batch size of 1 by default
lowerCAmelCase_ : Any = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"""input_points""": input_points} )
if input_labels is not None:
if return_tensors == "pt":
lowerCAmelCase_ : Dict = torch.from_numpy(UpperCAmelCase )
# point batch size of 1 by default
lowerCAmelCase_ : List[Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
lowerCAmelCase_ : int = tf.convert_to_tensor(UpperCAmelCase )
# point batch size of 1 by default
lowerCAmelCase_ : Dict = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"""input_labels""": input_labels} )
return encoding_image_processor
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : List[Any] = max([point.shape[0] for point in input_points] )
lowerCAmelCase_ : List[str] = []
for i, point in enumerate(UpperCAmelCase ):
if point.shape[0] != expected_nb_points:
lowerCAmelCase_ : Tuple = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
lowerCAmelCase_ : Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(UpperCAmelCase )
lowerCAmelCase_ : int = processed_input_points
return input_points, input_labels
def A ( self : str , UpperCAmelCase : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=False ):
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = original_size
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.image_processor._get_preprocess_shape(UpperCAmelCase , longest_edge=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = deepcopy(UpperCAmelCase ).astype(UpperCAmelCase )
if is_bounding_box:
lowerCAmelCase_ : Optional[int] = coords.reshape(-1 , 2 , 2 )
lowerCAmelCase_ : List[str] = coords[..., 0] * (new_w / old_w)
lowerCAmelCase_ : str = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
lowerCAmelCase_ : List[str] = coords.reshape(-1 , 4 )
return coords
def A ( self : Any , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , ):
if input_points is not None:
if hasattr(UpperCAmelCase , """numpy""" ): # Checks for TF or Torch tensor
lowerCAmelCase_ : Optional[int] = input_points.numpy().tolist()
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(input_points[0] , UpperCAmelCase ):
raise ValueError("""Input points must be a list of list of floating points.""" )
lowerCAmelCase_ : List[str] = [np.array(UpperCAmelCase ) for input_point in input_points]
else:
lowerCAmelCase_ : Optional[int] = None
if input_labels is not None:
if hasattr(UpperCAmelCase , """numpy""" ):
lowerCAmelCase_ : List[str] = input_labels.numpy().tolist()
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(input_labels[0] , UpperCAmelCase ):
raise ValueError("""Input labels must be a list of list integers.""" )
lowerCAmelCase_ : Optional[Any] = [np.array(UpperCAmelCase ) for label in input_labels]
else:
lowerCAmelCase_ : List[str] = None
if input_boxes is not None:
if hasattr(UpperCAmelCase , """numpy""" ):
lowerCAmelCase_ : str = input_boxes.numpy().tolist()
if (
not isinstance(UpperCAmelCase , UpperCAmelCase )
or not isinstance(input_boxes[0] , UpperCAmelCase )
or not isinstance(input_boxes[0][0] , UpperCAmelCase )
):
raise ValueError("""Input boxes must be a list of list of list of floating points.""" )
lowerCAmelCase_ : int = [np.array(UpperCAmelCase ).astype(np.floataa ) for box in input_boxes]
else:
lowerCAmelCase_ : Union[str, Any] = None
return input_points, input_labels, input_boxes
@property
def A ( self : Tuple ):
lowerCAmelCase_ : str = self.image_processor.model_input_names
return list(dict.fromkeys(UpperCAmelCase ) )
def A ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : List[str] ):
return self.image_processor.post_process_masks(*UpperCAmelCase , **UpperCAmelCase )
| 28 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 1 |
from typing import Dict
from .base import GenericTensor, Pipeline
class __a ( __UpperCamelCase ):
def A ( self : str , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=None , **UpperCAmelCase : int ):
if tokenize_kwargs is None:
lowerCAmelCase_ : Dict = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"""truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" )
lowerCAmelCase_ : Union[str, Any] = truncation
lowerCAmelCase_ : List[str] = tokenize_kwargs
lowerCAmelCase_ : str = {}
if return_tensors is not None:
lowerCAmelCase_ : Any = return_tensors
return preprocess_params, {}, postprocess_params
def A ( self : List[str] , UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
lowerCAmelCase_ : List[str] = self.framework
lowerCAmelCase_ : List[Any] = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
return model_inputs
def A ( self : Any , UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase_ : str = self.model(**UpperCAmelCase )
return model_outputs
def A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any]=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ):
return super().__call__(*UpperCAmelCase , **UpperCAmelCase )
| 28 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
__UpperCAmelCase = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Any = """albert"""
def __init__( self : List[str] , UpperCAmelCase : List[str]=3_00_00 , UpperCAmelCase : Optional[int]=1_28 , UpperCAmelCase : Optional[int]=40_96 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : int=1 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : Dict=1_63_84 , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : Optional[int]="gelu_new" , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Union[str, Any]=5_12 , UpperCAmelCase : Any=2 , UpperCAmelCase : str=0.02 , UpperCAmelCase : Dict=1e-1_2 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int="absolute" , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : int=2 , UpperCAmelCase : Tuple=3 , **UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Optional[int] = embedding_size
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Any = num_hidden_layers
lowerCAmelCase_ : List[str] = num_hidden_groups
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : str = inner_group_num
lowerCAmelCase_ : int = hidden_act
lowerCAmelCase_ : List[str] = intermediate_size
lowerCAmelCase_ : Optional[int] = hidden_dropout_prob
lowerCAmelCase_ : Dict = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : List[Any] = type_vocab_size
lowerCAmelCase_ : List[str] = initializer_range
lowerCAmelCase_ : List[Any] = layer_norm_eps
lowerCAmelCase_ : Any = classifier_dropout_prob
lowerCAmelCase_ : Any = position_embedding_type
class __a ( __UpperCamelCase ):
@property
def A ( self : List[Any] ):
if self.task == "multiple-choice":
lowerCAmelCase_ : int = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'tanreinama/GPTSAN-2.8B-spout_is_uniform': (
'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json'
),
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[int] = """gptsan-japanese"""
__snake_case : Optional[Any] = [
"""past_key_values""",
]
__snake_case : int = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : Union[str, Any] , UpperCAmelCase : Any=3_60_00 , UpperCAmelCase : List[str]=12_80 , UpperCAmelCase : List[Any]=10_24 , UpperCAmelCase : Optional[int]=81_92 , UpperCAmelCase : List[Any]=40_96 , UpperCAmelCase : Dict=1_28 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : int=0 , UpperCAmelCase : Any=16 , UpperCAmelCase : str=16 , UpperCAmelCase : int=1_28 , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : int=False , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : str="float32" , UpperCAmelCase : str=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : int=False , UpperCAmelCase : str=0.002 , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=3_59_98 , UpperCAmelCase : int=3_59_95 , UpperCAmelCase : Union[str, Any]=3_59_99 , **UpperCAmelCase : Tuple , ):
lowerCAmelCase_ : int = vocab_size
lowerCAmelCase_ : Tuple = max_position_embeddings
lowerCAmelCase_ : Dict = d_model
lowerCAmelCase_ : Optional[Any] = d_ff
lowerCAmelCase_ : Dict = d_ext
lowerCAmelCase_ : Union[str, Any] = d_spout
lowerCAmelCase_ : Dict = num_switch_layers
lowerCAmelCase_ : Dict = num_ext_layers
lowerCAmelCase_ : Union[str, Any] = num_switch_layers + num_ext_layers
lowerCAmelCase_ : Union[str, Any] = num_heads
lowerCAmelCase_ : Optional[Any] = num_experts
lowerCAmelCase_ : Dict = expert_capacity
lowerCAmelCase_ : Any = dropout_rate
lowerCAmelCase_ : List[str] = layer_norm_epsilon
lowerCAmelCase_ : Union[str, Any] = router_bias
lowerCAmelCase_ : Union[str, Any] = router_jitter_noise
lowerCAmelCase_ : Any = router_dtype
lowerCAmelCase_ : Dict = router_ignore_padding_tokens
lowerCAmelCase_ : List[Any] = output_hidden_states
lowerCAmelCase_ : Dict = output_attentions
lowerCAmelCase_ : Any = initializer_factor
lowerCAmelCase_ : Union[str, Any] = output_router_logits
lowerCAmelCase_ : Tuple = use_cache
super().__init__(
separator_token_id=UpperCAmelCase , pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase , )
| 28 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 28 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class __a ( __UpperCamelCase ):
__snake_case : Tuple = """distilbert"""
__snake_case : Dict = {
"""hidden_size""": """dim""",
"""num_attention_heads""": """n_heads""",
"""num_hidden_layers""": """n_layers""",
}
def __init__( self : List[str] , UpperCAmelCase : Union[str, Any]=3_05_22 , UpperCAmelCase : Any=5_12 , UpperCAmelCase : int=False , UpperCAmelCase : str=6 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : str=7_68 , UpperCAmelCase : Optional[int]=4 * 7_68 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=0.2 , UpperCAmelCase : Optional[Any]=0 , **UpperCAmelCase : Tuple , ):
lowerCAmelCase_ : str = vocab_size
lowerCAmelCase_ : int = max_position_embeddings
lowerCAmelCase_ : str = sinusoidal_pos_embds
lowerCAmelCase_ : str = n_layers
lowerCAmelCase_ : Optional[Any] = n_heads
lowerCAmelCase_ : str = dim
lowerCAmelCase_ : int = hidden_dim
lowerCAmelCase_ : Any = dropout
lowerCAmelCase_ : Tuple = attention_dropout
lowerCAmelCase_ : Dict = activation
lowerCAmelCase_ : Dict = initializer_range
lowerCAmelCase_ : Any = qa_dropout
lowerCAmelCase_ : Optional[int] = seq_classif_dropout
super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase )
class __a ( __UpperCamelCase ):
@property
def A ( self : Tuple ):
if self.task == "multiple-choice":
lowerCAmelCase_ : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowerCAmelCase_ : int = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 28 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 1 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = XCLIPTextConfig()
# derive patch size from model name
lowerCAmelCase_ : Tuple = model_name.find("""patch""" )
lowerCAmelCase_ : List[Any] = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] )
lowerCAmelCase_ : List[str] = XCLIPVisionConfig(patch_size=lowercase__ , num_frames=lowercase__ )
if "large" in model_name:
lowerCAmelCase_ : str = 768
lowerCAmelCase_ : Dict = 3072
lowerCAmelCase_ : Optional[Any] = 12
lowerCAmelCase_ : int = 1024
lowerCAmelCase_ : List[Any] = 4096
lowerCAmelCase_ : List[str] = 16
lowerCAmelCase_ : Optional[int] = 24
lowerCAmelCase_ : Tuple = 768
lowerCAmelCase_ : List[str] = 3072
if model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ : Dict = 336
lowerCAmelCase_ : Optional[Any] = XCLIPConfig.from_text_vision_configs(lowercase__ , lowercase__ )
if "large" in model_name:
lowerCAmelCase_ : Union[str, Any] = 768
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
if name == "token_embedding.weight":
lowerCAmelCase_ : Optional[Any] = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" )
if name == "positional_embedding":
lowerCAmelCase_ : Any = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "ln_1" in name:
lowerCAmelCase_ : Optional[int] = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
lowerCAmelCase_ : int = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
lowerCAmelCase_ : int = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
lowerCAmelCase_ : Tuple = name.replace("""c_proj""" , """fc2""" )
if name.startswith("""transformer.resblocks""" ):
lowerCAmelCase_ : Optional[Any] = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" )
if "attn.out_proj" in name and "message" not in name:
lowerCAmelCase_ : List[Any] = name.replace("""attn.out_proj""" , """self_attn.out_proj""" )
if "ln_final" in name:
lowerCAmelCase_ : Any = name.replace("""ln_final""" , """text_model.final_layer_norm""" )
# visual encoder
if name == "visual.class_embedding":
lowerCAmelCase_ : List[str] = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" )
if name == "visual.positional_embedding":
lowerCAmelCase_ : Dict = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" )
if name.startswith("""visual.transformer.resblocks""" ):
lowerCAmelCase_ : Optional[Any] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" )
if "visual.conv1" in name:
lowerCAmelCase_ : List[Any] = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" )
if "visual.ln_pre" in name:
lowerCAmelCase_ : int = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" )
if "visual.ln_post" in name:
lowerCAmelCase_ : Dict = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" )
if "visual.proj" in name:
lowerCAmelCase_ : Dict = name.replace("""visual.proj""" , """visual_projection.weight""" )
if "text_projection" in name:
lowerCAmelCase_ : Dict = name.replace("""text_projection""" , """text_projection.weight""" )
# things on top
if "prompts_visual_proj" in name:
lowerCAmelCase_ : Optional[Any] = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" )
if "prompts_visual_ln" in name:
lowerCAmelCase_ : str = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" )
# mit
if name == "mit.positional_embedding":
lowerCAmelCase_ : Tuple = name.replace("""positional""" , """position""" )
if name.startswith("""mit.resblocks""" ):
lowerCAmelCase_ : List[str] = name.replace("""mit.resblocks""" , """mit.encoder.layers""" )
# prompts generator
if name.startswith("""prompts_generator.norm""" ):
lowerCAmelCase_ : Tuple = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" )
return name
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Dict ) -> Optional[int]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ : List[Any] = orig_state_dict.pop(lowercase__ )
if "attn.in_proj" in key:
lowerCAmelCase_ : List[str] = key.split(""".""" )
if key.startswith("""visual""" ):
lowerCAmelCase_ : Dict = key_split[3]
lowerCAmelCase_ : int = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
lowerCAmelCase_ : Dict = val[
:dim, :
]
lowerCAmelCase_ : int = val[
dim : dim * 2, :
]
lowerCAmelCase_ : List[str] = val[
-dim:, :
]
else:
lowerCAmelCase_ : Optional[Any] = val[
:dim
]
lowerCAmelCase_ : List[Any] = val[
dim : dim * 2
]
lowerCAmelCase_ : Optional[int] = val[
-dim:
]
else:
if "weight" in key:
lowerCAmelCase_ : Tuple = val[
:dim, :
]
lowerCAmelCase_ : int = val[
dim : dim * 2, :
]
lowerCAmelCase_ : Tuple = val[
-dim:, :
]
else:
lowerCAmelCase_ : Any = val[:dim]
lowerCAmelCase_ : int = val[
dim : dim * 2
]
lowerCAmelCase_ : List[str] = val[-dim:]
elif key.startswith("""mit""" ):
lowerCAmelCase_ : Tuple = key_split[2]
lowerCAmelCase_ : Optional[int] = config.vision_config.mit_hidden_size
if "weight" in key:
lowerCAmelCase_ : List[Any] = val[:dim, :]
lowerCAmelCase_ : List[Any] = val[dim : dim * 2, :]
lowerCAmelCase_ : Any = val[-dim:, :]
else:
lowerCAmelCase_ : List[Any] = val[:dim]
lowerCAmelCase_ : Any = val[dim : dim * 2]
lowerCAmelCase_ : Optional[Any] = val[-dim:]
else:
lowerCAmelCase_ : List[str] = key_split[2]
lowerCAmelCase_ : int = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase_ : Union[str, Any] = val[:dim, :]
lowerCAmelCase_ : Union[str, Any] = val[
dim : dim * 2, :
]
lowerCAmelCase_ : Optional[int] = val[-dim:, :]
else:
lowerCAmelCase_ : Union[str, Any] = val[:dim]
lowerCAmelCase_ : List[str] = val[
dim : dim * 2
]
lowerCAmelCase_ : int = val[-dim:]
else:
lowerCAmelCase_ : List[Any] = rename_key(lowercase__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
lowerCAmelCase_ : Tuple = val.T
lowerCAmelCase_ : Optional[Any] = val
return orig_state_dict
def __UpperCamelCase ( lowercase__ : List[str] ) -> Any:
'''simple docstring'''
if num_frames == 8:
lowerCAmelCase_ : Optional[Any] = """eating_spaghetti_8_frames.npy"""
elif num_frames == 16:
lowerCAmelCase_ : List[Any] = """eating_spaghetti.npy"""
elif num_frames == 32:
lowerCAmelCase_ : Optional[int] = """eating_spaghetti_32_frames.npy"""
lowerCAmelCase_ : int = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename=lowercase__ , repo_type="""dataset""" , )
lowerCAmelCase_ : Any = np.load(lowercase__ )
return list(lowercase__ )
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : str=None , lowercase__ : List[Any]=False ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : str = {
# fully supervised kinetics-400 checkpoints
"""xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""",
"""xclip-base-patch32-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"""
),
"""xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""",
"""xclip-base-patch16-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"""
),
"""xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb""",
"""xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f""",
# fully supervised kinetics-600 checkpoints
"""xclip-base-patch16-kinetics-600""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"""
),
"""xclip-base-patch16-kinetics-600-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"""
),
"""xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be""",
# few shot
"""xclip-base-patch16-hmdb-2-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"""
),
"""xclip-base-patch16-hmdb-4-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"""
),
"""xclip-base-patch16-hmdb-8-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"""
),
"""xclip-base-patch16-hmdb-16-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"""
),
"""xclip-base-patch16-ucf-2-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"""
),
"""xclip-base-patch16-ucf-4-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"""
),
"""xclip-base-patch16-ucf-8-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"""
),
"""xclip-base-patch16-ucf-16-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"""
),
# zero shot
"""xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""",
}
lowerCAmelCase_ : Optional[int] = model_to_url[model_name]
lowerCAmelCase_ : Optional[int] = 8
if "16-frames" in model_name:
lowerCAmelCase_ : Dict = 16
elif "shot" in model_name:
lowerCAmelCase_ : str = 32
lowerCAmelCase_ : List[str] = get_xclip_config(lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = XCLIPModel(lowercase__ )
model.eval()
if "drive" in checkpoint_url:
lowerCAmelCase_ : Any = """pytorch_model.bin"""
gdown.cached_download(lowercase__ , lowercase__ , quiet=lowercase__ )
lowerCAmelCase_ : Dict = torch.load(lowercase__ , map_location="""cpu""" )["""model"""]
else:
lowerCAmelCase_ : Any = torch.hub.load_state_dict_from_url(lowercase__ )["""model"""]
lowerCAmelCase_ : Any = convert_state_dict(lowercase__ , lowercase__ )
lowerCAmelCase_ : List[str] = XCLIPModel(lowercase__ )
lowerCAmelCase_ , lowerCAmelCase_ : Dict = model.load_state_dict(lowercase__ , strict=lowercase__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
lowerCAmelCase_ : Optional[int] = 336 if model_name == """xclip-large-patch14-16-frames""" else 224
lowerCAmelCase_ : Any = VideoMAEImageProcessor(size=lowercase__ )
lowerCAmelCase_ : str = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" )
lowerCAmelCase_ : Tuple = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" )
lowerCAmelCase_ : Optional[Any] = XCLIPProcessor(image_processor=lowercase__ , tokenizer=lowercase__ )
lowerCAmelCase_ : Tuple = prepare_video(lowercase__ )
lowerCAmelCase_ : Any = processor(
text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=lowercase__ , return_tensors="""pt""" , padding=lowercase__ )
print("""Shape of pixel values:""" , inputs.pixel_values.shape )
with torch.no_grad():
lowerCAmelCase_ : Optional[Any] = model(**lowercase__ )
# Verify outputs
lowerCAmelCase_ : Tuple = outputs.logits_per_video
lowerCAmelCase_ : List[Any] = logits_per_video.softmax(dim=1 )
print("""Probs:""" , lowercase__ )
# kinetics-400
if model_name == "xclip-base-patch32":
lowerCAmelCase_ : Union[str, Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] )
elif model_name == "xclip-base-patch32-16-frames":
lowerCAmelCase_ : Tuple = torch.tensor([[7.0_999E-04, 9.9_883E-01, 4.5_580E-04]] )
elif model_name == "xclip-base-patch16":
lowerCAmelCase_ : List[Any] = torch.tensor([[0.0083, 0.9681, 0.0236]] )
elif model_name == "xclip-base-patch16-16-frames":
lowerCAmelCase_ : int = torch.tensor([[7.6_937E-04, 9.9_728E-01, 1.9_473E-03]] )
elif model_name == "xclip-large-patch14":
lowerCAmelCase_ : int = torch.tensor([[0.0062, 0.9864, 0.0075]] )
elif model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ : int = torch.tensor([[3.3_877E-04, 9.9_937E-01, 2.8_888E-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
lowerCAmelCase_ : Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
lowerCAmelCase_ : int = torch.tensor([[3.8_554E-04, 9.9_929E-01, 3.2_754E-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
lowerCAmelCase_ : List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
lowerCAmelCase_ : List[Any] = torch.tensor([[7.1_890E-06, 9.9_994E-01, 5.6_559E-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
lowerCAmelCase_ : Optional[int] = torch.tensor([[1.0_320E-05, 9.9_993E-01, 6.2_435E-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
lowerCAmelCase_ : str = torch.tensor([[4.1_377E-06, 9.9_990E-01, 9.8_386E-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
lowerCAmelCase_ : Union[str, Any] = torch.tensor([[4.1_347E-05, 9.9_962E-01, 3.3_411E-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
lowerCAmelCase_ : List[Any] = torch.tensor([[8.5_857E-05, 9.9_928E-01, 6.3_291E-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
lowerCAmelCase_ : List[str] = torch.tensor([[8.5_857E-05, 9.9_928E-01, 6.3_291E-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
lowerCAmelCase_ : Any = torch.tensor([[0.0027, 0.9904, 0.0070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
lowerCAmelCase_ : Optional[Any] = torch.tensor([[9.8_219E-04, 9.9_593E-01, 3.0_863E-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
lowerCAmelCase_ : Union[str, Any] = torch.tensor([[3.5_082E-04, 9.9_785E-01, 1.7_966E-03]] )
else:
raise ValueError(f'Model name {model_name} not supported' )
assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
if push_to_hub:
print("""Pushing model, processor and slow tokenizer files to the hub...""" )
model.push_to_hub(lowercase__ , organization="""nielsr""" )
processor.push_to_hub(lowercase__ , organization="""nielsr""" )
slow_tokenizer.push_to_hub(lowercase__ , organization="""nielsr""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='xclip-base-patch32',
type=str,
help='Name of the model.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : bool = True , lowercase__ : float = math.inf , lowercase__ : float = -math.inf , lowercase__ : float = math.inf , lowercase__ : float = -math.inf , lowercase__ : bool = False , lowercase__ : float = 100 , lowercase__ : float = 0.01 , lowercase__ : float = 1 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = False
lowerCAmelCase_ : Optional[Any] = search_prob
lowerCAmelCase_ : Optional[Any] = start_temperate
lowerCAmelCase_ : Dict = []
lowerCAmelCase_ : Union[str, Any] = 0
lowerCAmelCase_ : Tuple = None
while not search_end:
lowerCAmelCase_ : Tuple = current_state.score()
if best_state is None or current_score > best_state.score():
lowerCAmelCase_ : Union[str, Any] = current_state
scores.append(lowercase__ )
iterations += 1
lowerCAmelCase_ : str = None
lowerCAmelCase_ : List[Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCAmelCase_ : List[str] = random.randint(0 , len(lowercase__ ) - 1 ) # picking a random neighbor
lowerCAmelCase_ : str = neighbors.pop(lowercase__ )
lowerCAmelCase_ : Dict = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCAmelCase_ : Tuple = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCAmelCase_ : List[str] = picked_neighbor
else:
lowerCAmelCase_ : Dict = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCAmelCase_ : Optional[Any] = picked_neighbor
lowerCAmelCase_ : Tuple = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCAmelCase_ : Union[str, Any] = True
else:
lowerCAmelCase_ : Tuple = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase__ ) , lowercase__ )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : int ) -> int:
'''simple docstring'''
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
__UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__UpperCAmelCase = simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '
f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
__UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__UpperCAmelCase = simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '
f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : List[Any] ) -> str:
'''simple docstring'''
return (3 * x**2) - (6 * y)
__UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__UpperCAmelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '
f"""{local_min.score()}"""
)
__UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__UpperCAmelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '
f"""{local_min.score()}"""
)
| 28 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : int ) -> bool:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
lowerCAmelCase_ : Dict = f'Input value of [number={number}] must be an integer'
raise TypeError(lowercase__ )
if number < 0:
return False
lowerCAmelCase_ : Any = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 | 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 28 |
from datetime import datetime as dt
import os
from github import Github
__UpperCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCAmelCase_ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ )
lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 28 | 1 |
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '▁'
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'}
__UpperCAmelCase = {
'sentencepiece_model_file': 'sentencepiece.bpe.model',
'vocab_file': 'vocab.txt',
}
__UpperCAmelCase = {
'vocab_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
},
'sentencepiece_model_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
},
}
__UpperCAmelCase = {
'ernie-m-base': 5_14,
'ernie-m-large': 5_14,
}
__UpperCAmelCase = {
'ernie-m-base': {'do_lower_case': False},
'ernie-m-large': {'do_lower_case': False},
}
class __a ( __UpperCamelCase ):
__snake_case : List[str] = ["input_ids"]
__snake_case : Tuple = VOCAB_FILES_NAMES
__snake_case : str = PRETRAINED_INIT_CONFIGURATION
__snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : str = RESOURCE_FILES_NAMES
def __init__( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=False , UpperCAmelCase : str="utf8" , UpperCAmelCase : str="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : int="[PAD]" , UpperCAmelCase : Optional[Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[Dict[str, Any]] = None , **UpperCAmelCase : str , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
lowerCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , vocab_file=UpperCAmelCase , encoding=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Union[str, Any] = sentencepiece_model_ckpt
lowerCAmelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCAmelCase_ : Tuple = self.load_vocab(filepath=UpperCAmelCase )
else:
lowerCAmelCase_ : int = {self.sp_model.id_to_piece(UpperCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
lowerCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()}
def A ( self : Dict , UpperCAmelCase : Optional[int] ):
if text is None:
return None
lowerCAmelCase_ : List[str] = self.tokenize(UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = """""", []
for i, ch in enumerate(UpperCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
lowerCAmelCase_ : Union[str, Any] = self.SP_CHAR_MAPPING.get(UpperCAmelCase )
else:
lowerCAmelCase_ : Optional[int] = unicodedata.normalize("""NFKC""" , UpperCAmelCase )
if self.is_whitespace(UpperCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(UpperCAmelCase ) )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = normalized_text, [], 0
if self.do_lower_case:
lowerCAmelCase_ : str = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowerCAmelCase_ : str = token[1:]
lowerCAmelCase_ : Dict = text[offset:].index(UpperCAmelCase ) + offset
lowerCAmelCase_ : List[str] = start + len(UpperCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCAmelCase_ : Optional[Any] = end
return token_mapping
@property
def A ( self : Union[str, Any] ):
return len(self.vocab )
def A ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : List[str] ):
lowerCAmelCase_ : Tuple = self.__dict__.copy()
lowerCAmelCase_ : Optional[int] = None
return state
def __setstate__( self : Optional[Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Tuple = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowerCAmelCase_ : int = {}
lowerCAmelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def A ( self : Tuple , UpperCAmelCase : str ):
return "".join((self.SP_CHAR_MAPPING.get(UpperCAmelCase , UpperCAmelCase ) for c in text) )
def A ( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int=False , UpperCAmelCase : Union[str, Any]=64 , UpperCAmelCase : Dict=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
lowerCAmelCase_ : Optional[Any] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
lowerCAmelCase_ : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
lowerCAmelCase_ : int = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
lowerCAmelCase_ : Optional[int] = self.sp_model.EncodeAsPieces(UpperCAmelCase )
else:
lowerCAmelCase_ : List[Any] = self.sp_model.SampleEncodeAsPieces(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = []
for pi, piece in enumerate(UpperCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(UpperCAmelCase ) and pi != 0:
new_pieces.append(UpperCAmelCase )
continue
else:
continue
lowerCAmelCase_ : str = 0
for i, chunk in enumerate(UpperCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(UpperCAmelCase ) or self.is_punct(UpperCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(UpperCAmelCase )
lowerCAmelCase_ : List[str] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase_ : Union[str, Any] = i
if len(UpperCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def A ( self : str , UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase_ : Any = """""".join(UpperCAmelCase ).replace(UpperCAmelCase , """ """ ).strip()
return out_string
def A ( self : Any , UpperCAmelCase : int ):
lowerCAmelCase_ : str = self.convert_ids_to_tokens(UpperCAmelCase )
lowerCAmelCase_ : Any = """""".join(UpperCAmelCase ).replace(UpperCAmelCase , """ """ ).strip()
return out_string
def A ( self : List[str] , UpperCAmelCase : int ):
return self.vocab.get(UpperCAmelCase , self.vocab.get(self.unk_token ) )
def A ( self : List[Any] , UpperCAmelCase : Tuple ):
return self.reverse_vocab.get(UpperCAmelCase , self.unk_token )
def A ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase_ : Optional[int] = [self.cls_token_id]
lowerCAmelCase_ : Tuple = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1]
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(UpperCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(UpperCAmelCase ) + 1) + [1] * (len(UpperCAmelCase ) + 3)
def A ( self : Union[str, Any] , UpperCAmelCase : str ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def A ( self : Union[str, Any] , UpperCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def A ( self : Any , UpperCAmelCase : List[str] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def A ( self : str , UpperCAmelCase : List[str] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(UpperCAmelCase ) == 1:
lowerCAmelCase_ : Union[str, Any] = unicodedata.category(UpperCAmelCase )
if cat == "Zs":
return True
return False
def A ( self : Dict , UpperCAmelCase : Dict ):
lowerCAmelCase_ : List[Any] = {}
with io.open(UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Union[str, Any] = line.rstrip("""\n""" )
lowerCAmelCase_ : str = int(UpperCAmelCase )
return token_to_idx
def A ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Dict = 0
if os.path.isdir(UpperCAmelCase ):
lowerCAmelCase_ : List[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
lowerCAmelCase_ : List[str] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
""" Please check that the vocabulary is not corrupted!""" )
lowerCAmelCase_ : List[str] = token_index
writer.write(token + """\n""" )
index += 1
lowerCAmelCase_ : Optional[Any] = os.path.join(UpperCAmelCase , """sentencepiece.bpe.model""" )
with open(UpperCAmelCase , """wb""" ) as fi:
lowerCAmelCase_ : int = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (vocab_file,)
| 28 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase_ : Optional[Any] = Vector()
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" )
def A ( self : Any ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase ) , 4 )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = Vector([1, 2] )
lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Dict = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase_ : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def A ( self : List[str] ):
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def A ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : int = x.copy()
self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" )
def A ( self : Any ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase_ : Any = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def A ( self : Dict ):
lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def A ( self : Optional[int] ):
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 28 | 1 |
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
__UpperCAmelCase = logging.getLogger(__name__)
def __UpperCamelCase ( lowercase__ : torch.nn.Module , lowercase__ : BnbQuantizationConfig , lowercase__ : Union[str, os.PathLike] = None , lowercase__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , lowercase__ : Optional[List[str]] = None , lowercase__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Tuple = bnb_quantization_config.load_in_abit
lowerCAmelCase_ : List[str] = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"""You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"""
""" make sure you have the latest version of `bitsandbytes` installed.""" )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"""You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"""
"""make sure you have the latest version of `bitsandbytes` installed.""" )
lowerCAmelCase_ : List[Any] = []
# custom device map
if isinstance(lowercase__ , lowercase__ ) and len(device_map.keys() ) > 1:
lowerCAmelCase_ : Any = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
lowerCAmelCase_ : str = get_keys_to_not_convert(lowercase__ )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(lowercase__ )
lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
lowerCAmelCase_ : List[str] = []
lowerCAmelCase_ : Tuple = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(lowercase__ )
# compatibility with peft
lowerCAmelCase_ : Tuple = load_in_abit
lowerCAmelCase_ : Union[str, Any] = load_in_abit
lowerCAmelCase_ : List[str] = get_parameter_device(lowercase__ )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"""It is not recommended to quantize a loaded model. """
"""The model should be instantiated under the `init_empty_weights` context manager.""" )
lowerCAmelCase_ : List[Any] = replace_with_bnb_layers(lowercase__ , lowercase__ , modules_to_not_convert=lowercase__ )
# convert param to the right dtype
lowerCAmelCase_ : List[Any] = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
lowerCAmelCase_ : List[Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" )
lowerCAmelCase_ : Optional[int] = getattr(lowercase__ , lowercase__ , lowercase__ )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(lowercase__ ):
param.to(lowercase__ )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info(
f'The model device type is {model_device.type}. However, cuda is needed for quantization.'
"""We move the model to cuda.""" )
return model
elif weights_location is None:
raise RuntimeError(
f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' )
else:
with init_empty_weights():
lowerCAmelCase_ : List[str] = replace_with_bnb_layers(
lowercase__ , lowercase__ , modules_to_not_convert=lowercase__ )
lowerCAmelCase_ : str = get_quantized_model_device_map(
lowercase__ , lowercase__ , lowercase__ , max_memory=lowercase__ , no_split_module_classes=lowercase__ , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
lowerCAmelCase_ : Tuple = True
lowerCAmelCase_ : Any = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] )
load_checkpoint_in_model(
lowercase__ , lowercase__ , lowercase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowercase__ , offload_state_dict=lowercase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(lowercase__ , device_map=lowercase__ , offload_dir=lowercase__ )
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : int=None , lowercase__ : int=None , lowercase__ : Tuple=None ) -> int:
'''simple docstring'''
if device_map is None:
if torch.cuda.is_available():
lowerCAmelCase_ : Tuple = {"""""": torch.cuda.current_device()}
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" )
if isinstance(lowercase__ , lowercase__ ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"""If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """
"""'sequential'.""" )
lowerCAmelCase_ : str = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
lowerCAmelCase_ : Union[str, Any] = {}
lowerCAmelCase_ : Dict = special_dtypes
lowerCAmelCase_ : Dict = no_split_module_classes
lowerCAmelCase_ : Optional[int] = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
lowerCAmelCase_ : Any = get_balanced_memory(
lowercase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowercase__ , **lowercase__ , )
lowerCAmelCase_ : str = max_memory
lowerCAmelCase_ : Optional[int] = infer_auto_device_map(lowercase__ , **lowercase__ )
if isinstance(lowercase__ , lowercase__ ):
# check if don't have any quantized module on the cpu
lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
lowerCAmelCase_ : int = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"""
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
""" )
else:
logger.info(
"""Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" )
del device_map_without_some_modules
return device_map
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : str=None , lowercase__ : Any=None ) -> Optional[int]:
'''simple docstring'''
if modules_to_not_convert is None:
lowerCAmelCase_ : Optional[Any] = []
lowerCAmelCase_ , lowerCAmelCase_ : int = _replace_with_bnb_layers(
lowercase__ , lowercase__ , lowercase__ , lowercase__ )
if not has_been_replaced:
logger.warning(
"""You are loading your model in 8bit or 4bit but no linear modules were found in your model."""
""" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."""
""" Please double check your model architecture, or submit an issue on github if you think this is"""
""" a bug.""" )
return model
def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : str , lowercase__ : str=None , lowercase__ : Union[str, Any]=None , ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Any = False
for name, module in model.named_children():
if current_key_name is None:
lowerCAmelCase_ : Any = []
current_key_name.append(lowercase__ )
if isinstance(lowercase__ , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
lowerCAmelCase_ : Dict = """.""".join(lowercase__ )
lowerCAmelCase_ : int = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
lowerCAmelCase_ : Dict = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
lowerCAmelCase_ : List[Any] = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowercase__ , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
lowerCAmelCase_ : Optional[Any] = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" )
lowerCAmelCase_ : str = module.weight.data
if module.bias is not None:
lowerCAmelCase_ : Dict = module.bias.data
bnb_module.requires_grad_(lowercase__ )
setattr(lowercase__ , lowercase__ , lowercase__ )
lowerCAmelCase_ : int = True
if len(list(module.children() ) ) > 0:
lowerCAmelCase_ , lowerCAmelCase_ : Dict = _replace_with_bnb_layers(
lowercase__ , lowercase__ , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
with init_empty_weights():
lowerCAmelCase_ : Dict = deepcopy(lowercase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
lowerCAmelCase_ : List[Any] = find_tied_parameters(lowercase__ )
# For compatibility with Accelerate < 0.18
if isinstance(lowercase__ , lowercase__ ):
lowerCAmelCase_ : int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
lowerCAmelCase_ : List[str] = sum(lowercase__ , [] )
lowerCAmelCase_ : List[Any] = len(lowercase__ ) > 0
# Check if it is a base model
lowerCAmelCase_ : int = False
if hasattr(lowercase__ , """base_model_prefix""" ):
lowerCAmelCase_ : Optional[Any] = not hasattr(lowercase__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowerCAmelCase_ : Union[str, Any] = list(model.named_children() )
lowerCAmelCase_ : List[Any] = [list_modules[-1][0]]
# add last module together with tied weights
lowerCAmelCase_ : Optional[Any] = set(lowercase__ ) - set(lowercase__ )
lowerCAmelCase_ : Tuple = list(set(lowercase__ ) ) + list(lowercase__ )
# remove ".weight" from the keys
lowerCAmelCase_ : Optional[int] = [""".weight""", """.bias"""]
lowerCAmelCase_ : List[str] = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowerCAmelCase_ : Any = name.replace(lowercase__ , """""" )
filtered_module_names.append(lowercase__ )
return filtered_module_names
def __UpperCamelCase ( lowercase__ : List[str] ) -> Optional[int]:
'''simple docstring'''
for m in model.modules():
if isinstance(lowercase__ , bnb.nn.Linearabit ):
return True
return False
def __UpperCamelCase ( lowercase__ : nn.Module ) -> int:
'''simple docstring'''
return next(parameter.parameters() ).device
def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : str , lowercase__ : int , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if fpaa_statistics is None:
set_module_tensor_to_device(lowercase__ , lowercase__ , 0 , dtype=lowercase__ , value=lowercase__ )
lowerCAmelCase_ : str = param_name
lowerCAmelCase_ : int = model
if "." in tensor_name:
lowerCAmelCase_ : Optional[int] = tensor_name.split(""".""" )
for split in splits[:-1]:
lowerCAmelCase_ : Any = getattr(lowercase__ , lowercase__ )
if new_module is None:
raise ValueError(f'{module} has no attribute {split}.' )
lowerCAmelCase_ : List[Any] = new_module
lowerCAmelCase_ : Any = splits[-1]
# offload weights
lowerCAmelCase_ : str = False
offload_weight(module._parameters[tensor_name] , lowercase__ , lowercase__ , index=lowercase__ )
if hasattr(module._parameters[tensor_name] , """SCB""" ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowercase__ , index=lowercase__ , )
else:
offload_weight(lowercase__ , lowercase__ , lowercase__ , index=lowercase__ )
offload_weight(lowercase__ , param_name.replace("""weight""" , """SCB""" ) , lowercase__ , index=lowercase__ )
set_module_tensor_to_device(lowercase__ , lowercase__ , """meta""" , dtype=lowercase__ , value=torch.empty(*param.size() ) )
| 28 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Union[str, Any] = """pixel_values"""
__snake_case : Optional[Any] = False
__snake_case : Dict = TimmBackboneConfig
def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ):
requires_backends(self , """timm""" )
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,)
lowerCAmelCase_ : Optional[int] = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers
lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
requires_backends(cls , ["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels )
lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only )
lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone )
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices )
lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
pass
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ):
lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase_ : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCAmelCase_ : Optional[Any] = self._all_layers
lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = self._return_layers
lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase )
lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCAmelCase_ : Optional[Any] = (feature_maps,)
if output_hidden_states:
lowerCAmelCase_ : Tuple = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 28 | 1 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = []
embed.append(
(
f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight',
f'stage{idx}.patch_embed.proj.weight',
) )
embed.append(
(
f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias',
f'stage{idx}.patch_embed.proj.bias',
) )
embed.append(
(
f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight',
f'stage{idx}.patch_embed.norm.weight',
) )
embed.append(
(
f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias',
f'stage{idx}.patch_embed.norm.bias',
) )
return embed
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[str] ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = []
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked',
f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight',
f'stage{idx}.blocks.{cnt}.attn.proj_q.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias',
f'stage{idx}.blocks.{cnt}.attn.proj_q.bias',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight',
f'stage{idx}.blocks.{cnt}.attn.proj_k.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias',
f'stage{idx}.blocks.{cnt}.attn.proj_k.bias',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight',
f'stage{idx}.blocks.{cnt}.attn.proj_v.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias',
f'stage{idx}.blocks.{cnt}.attn.proj_v.bias',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight',
f'stage{idx}.blocks.{cnt}.attn.proj.weight',
) )
attention_weights.append(
(
f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias',
f'stage{idx}.blocks.{cnt}.attn.proj.bias',
) )
attention_weights.append(
(f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') )
attention_weights.append(
(f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') )
attention_weights.append(
(f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') )
attention_weights.append(
(f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') )
attention_weights.append(
(f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') )
attention_weights.append(
(f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') )
attention_weights.append(
(f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') )
attention_weights.append(
(f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') )
return attention_weights
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = []
token.append((f'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") )
return token
def __UpperCamelCase ( ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = []
head.append(("""layernorm.weight""", """norm.weight""") )
head.append(("""layernorm.bias""", """norm.bias""") )
head.append(("""classifier.weight""", """head.weight""") )
head.append(("""classifier.bias""", """head.bias""") )
return head
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : Tuple = 1000
lowerCAmelCase_ : List[str] = """huggingface/label-files"""
lowerCAmelCase_ : List[Any] = num_labels
lowerCAmelCase_ : str = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type="""dataset""" ) ) , """r""" ) )
lowerCAmelCase_ : str = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Dict = CvtConfig(num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13":
lowerCAmelCase_ : Dict = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21":
lowerCAmelCase_ : Tuple = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
lowerCAmelCase_ : Dict = [2, 2, 20]
lowerCAmelCase_ : int = [3, 12, 16]
lowerCAmelCase_ : Any = [192, 768, 1024]
lowerCAmelCase_ : List[Any] = CvtForImageClassification(lowercase__ )
lowerCAmelCase_ : int = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
lowerCAmelCase_ : Tuple = image_size
lowerCAmelCase_ : Optional[Any] = torch.load(lowercase__ , map_location=torch.device("""cpu""" ) )
lowerCAmelCase_ : Tuple = OrderedDict()
lowerCAmelCase_ : str = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
lowerCAmelCase_ : str = list_of_state_dict + cls_token(lowercase__ )
lowerCAmelCase_ : Dict = list_of_state_dict + embeddings(lowercase__ )
for cnt in range(config.depth[idx] ):
lowerCAmelCase_ : int = list_of_state_dict + attention(lowercase__ , lowercase__ )
lowerCAmelCase_ : str = list_of_state_dict + final()
for gg in list_of_state_dict:
print(lowercase__ )
for i in range(len(lowercase__ ) ):
lowerCAmelCase_ : int = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(lowercase__ )
model.save_pretrained(lowercase__ )
image_processor.save_pretrained(lowercase__ )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'--cvt_model',
default='cvt-w24',
type=str,
help='Name of the cvt model you\'d like to convert.',
)
parser.add_argument(
'--image_size',
default=3_84,
type=int,
help='Input Image Size',
)
parser.add_argument(
'--cvt_file_name',
default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth',
type=str,
help='Input Image Size',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__UpperCAmelCase = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 28 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """mra"""
def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = vocab_size
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : str = initializer_range
lowerCAmelCase_ : str = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = position_embedding_type
lowerCAmelCase_ : Any = block_per_row
lowerCAmelCase_ : int = approx_mode
lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks
lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
| 28 | 1 |
__UpperCAmelCase = '0.21.0'
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 28 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowerCAmelCase_ : Any = precision
lowerCAmelCase_ : Any = ceil(precision / 14 )
lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 13591409
lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ )
for k in range(1 , lowercase__ ):
lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__UpperCAmelCase = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
lowerCAmelCase_ : str = str(bin(lowercase__ ) )[2:] # remove the leading "0b"
lowerCAmelCase_ : Union[str, Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b"
lowerCAmelCase_ : str = max(len(lowercase__ ) , len(lowercase__ ) )
return "0b" + "".join(
str(int(char_a == """1""" and char_b == """1""" ) )
for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : int = 50 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 28 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 | 1 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : int=None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = None
if token is not None:
lowerCAmelCase_ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'}
lowerCAmelCase_ : Tuple = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'
lowerCAmelCase_ : Optional[int] = requests.get(lowercase__ , headers=lowercase__ ).json()
lowerCAmelCase_ : Union[str, Any] = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCAmelCase_ : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(lowercase__ ):
lowerCAmelCase_ : Any = requests.get(url + f'&page={i + 2}' , headers=lowercase__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : int=None ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Tuple = None
if token is not None:
lowerCAmelCase_ : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'}
lowerCAmelCase_ : str = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'
lowerCAmelCase_ : Any = requests.get(lowercase__ , headers=lowercase__ ).json()
lowerCAmelCase_ : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
lowerCAmelCase_ : Optional[int] = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(lowercase__ ):
lowerCAmelCase_ : Optional[Any] = requests.get(url + f'&page={i + 2}' , headers=lowercase__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Any ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Any = None
if token is not None:
lowerCAmelCase_ : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'}
lowerCAmelCase_ : Union[str, Any] = requests.get(lowercase__ , headers=lowercase__ , allow_redirects=lowercase__ )
lowerCAmelCase_ : Any = result.headers["""Location"""]
lowerCAmelCase_ : int = requests.get(lowercase__ , allow_redirects=lowercase__ )
lowerCAmelCase_ : Any = os.path.join(lowercase__ , f'{artifact_name}.zip' )
with open(lowercase__ , """wb""" ) as fp:
fp.write(response.content )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : int=None ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Tuple = []
lowerCAmelCase_ : Any = []
lowerCAmelCase_ : List[Any] = None
with zipfile.ZipFile(lowercase__ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowercase__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(lowercase__ ) as f:
for line in f:
lowerCAmelCase_ : Optional[Any] = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCAmelCase_ : List[str] = line[: line.index(""": """ )]
lowerCAmelCase_ : int = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
lowerCAmelCase_ : Optional[int] = line[len("""FAILED """ ) :]
failed_tests.append(lowercase__ )
elif filename == "job_name.txt":
lowerCAmelCase_ : List[Any] = line
if len(lowercase__ ) != len(lowercase__ ):
raise ValueError(
f'`errors` and `failed_tests` should have the same number of elements. Got {len(lowercase__ )} for `errors` '
f'and {len(lowercase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'
""" problem.""" )
lowerCAmelCase_ : List[str] = None
if job_name and job_links:
lowerCAmelCase_ : Union[str, Any] = job_links.get(lowercase__ , lowercase__ )
# A list with elements of the form (line of error, error, failed test)
lowerCAmelCase_ : Tuple = [x + [y] + [job_link] for x, y in zip(lowercase__ , lowercase__ )]
return result
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Dict=None ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = []
lowerCAmelCase_ : str = [os.path.join(lowercase__ , lowercase__ ) for p in os.listdir(lowercase__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(lowercase__ , job_links=lowercase__ ) )
return errors
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : int=None ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : str = Counter()
counter.update([x[1] for x in logs] )
lowerCAmelCase_ : Optional[int] = counter.most_common()
lowerCAmelCase_ : Any = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCAmelCase_ : Union[str, Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCAmelCase_ : Optional[Any] = dict(sorted(r.items() , key=lambda lowercase__ : item[1]["count"] , reverse=lowercase__ ) )
return r
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
lowerCAmelCase_ : Optional[int] = test.split("""/""" )[2]
else:
lowerCAmelCase_ : Any = None
return test
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Optional[int]=None ) -> str:
'''simple docstring'''
lowerCAmelCase_ : Dict = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCAmelCase_ : int = [x for x in logs if x[2] is not None]
lowerCAmelCase_ : str = {x[2] for x in logs}
lowerCAmelCase_ : Any = {}
for test in tests:
lowerCAmelCase_ : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCAmelCase_ : int = counter.most_common()
lowerCAmelCase_ : Dict = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCAmelCase_ : int = sum(error_counts.values() )
if n_errors > 0:
lowerCAmelCase_ : Optional[Any] = {"""count""": n_errors, """errors""": error_counts}
lowerCAmelCase_ : Any = dict(sorted(r.items() , key=lambda lowercase__ : item[1]["count"] , reverse=lowercase__ ) )
return r
def __UpperCamelCase ( lowercase__ : Tuple ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : str = """| no. | error | status |"""
lowerCAmelCase_ : Optional[Any] = """|-:|:-|:-|"""
lowerCAmelCase_ : int = [header, sep]
for error in reduced_by_error:
lowerCAmelCase_ : Optional[int] = reduced_by_error[error]["""count"""]
lowerCAmelCase_ : Dict = f'| {count} | {error[:100]} | |'
lines.append(lowercase__ )
return "\n".join(lowercase__ )
def __UpperCamelCase ( lowercase__ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = """| model | no. of errors | major error | count |"""
lowerCAmelCase_ : List[Any] = """|-:|-:|-:|-:|"""
lowerCAmelCase_ : List[Any] = [header, sep]
for model in reduced_by_model:
lowerCAmelCase_ : List[Any] = reduced_by_model[model]["""count"""]
lowerCAmelCase_ , lowerCAmelCase_ : int = list(reduced_by_model[model]["""errors"""].items() )[0]
lowerCAmelCase_ : Tuple = f'| {model} | {count} | {error[:60]} | {_count} |'
lines.append(lowercase__ )
return "\n".join(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
__UpperCAmelCase = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
__UpperCAmelCase = get_job_links(args.workflow_run_id, token=args.token)
__UpperCAmelCase = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
__UpperCAmelCase = k.find(' / ')
__UpperCAmelCase = k[index + len(' / ') :]
__UpperCAmelCase = v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
__UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
__UpperCAmelCase = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
__UpperCAmelCase = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
__UpperCAmelCase = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
__UpperCAmelCase = reduce_by_error(errors)
__UpperCAmelCase = reduce_by_model(errors)
__UpperCAmelCase = make_github_table(reduced_by_error)
__UpperCAmelCase = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 28 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __a :
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[int] = use_input_mask
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Union[str, Any] = vocab_size - 1
lowerCAmelCase_ : str = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
def A ( self : List[Any] ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs
lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : str = 20
lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Dict = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model(
input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ):
lowerCAmelCase_ : int = 20
lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Tuple = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def A ( self : Any ):
lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self )
def A ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@tooslow
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id
lowerCAmelCase_ : List[Any] = jax.jit(model.generate )
lowerCAmelCase_ : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase )
lowerCAmelCase_ : List[str] = fx_state
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase )
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def A ( self : str ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 28 | 1 |
def __UpperCamelCase ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 0
for i in range(1 , 1001 ):
total += i**i
return str(lowercase__ )[-10:]
if __name__ == "__main__":
print(solution())
| 28 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 | 1 |
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
__UpperCAmelCase = (
'4S 3H 2C 7S 5H',
'9D 8H 2C 6S 7H',
'2D 6D 9D TH 7D',
'TC 8C 2S JH 6C',
'JH 8S TH AH QH',
'TS KS 5S 9S AC',
'KD 6S 9D TH AD',
'KS 8D 4D 9S 4S', # pair
'8C 4S KH JS 4D', # pair
'QH 8H KD JH 8S', # pair
'KC 4H KS 2H 8D', # pair
'KD 4S KC 3H 8S', # pair
'AH 8S AS KC JH', # pair
'3H 4C 4H 3S 2H', # 2 pairs
'5S 5D 2C KH KH', # 2 pairs
'3C KH 5D 5S KH', # 2 pairs
'AS 3C KH AD KH', # 2 pairs
'7C 7S 3S 7H 5S', # 3 of a kind
'7C 7S KH 2H 7H', # 3 of a kind
'AC KH QH AH AS', # 3 of a kind
'2H 4D 3C AS 5S', # straight (low ace)
'3C 5C 4C 2C 6H', # straight
'6S 8S 7S 5H 9H', # straight
'JS QS 9H TS KH', # straight
'QC KH TS JS AH', # straight (high ace)
'8C 9C 5C 3C TC', # flush
'3S 8S 9S 5S KS', # flush
'4C 5C 9C 8C KC', # flush
'JH 8H AH KH QH', # flush
'3D 2H 3H 2C 2D', # full house
'2H 2C 3S 3H 3D', # full house
'KH KC 3S 3H 3D', # full house
'JC 6H JS JD JH', # 4 of a kind
'JC 7H JS JD JH', # 4 of a kind
'JC KH JS JD JH', # 4 of a kind
'2S AS 4S 5S 3S', # straight flush (low ace)
'2D 6D 3D 4D 5D', # straight flush
'5C 6C 3C 7C 4C', # straight flush
'JH 9H TH KH QH', # straight flush
'JH AH TH KH QH', # royal flush (high ace straight flush)
)
__UpperCAmelCase = (
('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'),
('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'),
('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'),
('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'),
('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'),
('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'),
('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'),
('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'),
('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'),
('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'),
('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'),
('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'),
('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'),
('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'),
('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'),
('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'),
('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'),
('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'),
('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'),
('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'),
('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'),
('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'),
('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'),
('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'),
('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'),
('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'),
('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'),
('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'),
('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'),
('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'),
('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'),
)
__UpperCAmelCase = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', True),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', False),
('AS 3S 4S 8S 2S', True),
)
__UpperCAmelCase = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', False),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', True),
)
__UpperCAmelCase = (
('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]),
('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]),
('JH QD KC AS TS', False, [14, 13, 12, 11, 10]),
('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]),
)
__UpperCAmelCase = (
('JH AH TH KH QH', 0),
('JH 9H TH KH QH', 0),
('JC KH JS JD JH', 7),
('KH KC 3S 3H 3D', 6),
('8C 9C 5C 3C TC', 0),
('JS QS 9H TS KH', 0),
('7C 7S KH 2H 7H', 3),
('3C KH 5D 5S KH', 2),
('QH 8H KD JH 8S', 1),
('2D 6D 9D TH 7D', 0),
)
__UpperCAmelCase = (
('JH AH TH KH QH', 23),
('JH 9H TH KH QH', 22),
('JC KH JS JD JH', 21),
('KH KC 3S 3H 3D', 20),
('8C 9C 5C 3C TC', 19),
('JS QS 9H TS KH', 18),
('7C 7S KH 2H 7H', 17),
('3C KH 5D 5S KH', 16),
('QH 8H KD JH 8S', 15),
('2D 6D 9D TH 7D', 14),
)
def __UpperCamelCase ( ) -> int:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) )
lowerCAmelCase_ : Tuple = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
lowerCAmelCase_ , lowerCAmelCase_ : Tuple = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def __UpperCamelCase ( lowercase__ : int = 100 ) -> Optional[Any]:
'''simple docstring'''
return (generate_random_hand() for _ in range(lowercase__ ))
@pytest.mark.parametrize("""hand, expected""" , lowercase__ )
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
assert PokerHand(lowercase__ )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""" , lowercase__ )
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : int ) -> Any:
'''simple docstring'''
assert PokerHand(lowercase__ )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""" , lowercase__ )
def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Tuple ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = PokerHand(lowercase__ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""" , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Any ) -> Any:
'''simple docstring'''
assert PokerHand(lowercase__ )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""" , lowercase__ )
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : str ) -> Optional[Any]:
'''simple docstring'''
assert PokerHand(lowercase__ )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""" , lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Any ) -> Any:
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() )
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Tuple , lowercase__ : Any ) -> str:
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = [PokerHand(lowercase__ ) for hand in SORTED_HANDS]
lowerCAmelCase_ : Optional[Any] = poker_hands.copy()
shuffle(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = chain(sorted(lowercase__ ) )
for index, hand in enumerate(lowercase__ ):
assert hand == poker_hands[index]
def __UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=lowercase__ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def __UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = PokerHand("""2C 4S AS 3D 5C""" )
lowerCAmelCase_ : Union[str, Any] = True
lowerCAmelCase_ : Tuple = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = 0
lowerCAmelCase_ : List[Any] = os.path.abspath(os.path.dirname(lowercase__ ) )
lowerCAmelCase_ : int = os.path.join(lowercase__ , """poker_hands.txt""" )
with open(lowercase__ ) as file_hand:
for line in file_hand:
lowerCAmelCase_ : Any = line[:14].strip()
lowerCAmelCase_ : Tuple = line[15:].strip()
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = PokerHand(lowercase__ ), PokerHand(lowercase__ )
lowerCAmelCase_ : List[Any] = player.compare_with(lowercase__ )
if output == "Win":
answer += 1
assert answer == 376
| 28 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
import numpy as np
def __UpperCamelCase ( lowercase__ : np.array ) -> np.array:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def __UpperCamelCase ( lowercase__ : np.array ) -> np.array:
'''simple docstring'''
return vector * sigmoid(1.702 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 1 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowerCAmelCase_ : Any = precision
lowerCAmelCase_ : Any = ceil(precision / 14 )
lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 13591409
lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ )
for k in range(1 , lowercase__ ):
lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__UpperCAmelCase = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """mra"""
def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = vocab_size
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : str = initializer_range
lowerCAmelCase_ : str = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = position_embedding_type
lowerCAmelCase_ : Any = block_per_row
lowerCAmelCase_ : int = approx_mode
lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks
lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
| 28 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 1 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class __a ( unittest.TestCase ):
__snake_case : Optional[int] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def A ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str ):
lowerCAmelCase_ : List[Any] = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowerCAmelCase_ : str = VideoClassificationPipeline(model=UpperCAmelCase , image_processor=UpperCAmelCase , top_k=2 )
lowerCAmelCase_ : Optional[Any] = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] ):
for example in examples:
lowerCAmelCase_ : str = video_classifier(UpperCAmelCase )
self.assertEqual(
UpperCAmelCase , [
{"""score""": ANY(UpperCAmelCase ), """label""": ANY(UpperCAmelCase )},
{"""score""": ANY(UpperCAmelCase ), """label""": ANY(UpperCAmelCase )},
] , )
@require_torch
def A ( self : Optional[int] ):
lowerCAmelCase_ : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
lowerCAmelCase_ : Dict = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
lowerCAmelCase_ : int = pipeline(
"""video-classification""" , model=UpperCAmelCase , feature_extractor=UpperCAmelCase , frame_sampling_rate=4 )
lowerCAmelCase_ : Any = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowerCAmelCase_ : List[str] = video_classifier(UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , )
lowerCAmelCase_ : Union[str, Any] = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}],
[{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}],
] , )
@require_tf
def A ( self : Union[str, Any] ):
pass
| 28 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 1 |
from __future__ import annotations
def __UpperCamelCase ( lowercase__ : list[int] ) -> int:
'''simple docstring'''
if not nums:
return 0
lowerCAmelCase_ : Optional[Any] = nums[0]
lowerCAmelCase_ : List[Any] = 0
for num in nums[1:]:
lowerCAmelCase_ , lowerCAmelCase_ : Tuple = (
max_excluding + num,
max(lowercase__ , lowercase__ ),
)
return max(lowercase__ , lowercase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
from timeit import timeit
def __UpperCamelCase ( lowercase__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError("""the value of input must not be negative""" )
lowerCAmelCase_ : Any = 0
while number:
number &= number - 1
result += 1
return result
def __UpperCamelCase ( lowercase__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError("""the value of input must not be negative""" )
lowerCAmelCase_ : Union[str, Any] = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def __UpperCamelCase ( ) -> None:
'''simple docstring'''
def do_benchmark(lowercase__ : int ) -> None:
lowerCAmelCase_ : str = """import __main__ as z"""
print(f'Benchmark when {number = }:' )
print(f'{get_set_bits_count_using_modulo_operator(lowercase__ ) = }' )
lowerCAmelCase_ : List[str] = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=lowercase__ )
print(f'timeit() runs in {timing} seconds' )
print(f'{get_set_bits_count_using_brian_kernighans_algorithm(lowercase__ ) = }' )
lowerCAmelCase_ : Any = timeit(
"""z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=lowercase__ , )
print(f'timeit() runs in {timing} seconds' )
for number in (25, 37, 58, 0):
do_benchmark(lowercase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 28 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 1 |
from torch import nn
def __UpperCamelCase ( lowercase__ : Dict ) -> List[str]:
'''simple docstring'''
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'Unsupported activation function: {act_fn}' )
| 28 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 1 |
from timeit import timeit
__UpperCAmelCase = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : str = len(lowercase__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = len(lowercase__ ) // 2
lowerCAmelCase_ : Optional[int] = len(lowercase__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
if len(lowercase__ ) <= 2:
return True
if s[0] == s[len(lowercase__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
return s == s[::-1]
def __UpperCamelCase ( lowercase__ : str ) -> None:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = f'all({name}(key) is value for key, value in test_data.items())'
lowerCAmelCase_ : Optional[Any] = f'from __main__ import test_data, {name}'
lowerCAmelCase_ : str = 500000
lowerCAmelCase_ : List[Any] = timeit(stmt=lowercase__ , setup=lowercase__ , number=lowercase__ )
print(f'{name:<35} finished {number:,} runs in {result:.5f} seconds' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"""{key:21} {value}""")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 28 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 1 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
__UpperCAmelCase = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[str] ) -> List[Any]:
'''simple docstring'''
for attribute in key.split(""".""" ):
lowerCAmelCase_ : List[Any] = getattr(lowercase__ , lowercase__ )
if weight_type is not None:
lowerCAmelCase_ : Optional[Any] = getattr(lowercase__ , lowercase__ ).shape
else:
lowerCAmelCase_ : Tuple = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
lowerCAmelCase_ : Union[str, Any] = value
elif weight_type == "weight_g":
lowerCAmelCase_ : Dict = value
elif weight_type == "weight_v":
lowerCAmelCase_ : List[Any] = value
elif weight_type == "bias":
lowerCAmelCase_ : Dict = value
else:
lowerCAmelCase_ : List[Any] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = []
lowerCAmelCase_ : Optional[int] = fairseq_model.state_dict()
lowerCAmelCase_ : Union[str, Any] = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
lowerCAmelCase_ : List[Any] = None
for name, value in fairseq_dict.items():
lowerCAmelCase_ : List[str] = False
if "conv_layers" in name:
load_conv_layer(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , )
lowerCAmelCase_ : Any = True
elif name.split(""".""" )[0] == "proj":
lowerCAmelCase_ : List[str] = fairseq_model.proj
lowerCAmelCase_ : List[str] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
lowerCAmelCase_ : Dict = True
if "*" in mapped_key:
lowerCAmelCase_ : Optional[int] = name.split(lowercase__ )[0].split(""".""" )[-2]
lowerCAmelCase_ : List[Any] = mapped_key.replace("""*""" , lowercase__ )
if "weight_g" in name:
lowerCAmelCase_ : List[Any] = """weight_g"""
elif "weight_v" in name:
lowerCAmelCase_ : Any = """weight_v"""
elif "bias" in name:
lowerCAmelCase_ : Union[str, Any] = """bias"""
elif "weight" in name:
lowerCAmelCase_ : str = """weight"""
else:
lowerCAmelCase_ : List[Any] = None
set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
continue
if not is_used:
unused_weights.append(lowercase__ )
logger.warning(f'Unused weights: {unused_weights}' )
return proj_weight
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = full_name.split("""conv_layers.""" )[-1]
lowerCAmelCase_ : Optional[Any] = name.split(""".""" )
lowerCAmelCase_ : Optional[int] = int(items[0] )
lowerCAmelCase_ : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
lowerCAmelCase_ : List[str] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
lowerCAmelCase_ : Optional[int] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
lowerCAmelCase_ : Union[str, Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
lowerCAmelCase_ : Any = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase__ )
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = emb.weight.shape
lowerCAmelCase_ : Optional[Any] = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ )
lowerCAmelCase_ : Optional[int] = emb.weight.data
return lin_layer
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f:
lowerCAmelCase_ : int = f.readlines()
lowerCAmelCase_ : Dict = [line.split(""" """ )[0] for line in lines]
lowerCAmelCase_ : Optional[Any] = len(lowercase__ )
lowerCAmelCase_ : Dict = {
"""<s>""": 0,
"""<pad>""": 1,
"""</s>""": 2,
"""<unk>""": 3,
}
vocab_dict.update(dict(zip(lowercase__ , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : List[str] , lowercase__ : int , ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Tuple = WavaVecaConfig.from_pretrained(lowercase__ )
lowerCAmelCase_ : List[Any] = SpeechaTextaConfig.from_pretrained(
lowercase__ , vocab_size=lowercase__ , decoder_layers=lowercase__ , do_stable_layer_norm=lowercase__ )
lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
lowerCAmelCase_ : Optional[Any] = model[0].eval()
# set weights for wav2vec2 encoder
lowerCAmelCase_ : int = WavaVecaModel(lowercase__ )
lowerCAmelCase_ : List[Any] = recursively_load_weights_wavaveca(model.encoder , lowercase__ )
lowerCAmelCase_ : Dict = SpeechaTextaForCausalLM(lowercase__ )
lowerCAmelCase_ , lowerCAmelCase_ : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase__ )
# set output linear layer
unexpected_keys.remove("""embed_out""" )
lowerCAmelCase_ : str = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' )
logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' )
lowerCAmelCase_ : int = SpeechEncoderDecoderModel(encoder=lowercase__ , decoder=lowercase__ )
lowerCAmelCase_ : Dict = False
# add projection layer
lowerCAmelCase_ : List[Any] = nn.Parameter(projection_layer.weight )
lowerCAmelCase_ : Optional[int] = nn.Parameter(projection_layer.bias )
lowerCAmelCase_ : Union[str, Any] = create_vocab_dict(lowercase__ )
with open(os.path.join(lowercase__ , """vocab.json""" ) , """w""" ) as fp:
json.dump(lowercase__ , lowercase__ )
lowerCAmelCase_ : int = SpeechaTextaTokenizer(os.path.join(lowercase__ , """vocab.json""" ) )
tokenizer.save_pretrained(lowercase__ )
lowerCAmelCase_ : Optional[Any] = hf_wavavec.config.to_dict()
lowerCAmelCase_ : Union[str, Any] = tokenizer.pad_token_id
lowerCAmelCase_ : List[str] = tokenizer.bos_token_id
lowerCAmelCase_ : List[Any] = tokenizer.eos_token_id
lowerCAmelCase_ : Optional[int] = """speech_to_text_2"""
lowerCAmelCase_ : Union[str, Any] = """wav2vec2"""
lowerCAmelCase_ : Any = SpeechEncoderDecoderConfig.from_dict(lowercase__ )
hf_wavavec.save_pretrained(lowercase__ )
feature_extractor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument(
'--encoder_config_path',
default='facebook/wav2vec2-large-lv60',
type=str,
help='Path to hf encoder wav2vec2 checkpoint config',
)
parser.add_argument(
'--decoder_config_path',
default='facebook/s2t-small-mustc-en-fr-st',
type=str,
help='Path to hf decoder s2t checkpoint config',
)
parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder')
parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers')
__UpperCAmelCase = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 28 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 1 |
from PIL import Image
def __UpperCamelCase ( lowercase__ : Image , lowercase__ : float ) -> Image:
'''simple docstring'''
def brightness(lowercase__ : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(lowercase__ )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
__UpperCAmelCase = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 28 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __UpperCamelCase ( lowercase__ : dict ) -> tuple:
'''simple docstring'''
return (data["data"], data["target"])
def __UpperCamelCase ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(lowercase__ , lowercase__ )
# Predict target for test data
lowerCAmelCase_ : int = xgb.predict(lowercase__ )
lowerCAmelCase_ : Optional[int] = predictions.reshape(len(lowercase__ ) , 1 )
return predictions
def __UpperCamelCase ( ) -> None:
'''simple docstring'''
lowerCAmelCase_ : Any = fetch_california_housing()
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = data_handling(lowercase__ )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = train_test_split(
lowercase__ , lowercase__ , test_size=0.25 , random_state=1 )
lowerCAmelCase_ : Any = xgboost(lowercase__ , lowercase__ , lowercase__ )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(lowercase__ , lowercase__ )}' )
print(f'Mean Square Error : {mean_squared_error(lowercase__ , lowercase__ )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 28 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 | 1 |
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class __a ( __UpperCamelCase ,unittest.TestCase ):
__snake_case : List[Any] = RoFormerTokenizer
__snake_case : List[Any] = RoFormerTokenizerFast
__snake_case : Any = True
__snake_case : Tuple = True
def A ( self : str ):
super().setUp()
def A ( self : Optional[int] , **UpperCAmelCase : List[Any] ):
return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **UpperCAmelCase )
def A ( self : List[Any] , **UpperCAmelCase : Optional[Any] ):
return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = """永和服装饰品有限公司,今天天气非常好"""
lowerCAmelCase_ : Tuple = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好"""
return input_text, output_text
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.get_tokenizer()
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.get_chinese_input_output_texts()
lowerCAmelCase_ : str = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , output_text.split() )
lowerCAmelCase_ : str = tokens + [tokenizer.unk_token]
lowerCAmelCase_ : Optional[int] = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
def A ( self : Tuple ):
lowerCAmelCase_ : str = self.get_rust_tokenizer()
lowerCAmelCase_ , lowerCAmelCase_ : int = self.get_chinese_input_output_texts()
lowerCAmelCase_ : int = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , output_text.split() )
lowerCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token]
lowerCAmelCase_ : Union[str, Any] = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
def A ( self : Dict ):
pass
def A ( self : Dict ):
pass
def A ( self : Dict ):
pass
| 28 |
from datetime import datetime as dt
import os
from github import Github
__UpperCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCAmelCase_ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ )
lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 28 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
__UpperCAmelCase = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85,
7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77,
13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11,
46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86,
1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91,
1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09,
3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61
]
__UpperCAmelCase = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73,
8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27,
32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47,
72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93,
1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75,
2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65,
4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62
]
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """whisper"""
__snake_case : str = ["""past_key_values"""]
__snake_case : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : Optional[int] , UpperCAmelCase : Any=5_18_65 , UpperCAmelCase : Optional[int]=80 , UpperCAmelCase : Union[str, Any]=6 , UpperCAmelCase : int=4 , UpperCAmelCase : Tuple=6 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Any=15_36 , UpperCAmelCase : Optional[Any]=15_36 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : List[str]=5_02_57 , UpperCAmelCase : int=True , UpperCAmelCase : str=True , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : Tuple=2_56 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=15_00 , UpperCAmelCase : Optional[int]=4_48 , UpperCAmelCase : Optional[int]=5_02_56 , UpperCAmelCase : str=5_02_56 , UpperCAmelCase : str=5_02_56 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : List[Any]=[2_20, 5_02_56] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Any=2_56 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Optional[Any]=0.05 , UpperCAmelCase : int=10 , UpperCAmelCase : Any=2 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=10 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Optional[int]=7 , **UpperCAmelCase : Union[str, Any] , ):
lowerCAmelCase_ : int = vocab_size
lowerCAmelCase_ : Optional[Any] = num_mel_bins
lowerCAmelCase_ : int = d_model
lowerCAmelCase_ : int = encoder_layers
lowerCAmelCase_ : int = encoder_attention_heads
lowerCAmelCase_ : Any = decoder_layers
lowerCAmelCase_ : str = decoder_attention_heads
lowerCAmelCase_ : Optional[Any] = decoder_ffn_dim
lowerCAmelCase_ : Tuple = encoder_ffn_dim
lowerCAmelCase_ : int = dropout
lowerCAmelCase_ : Dict = attention_dropout
lowerCAmelCase_ : Union[str, Any] = activation_dropout
lowerCAmelCase_ : List[Any] = activation_function
lowerCAmelCase_ : str = init_std
lowerCAmelCase_ : Tuple = encoder_layerdrop
lowerCAmelCase_ : List[str] = decoder_layerdrop
lowerCAmelCase_ : List[Any] = use_cache
lowerCAmelCase_ : Optional[int] = encoder_layers
lowerCAmelCase_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCAmelCase_ : int = max_source_positions
lowerCAmelCase_ : Any = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
lowerCAmelCase_ : Optional[int] = classifier_proj_size
lowerCAmelCase_ : Dict = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase_ : List[Any] = apply_spec_augment
lowerCAmelCase_ : Any = mask_time_prob
lowerCAmelCase_ : Dict = mask_time_length
lowerCAmelCase_ : List[Any] = mask_time_min_masks
lowerCAmelCase_ : str = mask_feature_prob
lowerCAmelCase_ : Dict = mask_feature_length
lowerCAmelCase_ : Dict = mask_feature_min_masks
lowerCAmelCase_ : Any = median_filter_width
super().__init__(
pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , suppress_tokens=UpperCAmelCase , begin_suppress_tokens=UpperCAmelCase , **UpperCAmelCase , )
class __a ( __UpperCamelCase ):
@property
def A ( self : Any ):
lowerCAmelCase_ : List[str] = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
lowerCAmelCase_ : int = {0: """batch"""}
else:
lowerCAmelCase_ : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
return common_inputs
def A ( self : str , UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 2_20_50 , UpperCAmelCase : float = 5.0 , UpperCAmelCase : int = 2_20 , ):
lowerCAmelCase_ : Tuple = OrderedDict()
lowerCAmelCase_ : List[str] = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=UpperCAmelCase , framework=UpperCAmelCase , sampling_rate=UpperCAmelCase , time_duration=UpperCAmelCase , frequency=UpperCAmelCase , )
lowerCAmelCase_ : Optional[Any] = encoder_inputs["""input_features"""].shape[2]
lowerCAmelCase_ : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length
lowerCAmelCase_ : Optional[Any] = super().generate_dummy_inputs(
preprocessor.tokenizer , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = encoder_inputs.pop("""input_features""" )
lowerCAmelCase_ : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
lowerCAmelCase_ : Optional[Any] = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def A ( self : List[Any] ):
return 1e-3
| 28 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase_ : Optional[Any] = Vector()
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" )
def A ( self : Any ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase ) , 4 )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = Vector([1, 2] )
lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Dict = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase_ : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def A ( self : List[str] ):
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def A ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : int = x.copy()
self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" )
def A ( self : Any ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase_ : Any = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def A ( self : Dict ):
lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def A ( self : Optional[int] ):
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : int = 1000000 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : str = 1
lowerCAmelCase_ : List[Any] = {1: 1}
for inputa in range(2 , lowercase__ ):
lowerCAmelCase_ : Union[str, Any] = 0
lowerCAmelCase_ : Optional[Any] = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
lowerCAmelCase_ : Optional[Any] = (3 * number) + 1
counter += 1
if inputa not in counters:
lowerCAmelCase_ : int = counter
if counter > pre_counter:
lowerCAmelCase_ : Optional[Any] = inputa
lowerCAmelCase_ : Any = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 28 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Union[str, Any] = """pixel_values"""
__snake_case : Optional[Any] = False
__snake_case : Dict = TimmBackboneConfig
def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ):
requires_backends(self , """timm""" )
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,)
lowerCAmelCase_ : Optional[int] = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers
lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
requires_backends(cls , ["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels )
lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only )
lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone )
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices )
lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
pass
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ):
lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase_ : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCAmelCase_ : Optional[Any] = self._all_layers
lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = self._return_layers
lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase )
lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCAmelCase_ : Optional[Any] = (feature_maps,)
if output_hidden_states:
lowerCAmelCase_ : Tuple = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 28 | 1 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Tuple=7 ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = None
if token is not None:
lowerCAmelCase_ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'}
# The id of a workflow (not of a workflow run)
lowerCAmelCase_ : Dict = """636036"""
lowerCAmelCase_ : Union[str, Any] = f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
lowerCAmelCase_ : Tuple = requests.get(lowercase__ , headers=lowercase__ ).json()
return result["workflow_runs"]
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Tuple = get_daily_ci_runs(lowercase__ )
lowerCAmelCase_ : Optional[int] = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
lowerCAmelCase_ : List[str] = workflow_run["""id"""]
break
return workflow_run_id
def __UpperCamelCase ( lowercase__ : str , lowercase__ : str , lowercase__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = get_last_daily_ci_runs(lowercase__ )
if workflow_run_id is not None:
lowerCAmelCase_ : List[str] = get_artifacts_links(worflow_run_id=lowercase__ , token=lowercase__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
lowerCAmelCase_ : Tuple = artifacts_links[artifact_name]
download_artifact(
artifact_name=lowercase__ , artifact_url=lowercase__ , output_dir=lowercase__ , token=lowercase__ )
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
get_last_daily_ci_artifacts(lowercase__ , lowercase__ , lowercase__ )
lowerCAmelCase_ : List[Any] = {}
for artifact_name in artifact_names:
lowerCAmelCase_ : Union[str, Any] = os.path.join(lowercase__ , f'{artifact_name}.zip' )
if os.path.isfile(lowercase__ ):
lowerCAmelCase_ : Optional[Any] = {}
with zipfile.ZipFile(lowercase__ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowercase__ ):
# read the file
with z.open(lowercase__ ) as f:
lowerCAmelCase_ : Union[str, Any] = f.read().decode("""UTF-8""" )
return results
| 28 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """mra"""
def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = vocab_size
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : str = initializer_range
lowerCAmelCase_ : str = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = position_embedding_type
lowerCAmelCase_ : Any = block_per_row
lowerCAmelCase_ : int = approx_mode
lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks
lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
| 28 | 1 |
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def __UpperCamelCase ( lowercase__ : str ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = torch.exp(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = torch.sum(lowercase__ , dim=1 ) # sum of exp(x_i)
lowerCAmelCase_ : Any = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(lowercase__ ) - B / A
class __a ( nn.Module ):
def __init__( self : str , UpperCAmelCase : Union[str, Any] ):
super().__init__()
lowerCAmelCase_ : Union[str, Any] = config.output_attentions
lowerCAmelCase_ : Dict = config.output_hidden_states
lowerCAmelCase_ : Tuple = nn.ModuleList([BertLayer(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] )
lowerCAmelCase_ : List[Any] = nn.ModuleList([BertHighway(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] )
lowerCAmelCase_ : Any = [-1 for _ in range(config.num_hidden_layers )]
def A ( self : Any , UpperCAmelCase : str ):
if (type(UpperCAmelCase ) is float) or (type(UpperCAmelCase ) is int):
for i in range(len(self.early_exit_entropy ) ):
lowerCAmelCase_ : Tuple = x
else:
lowerCAmelCase_ : List[str] = x
def A ( self : Any , UpperCAmelCase : Dict ):
lowerCAmelCase_ : List[Any] = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def A ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=None , ):
lowerCAmelCase_ : Optional[Any] = ()
lowerCAmelCase_ : Dict = ()
lowerCAmelCase_ : List[Any] = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
lowerCAmelCase_ : str = all_hidden_states + (hidden_states,)
lowerCAmelCase_ : Optional[int] = layer_module(
UpperCAmelCase , UpperCAmelCase , head_mask[i] , UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = layer_outputs[0]
if self.output_attentions:
lowerCAmelCase_ : List[Any] = all_attentions + (layer_outputs[1],)
lowerCAmelCase_ : Optional[int] = (hidden_states,)
if self.output_hidden_states:
lowerCAmelCase_ : Any = current_outputs + (all_hidden_states,)
if self.output_attentions:
lowerCAmelCase_ : int = current_outputs + (all_attentions,)
lowerCAmelCase_ : Any = self.highway[i](UpperCAmelCase )
# logits, pooled_output
if not self.training:
lowerCAmelCase_ : str = highway_exit[0]
lowerCAmelCase_ : Tuple = entropy(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
lowerCAmelCase_ : Union[str, Any] = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
lowerCAmelCase_ : List[str] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(UpperCAmelCase , i + 1 )
else:
lowerCAmelCase_ : str = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
lowerCAmelCase_ : Any = all_hidden_states + (hidden_states,)
lowerCAmelCase_ : List[Any] = (hidden_states,)
if self.output_hidden_states:
lowerCAmelCase_ : str = outputs + (all_hidden_states,)
if self.output_attentions:
lowerCAmelCase_ : List[str] = outputs + (all_attentions,)
lowerCAmelCase_ : Optional[Any] = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"""The Bert Model transformer with early exiting (DeeBERT). """ ,__UpperCamelCase ,)
class __a ( __UpperCamelCase ):
def __init__( self : List[str] , UpperCAmelCase : Dict ):
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : Dict = config
lowerCAmelCase_ : Dict = BertEmbeddings(UpperCAmelCase )
lowerCAmelCase_ : List[str] = DeeBertEncoder(UpperCAmelCase )
lowerCAmelCase_ : Tuple = BertPooler(UpperCAmelCase )
self.init_weights()
def A ( self : str ):
self.encoder.init_highway_pooler(self.pooler )
def A ( self : List[Any] ):
return self.embeddings.word_embeddings
def A ( self : List[Any] , UpperCAmelCase : Dict ):
lowerCAmelCase_ : Optional[Any] = value
def A ( self : int , UpperCAmelCase : str ):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase )
@add_start_docstrings_to_model_forward(UpperCAmelCase )
def A ( self : Any , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : Dict=None , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" )
elif input_ids is not None:
lowerCAmelCase_ : Union[str, Any] = input_ids.size()
elif inputs_embeds is not None:
lowerCAmelCase_ : Any = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""" )
lowerCAmelCase_ : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowerCAmelCase_ : List[Any] = torch.ones(UpperCAmelCase , device=UpperCAmelCase )
if encoder_attention_mask is None:
lowerCAmelCase_ : Any = torch.ones(UpperCAmelCase , device=UpperCAmelCase )
if token_type_ids is None:
lowerCAmelCase_ : List[str] = torch.zeros(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowerCAmelCase_ : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
lowerCAmelCase_ : Optional[int] = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
lowerCAmelCase_ : Tuple = encoder_attention_mask[:, None, None, :]
lowerCAmelCase_ : List[Any] = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
lowerCAmelCase_ : str = (1.0 - encoder_extended_attention_mask) * -1_0000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowerCAmelCase_ : Optional[Any] = self.get_head_mask(UpperCAmelCase , self.config.num_hidden_layers )
lowerCAmelCase_ : List[str] = self.embeddings(
input_ids=UpperCAmelCase , position_ids=UpperCAmelCase , token_type_ids=UpperCAmelCase , inputs_embeds=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = self.encoder(
UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = encoder_outputs[0]
lowerCAmelCase_ : Any = self.pooler(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class __a ( __UpperCamelCase ):
def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any ):
lowerCAmelCase_ : str = message
lowerCAmelCase_ : int = exit_layer # start from 1!
class __a ( nn.Module ):
def __init__( self : Any , UpperCAmelCase : Optional[Any] ):
super().__init__()
lowerCAmelCase_ : Optional[int] = BertPooler(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = nn.Dropout(config.hidden_dropout_prob )
lowerCAmelCase_ : Optional[int] = nn.Linear(config.hidden_size , config.num_labels )
def A ( self : Tuple , UpperCAmelCase : List[Any] ):
# Pooler
lowerCAmelCase_ : List[str] = encoder_outputs[0]
lowerCAmelCase_ : Dict = self.pooler(UpperCAmelCase )
# "return" pooler_output
# BertModel
lowerCAmelCase_ : List[Any] = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
lowerCAmelCase_ : Tuple = bmodel_output[1]
lowerCAmelCase_ : List[str] = self.dropout(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = self.classifier(UpperCAmelCase )
return logits, pooled_output
@add_start_docstrings(
"""Bert Model (with early exiting - DeeBERT) with a classifier on top,
also takes care of multi-layer training. """ ,__UpperCamelCase ,)
class __a ( __UpperCamelCase ):
def __init__( self : int , UpperCAmelCase : List[str] ):
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : Tuple = config.num_labels
lowerCAmelCase_ : int = config.num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = DeeBertModel(UpperCAmelCase )
lowerCAmelCase_ : Any = nn.Dropout(config.hidden_dropout_prob )
lowerCAmelCase_ : str = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Tuple=-1 , UpperCAmelCase : str=False , ):
lowerCAmelCase_ : List[str] = self.num_layers
try:
lowerCAmelCase_ : Any = self.bert(
UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
lowerCAmelCase_ : Optional[Any] = outputs[1]
lowerCAmelCase_ : List[Any] = self.dropout(UpperCAmelCase )
lowerCAmelCase_ : Dict = self.classifier(UpperCAmelCase )
lowerCAmelCase_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
lowerCAmelCase_ : Optional[int] = e.message
lowerCAmelCase_ : Optional[int] = e.exit_layer
lowerCAmelCase_ : Any = outputs[0]
if not self.training:
lowerCAmelCase_ : List[Any] = entropy(UpperCAmelCase )
lowerCAmelCase_ : List[str] = []
lowerCAmelCase_ : Tuple = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
lowerCAmelCase_ : List[str] = MSELoss()
lowerCAmelCase_ : Union[str, Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
lowerCAmelCase_ : str = CrossEntropyLoss()
lowerCAmelCase_ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
lowerCAmelCase_ : List[str] = []
for highway_exit in outputs[-1]:
lowerCAmelCase_ : Union[str, Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCAmelCase )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
lowerCAmelCase_ : Any = MSELoss()
lowerCAmelCase_ : Tuple = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
lowerCAmelCase_ : Optional[Any] = CrossEntropyLoss()
lowerCAmelCase_ : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(UpperCAmelCase )
if train_highway:
lowerCAmelCase_ : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
lowerCAmelCase_ : List[str] = (loss,) + outputs
if not self.training:
lowerCAmelCase_ : int = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
lowerCAmelCase_ : List[Any] = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 28 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowerCAmelCase_ : Any = precision
lowerCAmelCase_ : Any = ceil(precision / 14 )
lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 13591409
lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ )
for k in range(1 , lowercase__ ):
lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__UpperCAmelCase = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 28 | 1 |
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class __a ( nn.Module ):
def __init__( self : Tuple ):
super().__init__()
lowerCAmelCase_ : str = nn.Linear(3 , 4 )
lowerCAmelCase_ : str = nn.BatchNormad(4 )
lowerCAmelCase_ : List[Any] = nn.Linear(4 , 5 )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) )
class __a ( unittest.TestCase ):
def A ( self : Optional[Any] ):
lowerCAmelCase_ : int = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(UpperCAmelCase , model.state_dict() )
lowerCAmelCase_ : Any = os.path.join(UpperCAmelCase , """index.json""" )
self.assertTrue(os.path.isfile(UpperCAmelCase ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
lowerCAmelCase_ : Optional[int] = os.path.join(UpperCAmelCase , F'{key}.dat' )
self.assertTrue(os.path.isfile(UpperCAmelCase ) )
# TODO: add tests on the fact weights are properly loaded
def A ( self : List[Any] ):
lowerCAmelCase_ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
lowerCAmelCase_ : List[str] = torch.randn(2 , 3 , dtype=UpperCAmelCase )
with TemporaryDirectory() as tmp_dir:
lowerCAmelCase_ : List[str] = offload_weight(UpperCAmelCase , """weight""" , UpperCAmelCase , {} )
lowerCAmelCase_ : Optional[Any] = os.path.join(UpperCAmelCase , """weight.dat""" )
self.assertTrue(os.path.isfile(UpperCAmelCase ) )
self.assertDictEqual(UpperCAmelCase , {"""weight""": {"""shape""": [2, 3], """dtype""": str(UpperCAmelCase ).split(""".""" )[1]}} )
lowerCAmelCase_ : Optional[Any] = load_offloaded_weight(UpperCAmelCase , index["""weight"""] )
self.assertTrue(torch.equal(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : int ):
lowerCAmelCase_ : Optional[Any] = ModelForTest()
lowerCAmelCase_ : Optional[int] = model.state_dict()
lowerCAmelCase_ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" not in k}
lowerCAmelCase_ : Any = {k: v for k, v in state_dict.items() if """linear2""" in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase )
# Every key is there with the right value
self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) )
lowerCAmelCase_ : Dict = {k: v for k, v in state_dict.items() if """weight""" in k}
lowerCAmelCase_ : Dict = {k: v for k, v in state_dict.items() if """weight""" not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase )
# Every key is there with the right value
self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(UpperCAmelCase , UpperCAmelCase )
# Duplicates are removed
lowerCAmelCase_ : List[str] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase )
# Every key is there with the right value
self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) )
def A ( self : str ):
lowerCAmelCase_ : Optional[Any] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2}
lowerCAmelCase_ : Dict = extract_submodules_state_dict(UpperCAmelCase , ["""a.1""", """a.2"""] )
self.assertDictEqual(UpperCAmelCase , {"""a.1""": 0, """a.2""": 2} )
lowerCAmelCase_ : Union[str, Any] = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2}
lowerCAmelCase_ : Optional[Any] = extract_submodules_state_dict(UpperCAmelCase , ["""a.1""", """a.2"""] )
self.assertDictEqual(UpperCAmelCase , {"""a.1.a""": 0, """a.2.a""": 2} )
| 28 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : Tuple ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = 1
lowerCAmelCase_ : List[Any] = 2
while i * i <= n:
lowerCAmelCase_ : str = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __UpperCamelCase ( ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Dict = 1
lowerCAmelCase_ : Union[str, Any] = 1
while True:
i += 1
t_num += i
if count_divisors(lowercase__ ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 28 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 | 1 |
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def __UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = HfArgumentParser(lowercase__ )
lowerCAmelCase_ : List[str] = parser.parse_args_into_dataclasses()[0]
lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=lowercase__ )
try:
lowerCAmelCase_ : List[str] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
lowerCAmelCase_ : List[str] = """Arg --no_{0} is no longer used, please use --no-{0} instead."""
lowerCAmelCase_ : Union[str, Any] = """ """.join(str(lowercase__ ).split(""" """ )[:-1] )
lowerCAmelCase_ : int = """"""
lowerCAmelCase_ : Any = eval(str(lowercase__ ).split(""" """ )[-1] )
lowerCAmelCase_ : List[Any] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowercase__ )
if len(lowercase__ ) > 0:
lowerCAmelCase_ : List[str] = full_error_msg + begin_error_msg + str(lowercase__ )
raise ValueError(lowercase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 28 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __a :
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[int] = use_input_mask
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Union[str, Any] = vocab_size - 1
lowerCAmelCase_ : str = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
def A ( self : List[Any] ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs
lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : str = 20
lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Dict = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model(
input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ):
lowerCAmelCase_ : int = 20
lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Tuple = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def A ( self : Any ):
lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self )
def A ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@tooslow
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id
lowerCAmelCase_ : List[Any] = jax.jit(model.generate )
lowerCAmelCase_ : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase )
lowerCAmelCase_ : List[str] = fx_state
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase )
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def A ( self : str ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 28 | 1 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __a ( __UpperCamelCase ,unittest.TestCase ):
__snake_case : List[Any] = None
__snake_case : str = BloomTokenizerFast
__snake_case : Any = BloomTokenizerFast
__snake_case : int = True
__snake_case : int = False
__snake_case : Union[str, Any] = """tokenizer_file"""
__snake_case : Tuple = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""}
def A ( self : Any ):
super().setUp()
lowerCAmelCase_ : Union[str, Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" )
tokenizer.save_pretrained(self.tmpdirname )
def A ( self : List[str] , **UpperCAmelCase : List[str] ):
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCAmelCase_ : List[Any] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""]
lowerCAmelCase_ : Tuple = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
lowerCAmelCase_ : Any = tokenizer.batch_encode_plus(UpperCAmelCase )["""input_ids"""]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Dict = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def A ( self : str , UpperCAmelCase : Union[str, Any]=6 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
lowerCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
lowerCAmelCase_ : List[str] = """This is a simple input"""
lowerCAmelCase_ : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""]
lowerCAmelCase_ : Optional[int] = ("""This is a simple input""", """This is a pair""")
lowerCAmelCase_ : List[Any] = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
try:
tokenizer_r.encode(UpperCAmelCase , max_length=UpperCAmelCase )
tokenizer_r.encode_plus(UpperCAmelCase , max_length=UpperCAmelCase )
tokenizer_r.batch_encode_plus(UpperCAmelCase , max_length=UpperCAmelCase )
tokenizer_r.encode(UpperCAmelCase , max_length=UpperCAmelCase )
tokenizer_r.batch_encode_plus(UpperCAmelCase , max_length=UpperCAmelCase )
except ValueError:
self.fail("""Bloom Tokenizer should be able to deal with padding""" )
lowerCAmelCase_ : Optional[Any] = None # Hotfixing padding = None
self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="""max_length""" )
# Simple input
self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="""max_length""" )
# Simple input
self.assertRaises(
UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="""max_length""" , )
# Pair input
self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="""max_length""" )
# Pair input
self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="""max_length""" )
# Pair input
self.assertRaises(
UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="""max_length""" , )
def A ( self : Tuple ):
lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer()
lowerCAmelCase_ : List[Any] = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=UpperCAmelCase )
lowerCAmelCase_ : str = next(iter(UpperCAmelCase ) )["""premise"""] # pick up one data
lowerCAmelCase_ : List[str] = list(sample_data.values() )
lowerCAmelCase_ : Dict = list(map(tokenizer.encode , UpperCAmelCase ) )
lowerCAmelCase_ : str = [tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) for x in output_tokens]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def A ( self : Any ):
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have
# any sequence length constraints. This test of the parent class will fail since it relies on the
# maximum sequence length of the positoonal embeddings.
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 28 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """deta"""
__snake_case : Optional[Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Union[str, Any] , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=9_00 , UpperCAmelCase : Tuple=20_48 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=8 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : str=10_24 , UpperCAmelCase : Dict=8 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : int=True , UpperCAmelCase : int="relu" , UpperCAmelCase : str=2_56 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : str=1.0 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]="sine" , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=3_00 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : str=1 , UpperCAmelCase : Optional[int]=5 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : int=5 , UpperCAmelCase : Dict=2 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Dict=0.25 , **UpperCAmelCase : Any , ):
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase_ : Tuple = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] )
else:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : Tuple = backbone_config.pop("""model_type""" )
lowerCAmelCase_ : List[str] = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase_ : int = config_class.from_dict(UpperCAmelCase )
lowerCAmelCase_ : Dict = backbone_config
lowerCAmelCase_ : List[str] = num_queries
lowerCAmelCase_ : List[str] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = d_model
lowerCAmelCase_ : int = encoder_ffn_dim
lowerCAmelCase_ : Tuple = encoder_layers
lowerCAmelCase_ : int = encoder_attention_heads
lowerCAmelCase_ : str = decoder_ffn_dim
lowerCAmelCase_ : Union[str, Any] = decoder_layers
lowerCAmelCase_ : Dict = decoder_attention_heads
lowerCAmelCase_ : Tuple = dropout
lowerCAmelCase_ : List[str] = attention_dropout
lowerCAmelCase_ : Tuple = activation_dropout
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : List[Any] = init_std
lowerCAmelCase_ : int = init_xavier_std
lowerCAmelCase_ : str = encoder_layerdrop
lowerCAmelCase_ : Dict = auxiliary_loss
lowerCAmelCase_ : Dict = position_embedding_type
# deformable attributes
lowerCAmelCase_ : Any = num_feature_levels
lowerCAmelCase_ : Optional[int] = encoder_n_points
lowerCAmelCase_ : int = decoder_n_points
lowerCAmelCase_ : List[str] = two_stage
lowerCAmelCase_ : str = two_stage_num_proposals
lowerCAmelCase_ : Dict = with_box_refine
lowerCAmelCase_ : Union[str, Any] = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError("""If two_stage is True, with_box_refine must be True.""" )
# Hungarian matcher
lowerCAmelCase_ : int = class_cost
lowerCAmelCase_ : int = bbox_cost
lowerCAmelCase_ : Any = giou_cost
# Loss coefficients
lowerCAmelCase_ : int = mask_loss_coefficient
lowerCAmelCase_ : Union[str, Any] = dice_loss_coefficient
lowerCAmelCase_ : int = bbox_loss_coefficient
lowerCAmelCase_ : List[Any] = giou_loss_coefficient
lowerCAmelCase_ : Union[str, Any] = eos_coefficient
lowerCAmelCase_ : Optional[Any] = focal_alpha
super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
return self.encoder_attention_heads
@property
def A ( self : Union[str, Any] ):
return self.d_model
def A ( self : str ):
lowerCAmelCase_ : Any = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ : Tuple = self.backbone_config.to_dict()
lowerCAmelCase_ : Any = self.__class__.model_type
return output
| 28 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
import math
import qiskit
def __UpperCamelCase ( lowercase__ : int = 1 , lowercase__ : int = 1 , lowercase__ : int = 1 ) -> qiskit.result.counts.Counts:
'''simple docstring'''
if (
isinstance(lowercase__ , lowercase__ )
or isinstance(lowercase__ , lowercase__ )
or isinstance(lowercase__ , lowercase__ )
):
raise TypeError("""inputs must be integers.""" )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError("""inputs must be positive.""" )
if (
(math.floor(lowercase__ ) != input_a)
or (math.floor(lowercase__ ) != input_a)
or (math.floor(lowercase__ ) != carry_in)
):
raise ValueError("""inputs must be exact integers.""" )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError("""inputs must be less or equal to 2.""" )
# build registers
lowerCAmelCase_ : Union[str, Any] = qiskit.QuantumRegister(4 , """qr""" )
lowerCAmelCase_ : Optional[Any] = qiskit.ClassicalRegister(2 , """cr""" )
# list the entries
lowerCAmelCase_ : str = [input_a, input_a, carry_in]
lowerCAmelCase_ : Optional[Any] = qiskit.QuantumCircuit(lowercase__ , lowercase__ )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(lowercase__ ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(lowercase__ ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(lowercase__ ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , lowercase__ ) # measure the last two qbits
lowerCAmelCase_ : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" )
lowerCAmelCase_ : Optional[Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1000 )
return job.result().get_counts(lowercase__ )
if __name__ == "__main__":
print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
| 28 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 1 |
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
__UpperCAmelCase = 5_00_00
__UpperCAmelCase = 50_00
__UpperCAmelCase , __UpperCAmelCase = os.path.split(__file__)
__UpperCAmelCase = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : str ) -> Dict:
'''simple docstring'''
for i in range(lowercase__ ):
lowerCAmelCase_ : Optional[Any] = dataset[i]
@get_duration
def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : List[Any] , lowercase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
for i in range(0 , len(lowercase__ ) , lowercase__ ):
lowerCAmelCase_ : List[str] = dataset[i : i + batch_size]
@get_duration
def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ) -> str:
'''simple docstring'''
with dataset.formatted_as(type=lowercase__ ):
for i in range(lowercase__ ):
lowerCAmelCase_ : Optional[int] = dataset[i]
@get_duration
def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
with dataset.formatted_as(type=lowercase__ ):
for i in range(0 , lowercase__ , lowercase__ ):
lowerCAmelCase_ : Union[str, Any] = dataset[i : i + batch_size]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = {"""num examples""": SPEED_TEST_N_EXAMPLES}
lowerCAmelCase_ : Tuple = [
(read, {"""length""": SMALL_TEST}),
(read, {"""length""": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}),
(read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}),
]
lowerCAmelCase_ : Union[str, Any] = [
(read, {"""length""": SMALL_TEST}),
(read, {"""length""": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}),
(read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print("""generating dataset""" )
lowerCAmelCase_ : Any = datasets.Features(
{"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} )
lowerCAmelCase_ : str = generate_example_dataset(
os.path.join(lowercase__ , """dataset.arrow""" ) , lowercase__ , num_examples=lowercase__ , seq_shapes={"""list""": (100,)} , )
print("""first set of iterations""" )
for func, kwargs in functions:
print(func.__name__ , str(lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = func(lowercase__ , **lowercase__ )
print("""shuffling dataset""" )
lowerCAmelCase_ : Tuple = dataset.shuffle()
print("""Second set of iterations (after shuffling""" )
for func, kwargs in functions_shuffled:
print("""shuffled """ , func.__name__ , str(lowercase__ ) )
lowerCAmelCase_ : Optional[int] = func(
lowercase__ , **lowercase__ )
with open(lowercase__ , """wb""" ) as f:
f.write(json.dumps(lowercase__ ).encode("""utf-8""" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 1 |
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any]=None , lowercase__ : Optional[Any]=None ) -> str:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=lowercase__ )
@dataclass
class __a :
__snake_case : List[str] = list_field(
default=[] ,metadata={
"""help""": (
"""Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"""
""" of all available models"""
)
} ,)
__snake_case : List[int] = list_field(
default=[8] ,metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} )
__snake_case : List[int] = list_field(
default=[8, 32, 128, 512] ,metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} ,)
__snake_case : bool = field(
default=__UpperCamelCase ,metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} ,)
__snake_case : bool = field(
default=__UpperCamelCase ,metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} ,)
__snake_case : bool = field(
default=__UpperCamelCase ,metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} )
__snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Use FP16 to accelerate inference."""} )
__snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Benchmark training of model"""} )
__snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Verbose memory tracing"""} )
__snake_case : bool = field(
default=__UpperCamelCase ,metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} ,)
__snake_case : bool = field(
default=__UpperCamelCase ,metadata={
"""help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"""
} ,)
__snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Trace memory line by line"""} )
__snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Save result to a CSV file"""} )
__snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Save all print statements in a log file"""} )
__snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Whether to print environment information"""} )
__snake_case : bool = field(
default=__UpperCamelCase ,metadata={
"""help""": (
"""Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"""
""" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"""
""" for debugging / testing and on TPU."""
)
} ,)
__snake_case : str = field(
default=f'inference_time_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving time results to csv."""} ,)
__snake_case : str = field(
default=f'inference_memory_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving memory results to csv."""} ,)
__snake_case : str = field(
default=f'train_time_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving time results to csv for training."""} ,)
__snake_case : str = field(
default=f'train_memory_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} ,)
__snake_case : str = field(
default=f'env_info_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving environment information."""} ,)
__snake_case : str = field(
default=f'log_{round(time() )}.csv' ,metadata={"""help""": """Log filename used if print statements are saved in log."""} ,)
__snake_case : int = field(default=3 ,metadata={"""help""": """Times an experiment will be run."""} )
__snake_case : bool = field(
default=__UpperCamelCase ,metadata={
"""help""": (
"""Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"""
""" model weights."""
)
} ,)
def A ( self : Any ):
warnings.warn(
F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , UpperCAmelCase , )
def A ( self : Dict ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def A ( self : Union[str, Any] ):
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def A ( self : Union[str, Any] ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 28 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'IBertForMaskedLM',
'IBertForMultipleChoice',
'IBertForQuestionAnswering',
'IBertForSequenceClassification',
'IBertForTokenClassification',
'IBertModel',
'IBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 1 |
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class __a ( unittest.TestCase ):
@slow
def A ( self : Any ):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(UpperCAmelCase ):
lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = FlaxAutoModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def A ( self : Dict ):
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(UpperCAmelCase ):
lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[str] = FlaxAutoModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def A ( self : Optional[int] ):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowerCAmelCase_ : str = AutoTokenizer.from_pretrained(UpperCAmelCase )
lowerCAmelCase_ : str = FlaxBertModel.from_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Dict = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**UpperCAmelCase : List[str] ):
return model(**UpperCAmelCase )
eval(**UpperCAmelCase ).block_until_ready()
@slow
def A ( self : Tuple ):
for model_name in ["roberta-base", "roberta-large"]:
lowerCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxRobertaModel.from_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**UpperCAmelCase : Dict ):
return model(**UpperCAmelCase )
eval(**UpperCAmelCase ).block_until_ready()
def A ( self : Tuple ):
with self.assertRaisesRegex(
UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ):
lowerCAmelCase_ : Tuple = FlaxAutoModel.from_pretrained("""bert-base""" )
def A ( self : Union[str, Any] ):
with self.assertRaisesRegex(
UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
lowerCAmelCase_ : Optional[int] = FlaxAutoModel.from_pretrained(UpperCAmelCase , revision="""aaaaaa""" )
def A ( self : List[Any] ):
with self.assertRaisesRegex(
UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ):
lowerCAmelCase_ : Any = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" )
def A ( self : Optional[int] ):
with self.assertRaisesRegex(UpperCAmelCase , """Use `from_pt=True` to load this model""" ):
lowerCAmelCase_ : Optional[int] = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
__UpperCAmelCase = [
'DownloadConfig',
'DownloadManager',
'DownloadMode',
'StreamingDownloadManager',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 28 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : list[list[float]] ) -> list[list[float]]:
'''simple docstring'''
lowerCAmelCase_ : list[list[float]] = []
for data in source_data:
for i, el in enumerate(lowercase__ ):
if len(lowercase__ ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(lowercase__ ) )
return data_lists
def __UpperCamelCase ( lowercase__ : list[list[float]] , lowercase__ : list[int] ) -> list[list[float]]:
'''simple docstring'''
lowerCAmelCase_ : list[list[float]] = []
for dlist, weight in zip(lowercase__ , lowercase__ ):
lowerCAmelCase_ : str = min(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = max(lowercase__ )
lowerCAmelCase_ : list[float] = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
lowerCAmelCase_ : int = f'Invalid weight of {weight:f} provided'
raise ValueError(lowercase__ )
score_lists.append(lowercase__ )
return score_lists
def __UpperCamelCase ( lowercase__ : list[list[float]] ) -> list[float]:
'''simple docstring'''
lowerCAmelCase_ : list[float] = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(lowercase__ ):
lowerCAmelCase_ : List[str] = final_scores[j] + ele
return final_scores
def __UpperCamelCase ( lowercase__ : list[list[float]] , lowercase__ : list[int] ) -> list[list[float]]:
'''simple docstring'''
lowerCAmelCase_ : int = get_data(lowercase__ )
lowerCAmelCase_ : Optional[int] = calculate_each_score(lowercase__ , lowercase__ )
lowerCAmelCase_ : Union[str, Any] = generate_final_scores(lowercase__ )
# append scores to source data
for i, ele in enumerate(lowercase__ ):
source_data[i].append(lowercase__ )
return source_data
| 28 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 1 |
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
__UpperCAmelCase = logging.getLogger(__name__)
@dataclass(frozen=__UpperCamelCase )
class __a :
__snake_case : str
__snake_case : str
__snake_case : Optional[str] = None
__snake_case : Optional[str] = None
__snake_case : Optional[str] = None
@dataclass(frozen=__UpperCamelCase )
class __a :
__snake_case : List[int]
__snake_case : Optional[List[int]] = None
__snake_case : Optional[List[int]] = None
__snake_case : Optional[Union[int, float]] = None
__snake_case : Optional[int] = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class __a ( __UpperCamelCase ):
__snake_case : List[InputFeatures]
def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : bool = False , ):
lowerCAmelCase_ : int = hans_processors[task]()
lowerCAmelCase_ : int = os.path.join(
UpperCAmelCase , """cached_{}_{}_{}_{}""".format(
"""dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , )
lowerCAmelCase_ : Any = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase_ , lowerCAmelCase_ : int = label_list[2], label_list[1]
lowerCAmelCase_ : List[str] = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase_ : Tuple = cached_features_file + """.lock"""
with FileLock(UpperCAmelCase ):
if os.path.exists(UpperCAmelCase ) and not overwrite_cache:
logger.info(F'Loading features from cached file {cached_features_file}' )
lowerCAmelCase_ : str = torch.load(UpperCAmelCase )
else:
logger.info(F'Creating features from dataset file at {data_dir}' )
lowerCAmelCase_ : Optional[int] = (
processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase )
)
logger.info("""Training examples: %s""" , len(UpperCAmelCase ) )
lowerCAmelCase_ : Any = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
logger.info("""Saving features into cached file %s""" , UpperCAmelCase )
torch.save(self.features , UpperCAmelCase )
def __len__( self : str ):
return len(self.features )
def __getitem__( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
return self.features[i]
def A ( self : List[str] ):
return self.label_list
if is_tf_available():
import tensorflow as tf
class __a :
__snake_case : List[InputFeatures]
def __init__( self : Any , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 1_28 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : bool = False , ):
lowerCAmelCase_ : Union[str, Any] = hans_processors[task]()
lowerCAmelCase_ : str = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase_ , lowerCAmelCase_ : Any = label_list[2], label_list[1]
lowerCAmelCase_ : Dict = label_list
lowerCAmelCase_ : Any = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ):
if ex_index % 1_00_00 == 0:
logger.info("""Writing example %d of %d""" % (ex_index, len(UpperCAmelCase )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
lowerCAmelCase_ : List[Any] = tf.data.Dataset.from_generator(
UpperCAmelCase , (
{
"""example_id""": tf.intaa,
"""input_ids""": tf.intaa,
"""attention_mask""": tf.intaa,
"""token_type_ids""": tf.intaa,
},
tf.intaa,
) , (
{
"""example_id""": tf.TensorShape([] ),
"""input_ids""": tf.TensorShape([None, None] ),
"""attention_mask""": tf.TensorShape([None, None] ),
"""token_type_ids""": tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def A ( self : Dict ):
return self.dataset
def __len__( self : Optional[Any] ):
return len(self.features )
def __getitem__( self : Dict , UpperCAmelCase : Union[str, Any] ):
return self.features[i]
def A ( self : Optional[int] ):
return self.label_list
class __a ( __UpperCamelCase ):
def A ( self : Tuple , UpperCAmelCase : Union[str, Any] ):
return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , """heuristics_train_set.txt""" ) ) , """train""" )
def A ( self : Any , UpperCAmelCase : Dict ):
return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , """heuristics_evaluation_set.txt""" ) ) , """dev""" )
def A ( self : List[Any] ):
return ["contradiction", "entailment", "neutral"]
def A ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : int ):
lowerCAmelCase_ : int = []
for i, line in enumerate(UpperCAmelCase ):
if i == 0:
continue
lowerCAmelCase_ : Optional[int] = """%s-%s""" % (set_type, line[0])
lowerCAmelCase_ : Any = line[5]
lowerCAmelCase_ : Union[str, Any] = line[6]
lowerCAmelCase_ : Dict = line[7][2:] if line[7].startswith("""ex""" ) else line[7]
lowerCAmelCase_ : List[Any] = line[0]
examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) )
return examples
def __UpperCamelCase ( lowercase__ : List[InputExample] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : PreTrainedTokenizer , ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = {label: i for i, label in enumerate(lowercase__ )}
lowerCAmelCase_ : str = []
for ex_index, example in tqdm.tqdm(enumerate(lowercase__ ) , desc="""convert examples to features""" ):
if ex_index % 10000 == 0:
logger.info("""Writing example %d""" % (ex_index) )
lowerCAmelCase_ : List[Any] = tokenizer(
example.text_a , example.text_b , add_special_tokens=lowercase__ , max_length=lowercase__ , padding="""max_length""" , truncation=lowercase__ , return_overflowing_tokens=lowercase__ , )
lowerCAmelCase_ : Union[str, Any] = label_map[example.label] if example.label in label_map else 0
lowerCAmelCase_ : Optional[Any] = int(example.pairID )
features.append(InputFeatures(**lowercase__ , label=lowercase__ , pairID=lowercase__ ) )
for i, example in enumerate(examples[:5] ):
logger.info("""*** Example ***""" )
logger.info(f'guid: {example}' )
logger.info(f'features: {features[i]}' )
return features
__UpperCAmelCase = {
'hans': 3,
}
__UpperCAmelCase = {
'hans': HansProcessor,
}
| 28 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..utils import cached_file
# docstyle-ignore
__UpperCAmelCase = '\nHuman: <<task>>\n\nAssistant: '
__UpperCAmelCase = 'huggingface-tools/default-prompts'
__UpperCAmelCase = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'}
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Optional[int]="run" ) -> Any:
'''simple docstring'''
if prompt_or_repo_id is None:
lowerCAmelCase_ : int = DEFAULT_PROMPTS_REPO
# prompt is considered a repo ID when it does not contain any kind of space
if re.search("""\\s""" , lowercase__ ) is not None:
return prompt_or_repo_id
lowerCAmelCase_ : Optional[Any] = cached_file(
lowercase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} )
with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f:
return f.read()
| 28 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 1 |
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.encodec')
__UpperCAmelCase = {
'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited',
'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size',
'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed',
'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg',
}
__UpperCAmelCase = {
'encoder.model.0.conv.conv': 'encoder.layers.0.conv',
'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv',
'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv',
'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv',
'encoder.model.3.conv.conv': 'encoder.layers.3.conv',
'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv',
'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv',
'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv',
'encoder.model.6.conv.conv': 'encoder.layers.6.conv',
'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv',
'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv',
'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv',
'encoder.model.9.conv.conv': 'encoder.layers.9.conv',
'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv',
'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv',
'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv',
'encoder.model.12.conv.conv': 'encoder.layers.12.conv',
'encoder.model.13.lstm': 'encoder.layers.13.lstm',
'encoder.model.15.conv.conv': 'encoder.layers.15.conv',
}
__UpperCAmelCase = {
'encoder.model.0.conv.norm': 'encoder.layers.0.norm',
'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm',
'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm',
'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm',
'encoder.model.3.conv.norm': 'encoder.layers.3.norm',
'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm',
'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm',
'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm',
'encoder.model.6.conv.norm': 'encoder.layers.6.norm',
'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm',
'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm',
'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm',
'encoder.model.9.conv.norm': 'encoder.layers.9.norm',
'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm',
'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm',
'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm',
'encoder.model.12.conv.norm': 'encoder.layers.12.norm',
'encoder.model.15.conv.norm': 'encoder.layers.15.norm',
}
__UpperCAmelCase = {
'decoder.model.0.conv.conv': 'decoder.layers.0.conv',
'decoder.model.1.lstm': 'decoder.layers.1.lstm',
'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv',
'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv',
'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv',
'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv',
'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv',
'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv',
'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv',
'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv',
'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv',
'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv',
'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv',
'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv',
'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv',
'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv',
'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv',
'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv',
'decoder.model.15.conv.conv': 'decoder.layers.15.conv',
}
__UpperCAmelCase = {
'decoder.model.0.conv.norm': 'decoder.layers.0.norm',
'decoder.model.3.convtr.norm': 'decoder.layers.3.norm',
'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm',
'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm',
'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm',
'decoder.model.6.convtr.norm': 'decoder.layers.6.norm',
'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm',
'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm',
'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm',
'decoder.model.9.convtr.norm': 'decoder.layers.9.norm',
'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm',
'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm',
'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm',
'decoder.model.12.convtr.norm': 'decoder.layers.12.norm',
'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm',
'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm',
'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm',
'decoder.model.15.conv.norm': 'decoder.layers.15.norm',
}
__UpperCAmelCase = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__UpperCAmelCase = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__UpperCAmelCase = []
__UpperCAmelCase = []
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : int ) -> List[Any]:
'''simple docstring'''
for attribute in key.split(""".""" ):
lowerCAmelCase_ : Optional[Any] = getattr(lowercase__ , lowercase__ )
if weight_type is not None:
lowerCAmelCase_ : Tuple = getattr(lowercase__ , lowercase__ ).shape
else:
lowerCAmelCase_ : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
lowerCAmelCase_ : Union[str, Any] = value
elif weight_type == "weight_g":
lowerCAmelCase_ : Any = value
elif weight_type == "weight_v":
lowerCAmelCase_ : str = value
elif weight_type == "bias":
lowerCAmelCase_ : Any = value
elif weight_type == "running_mean":
lowerCAmelCase_ : List[str] = value
elif weight_type == "running_var":
lowerCAmelCase_ : Optional[int] = value
elif weight_type == "num_batches_tracked":
lowerCAmelCase_ : List[Any] = value
elif weight_type == "weight_ih_l0":
lowerCAmelCase_ : Optional[int] = value
elif weight_type == "weight_hh_l0":
lowerCAmelCase_ : Tuple = value
elif weight_type == "bias_ih_l0":
lowerCAmelCase_ : int = value
elif weight_type == "bias_hh_l0":
lowerCAmelCase_ : Tuple = value
elif weight_type == "weight_ih_l1":
lowerCAmelCase_ : List[str] = value
elif weight_type == "weight_hh_l1":
lowerCAmelCase_ : int = value
elif weight_type == "bias_ih_l1":
lowerCAmelCase_ : int = value
elif weight_type == "bias_hh_l1":
lowerCAmelCase_ : Optional[int] = value
else:
lowerCAmelCase_ : Any = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Dict ) -> Tuple:
'''simple docstring'''
for key in ignore_keys:
if key.endswith(""".*""" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = key.split(""".*.""" )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : int = []
if model_name == "encodec_24khz" or "encodec_32khz":
lowerCAmelCase_ : Optional[int] = MAPPING_24K
elif model_name == "encodec_48khz":
lowerCAmelCase_ : List[Any] = MAPPING_48K
else:
raise ValueError(f'Unsupported model: {model_name}' )
for name, value in orig_dict.items():
if should_ignore(lowercase__ , lowercase__ ):
logger.info(f'{name} was ignored' )
continue
lowerCAmelCase_ : str = False
for key, mapped_key in MAPPING.items():
if "*" in key:
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = key.split(""".*.""" )
if prefix in name and suffix in name:
lowerCAmelCase_ : Tuple = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ):
continue
lowerCAmelCase_ : str = True
if "*" in mapped_key:
lowerCAmelCase_ : Optional[Any] = name.split(lowercase__ )[0].split(""".""" )[-2]
lowerCAmelCase_ : Optional[Any] = mapped_key.replace("""*""" , lowercase__ )
if "weight_g" in name:
lowerCAmelCase_ : List[str] = """weight_g"""
elif "weight_v" in name:
lowerCAmelCase_ : Optional[int] = """weight_v"""
elif "weight_ih_l0" in name:
lowerCAmelCase_ : Dict = """weight_ih_l0"""
elif "weight_hh_l0" in name:
lowerCAmelCase_ : List[Any] = """weight_hh_l0"""
elif "bias_ih_l0" in name:
lowerCAmelCase_ : int = """bias_ih_l0"""
elif "bias_hh_l0" in name:
lowerCAmelCase_ : Optional[int] = """bias_hh_l0"""
elif "weight_ih_l1" in name:
lowerCAmelCase_ : Union[str, Any] = """weight_ih_l1"""
elif "weight_hh_l1" in name:
lowerCAmelCase_ : Any = """weight_hh_l1"""
elif "bias_ih_l1" in name:
lowerCAmelCase_ : Dict = """bias_ih_l1"""
elif "bias_hh_l1" in name:
lowerCAmelCase_ : List[str] = """bias_hh_l1"""
elif "bias" in name:
lowerCAmelCase_ : Tuple = """bias"""
elif "weight" in name:
lowerCAmelCase_ : List[str] = """weight"""
elif "running_mean" in name:
lowerCAmelCase_ : Optional[Any] = """running_mean"""
elif "running_var" in name:
lowerCAmelCase_ : int = """running_var"""
elif "num_batches_tracked" in name:
lowerCAmelCase_ : Tuple = """num_batches_tracked"""
else:
lowerCAmelCase_ : Any = None
set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
continue
if not is_used:
unused_weights.append(lowercase__ )
logger.warning(f'Unused weights: {unused_weights}' )
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Tuple=None , lowercase__ : str=None , ) -> Optional[int]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : List[str] = EncodecConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
lowerCAmelCase_ : List[str] = [8, 5, 4, 4]
lowerCAmelCase_ : int = [2.2]
lowerCAmelCase_ : List[str] = 64
lowerCAmelCase_ : Optional[int] = 32000
lowerCAmelCase_ : Tuple = 2048
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : Any = False
lowerCAmelCase_ : int = False
elif model_name == "encodec_48khz":
lowerCAmelCase_ : Optional[int] = [8, 5, 4, 2]
lowerCAmelCase_ : Optional[Any] = [3.0, 6.0, 12.0, 24.0]
lowerCAmelCase_ : Optional[int] = 48000
lowerCAmelCase_ : str = 2
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : str = """time_group_norm"""
lowerCAmelCase_ : int = True
lowerCAmelCase_ : Optional[Any] = 1.0
lowerCAmelCase_ : Optional[Any] = 0.01
else:
raise ValueError(f'Unknown model name: {model_name}' )
lowerCAmelCase_ : Dict = EncodecModel(lowercase__ )
lowerCAmelCase_ : Tuple = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(lowercase__ )
lowerCAmelCase_ : int = torch.load(lowercase__ )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
lowerCAmelCase_ : Optional[Any] = original_checkpoint["""best_state"""]
recursively_load_weights(lowercase__ , lowercase__ , lowercase__ )
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
feature_extractor.push_to_hub(lowercase__ )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'--model',
default='encodec_24khz',
type=str,
help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.',
)
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.